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Why consider peridynamic balance laws?

I Classical balance laws assume the motion is sufficiently
regular, e.g., differentiable—peridynamic balance laws are
defined for discontinuous motion—same equations hold on
and off of discontinuities

I Peridynamic mechanics is now 15 years old; much has
been accomplished (but much) more work needs to be
done

I My presentation reviews peridynamic mechanics and
recent work on complex fracture nucleation and evolution
(joint with Rob Lipton, Stewart Silling)
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Applications/Software

I Google for a myriad of applications; brittle fracture has
some interesting results

I Several three dimensional dynamic fracture codes (public
domain)

I LS-DYNA has released an implementation
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Balance law of linear momentum

I Let y = y(x, t) denote a motion; ρ = ρ(x, t) is the mass
density; b(x, t) is the body force density

I Classical balance of linear momentum

d
dt

∫
Ω
ρ ẏ dV =

∫
∂Ω

P n dA +

∫
Ω

b dV ∀Ω

where P is the stress tensor and n is the unit outward
normal

I Peridynamic balance of linear momentum

d
dt

∫
Ω
ρ ẏ dV =

∫
Ω

∫
R3\Ω

(
t− t′

)
dV ′ dV +

∫
Ω

b dV ∀Ω

where t := t(x′,x), t′ := t(x,x′) is the bond force density
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Internal force interaction

I The difference between the balance laws are the terms∫
∂Ω

P n dA and
∫

Ω

∫
R3\Ω

(
t− t′

)
dV ′ dV

representing the internal forces within the body exerted
upon Ω

I The nonlocal flux is associated with an alternate set of
balance laws with significantly less regularity assumption
results—no spatial derivatives are used
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(Nonlocal) flux

The following conditions are equivalent
I Action-reaction:∫

Ω1

∫
Ω2

(
t−t′

)
dV ′ dV +

∫
Ω2

∫
Ω1

(
t−t′

)
dV ′ dV = 0 ∀Ω1,Ω2

I Antisymmetry: t(x′,x)− t(x,x′) = −
(
t(x,x′)− t(x′,x)

)
I Alternating:

∫
Ω

∫
Ω

(
t− t′

)
dV ′ dV = 0 for all Ω (no

self-interaction)
I The balance law is additive

2∑
i=1

d
dt

∫
Ωi

ρẏ dV =
2∑

i=1

∫
Ωi

∫
R3\Ωi

(
t− t′

)
dV ′ dV ∀Ω1,Ω2
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Local, nonlocal fluxes compared

I Action-reaction: via surface interaction∫
∂Ω

P n dA︸ ︷︷ ︸
force upon Ω

+

∫
∂Ω

P
(
− n) dA︸ ︷︷ ︸

force upon R3\Ω

= 0

or the (traction) force exerted upon Ω by R3 \ Ω is equal
and opposite to that of the force exerted upon R3 \ Ω by Ω

I Action-reaction: via volume interaction∫
Ω

∫
R3\Ω

(
t− t′

)
dV ′ dV︸ ︷︷ ︸

force upon Ω

+

∫
R3\Ω

∫
Ω

(
t− t′

)
dV ′ dV︸ ︷︷ ︸

force upon R3\Ω

= 0
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Pointwise balance laws of linear momentum

I Use the divergence theorem
∫

Ω∇ · P dV =
∫
∂Ω P n dA on

the classical balance of linear momentum

ρ ÿ = ∇ · P + b

where P is the stress tensor
I The alternating principle implies a nonlocal divergence

theorem
∫

Ω

∫
R3

(
t− t′

)
dV ′ dV =

∫
Ω

∫
R3\Ω

(
t− t′

)
dV ′ dV

I Peridynamic balance of linear momentum

ρ ÿ =

∫
R3

(
t− t′

)
dV ′ + b

where t := t(x′,x), t′ := t(x,x′)
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Nonlocality

I Local: ∇ · P(x) only depends upon the value of the stress
at x

I Nonlocal:
∫
R3

(
t(x′,x)− t(x,x′)

)
dV ′ depends upon x′ 6= x

I Be careful when speaking about a force acting across a
finite distance because it’s not clear what this means—how
would you justify (or reject for that matter)?

I Nonlocal force interaction is picturesque language for a
modeling assumption—the benefit is that regularity
requirements can be lowered

I Principal of virtual work can be postulated (and be shown
to be equivalent to the balance of linear momentum)
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(Nonlocal) balances of angular momentum, energy

I Balance of angular momentum (global, pointwise)
I Balance of energy (global, pointwise); combined with the

second law leads to thermodynamic restrictions
(Coleman-Noll paradigm) for constitutive relations

I Satisfy analogous symmetries as the balance of linear
momentum

I Do we have supporting evidence that the balances are
valid?
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Ensemble averaging in phase space

I Expressions for the peridynamic analogues of stress, heat
flux, energy, and material velocity, i.e.,

t,h, ε, and ẏ

(L. and Sears Phy. Rev. E 2011)
I Microscopic basis for the nonlocal balance laws in

non-equilibrium statistical mechanics
I Builds upon the seminal paper by Irving & Kirkwood (J.

Chem. Phys. 1950) derived approximate expressions for
the stress, heat flux, energy, and material velocity as
ensemble averages for the classical balances
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Alternative derivation of nonlocal balance laws

I Frame indifference (invariant under rotations + translations)
of the absorbed and supplied power expenditures

wabs(Ω)
def
=

∫
Ω

∫
R3

t · (v′ − v) dV ′dV “absorbed power”

wsup(Ω)
def
=

∫
Ω

∫
R3\Ω

(t · v′ − t′ · v) dV ′dV +

∫
Ω

b · v dV

“supplied power”

v′ = v(x′, t) = u̇(x′, t)
I Resulting power expenditures satisfy analogous

symmetries as the previous balances
I Balances of angular, linear momentum and energy result
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Nonlocal Kinematics

∇̃y(x)
def
= −

∫
R3

y(x′)⊗αε(x′ − x) dx′

where∫
R3

αε(x′ − x) dx′ = 0
(
αε(x′ − x) = −αε(x− x′)

)

I ∇̃y is dimensional-less when y has dimensions of length

I ∇̃ (A x + c) = A∇̃x = A when A and c are a matrix and a
vector

I Select αε(x′ − x) =
∂

∂x′
δ(x′ − x) to recover ∇y
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Nonlocal strain

I Deformation y(x, t) = x + u(x, t)

I Nonlocal deformation gradient F̃ def
= I + ∇̃u

I Nonlocal strain Ẽ def
= 1

2

(
F̃T F̃− I

)
I Rigid body modes have zero nonlocal strain (elastic and

plastic)
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A bit of thermomechanics

I Nonlocal Coleman-Noll
I Free energy ψ

d
dt
ψ(F̃) =

∂ψ

∂F̃
: ˙̃F

I Energy imbalance for nonlocal elasticity∫
Ω

1
θ
ρ
∂ψ

∂F̃
: ˙̃F︸ ︷︷ ︸

power

dV − wabs(Ω)︸ ︷︷ ︸
absorbed power

≤ 0

I Leads to restrictions on constitutive relations
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Interaction region ΩI

Ω

ΩI

Ω

Ω Ω
ΩI

ΩI

ΩI

I Four of the possible configurations for ΩI , the nonlocal
analogue of the boundary ∂Ω

I ΩI is (typically) the union of spheres about x ∈ Ω;
peridynamic horizon Hε(x)
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Well-posed volume constrained problems

I Dirichlet volume constrained nonlocal diffusion and
peridynamic Navier problems{

−Lu = b on Ω

u = 0 on ΩI ,

{
−Lu = b on Ω

u = h on ΩI

I Variational formulation and the Lax-Milgram theorem to
demonstrate that the equations are well-posed

I Volume constraint is crucial to establish coercivity on
Hilbert spaces without a trace operator—such as fractional
Sobolev spaces Hs(Ω ∪ ΩI),0 < s < 1/2 and L2(Ω ∪ ΩI)

I Discontinuous Galerkin FEM are conforming (LS-DYNA
implementation)
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Nonlocal diffusion and Navier operators

I Nonlocal diffusion equation

Lu(x) = −D(ΦD∗u)(x) = 2
∫

Ω∪ΩI

γ(x,y)
(
u(y)− u(x)

)
dy

I Peridynamic Navier equation

Lu(x) = −D
(
η$
(
D∗u

)T )
(x)−Dω

(
σTr

(
D∗ωu

)
I
)
(x)

=

∫
Ω∪ΩI

Γ(x,y)
(
u(y)− u(x)

)
dy

I The kernels γ(x,y) and Γ(x,y) determine whether L and L
smooth the data—kernels must be non-integrable
otherwise L2(Ω ∪ ΩI) is mapped to L2(Ω ∪ ΩI)
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Nonconvex Material Model

I Strain
Su(y,x) =

u(y, t)− u(x, t)
|y− x|

· y− x
|y− x|

I Internal force density

4
|Hε(x)|

∫
Hε(x)

∂SuWε
(
Su(y,x),y− x

) y− x
|y− x|

dy

where

Wε
(
Su(y,x),y− x

)
=

2
ε

Ψ
(
|y− x|S2

u (y,x)
)
J
(
|y− x|
ε

)
J is a positive weighting function, Ψ is a C1 scalar function
Ψ(0) = 0 < Ψ(0)
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Nonconvex ∂SuWε

Sc−Sc

S

∂SuWε

I Equation of motion is well-posed (given initial conditions,
volume constraint) in C2([0,T ]; L2

0(Ω)) (Lipton 2014, 2015)
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Complex fracture nucleation and evolution

I Linear stability analysis for a small jump discontinuity given
the nonconvex material model

I If the stability matrix is indefinite (positive, negative
eigenvalues) then exponential growth of jump may occur

I Significance is that cracks may nucleate
spontaneously—no supplemental kinetic relation or explicit
damage evolution law

I As the horizon ε→ 0, the solution of the peridynamic
equation

1. is that of the Navier equation away from the crack set, and
2. on the crack set, the solution has bounded Griffith surface

energy with critical energy release rate
I Numerical examples support theoretical findings
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Summary

I Peridynamic balance laws are defined for discontinuous
motion—same equations hold on and off of discontinuities,
minimal supplementary relations

I Much has been accomplished (but much) more work
needs to be done—development of constitutive relations
and improving usability of codes are a priority

I LS-DYNA entry is a welcome addition
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Data driven mechanics

I DIC (digital image correlation) generates a tremendous
amount of data that is largely unused

I Can we exploit this technology for material identification
and model fit?

I Determine objective measures for accessing and
comparing models
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