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I reached my 5-year return level!

Thanks to the organizers. The meeting has be great.
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Sam Morris
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Spatial extremes

I EVA can benefit greatly from spatial methods

I Spatial methods can map risk and borrow strength over
space to estimate rare-event probabilities

I Accounting for spatial dependence is necessary for valid
inference

I Methods and software in this area are developing rapidly to
meet a growing demand
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Current approaches and limitations

I Theory suggests that a max-stable process is a good
option for spatial extremes

I The max-stable process gives a complicated likelihood
function with no closed-form except in trivial cases

I Current Bayesian approaches can handle only a moderate
number of spatial locations

I This is limiting because most modern applications have
hundreds or thousands of stations

I Because of these challenges advanced methods for e.g.,
multivariate or nonstationary data are limited
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Outline of talk

I The objective of this work is to develop Bayesian methods
that can be scaled up to high dimensions

I Approach 1: Low-rank empirical basis approximation

I Approach 2: Spatial skew-t process

I These two approaches are applied to both block maxima
and peaks over a threshold
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Application 1 – Forest fires in GA
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Application 2 – Climate model precip output
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Application 3 – Air pollution (ozone)
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Low-rank methods for Gaussian data

I Principle components analysis (aka., empirically
orthogonal functions) is a valuable tool for climate data

I PCA uses the sample covariance matrix between spatial
locations to identify highly-correlated sites

I This is useful for understanding spatial patterns and
identifying homogeneous sub-regions

I It is also a dimension-reduction tool; the times series of the
PCA loadings are approximately independent

Emeric Thibaud and Brian Reich EVA for large spatial data sets 10 / 55



Low-rank methods for Gaussian data

I Assume there are n spatial locations and Y1, ...,Ym
are the data for m independent replications

I PCA decomposes the n × n sample covariance as
S = BVBT

I Eigenvector maps (B’s columns) reveal the large-scale
spatial patterns

I Dimension reduction: often L << n is sufficient

I Denote the first L columns of B as BL

I Replication t ’s loadings are At = BT
L Yt

I The L << n elements of the At should be independent
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Low-rank methods for Gaussian data

I This idea extends from a discrete process at n locations
to a Gaussian process (GP) Yt(s)

I Karhunen-Loeve: Any GP Yt(s) can be written

Yt(s) =
∞∑

l=1

Bl(s)Alt

I Bl(s) are orthonormal spatial eigenfunctions

I Al are independent normals with variance vl

I Covariance: Cov[Yt(s),Yt(s′)] =
∑

l Bl(s)Bl(s′)vl
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Challenges in EVA

I Covariance decompositions cannot be applied for
extremes because the covariance may not exist

I Also, covariance focuses on deviations around the mean
and not the extremes

I In this talk we propose a method to identify empirical basis
functions (EBF) for extremes

I We use the EBFs for both exploratory analysis and model
building
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Max-stable processes

I Let Y1(s), ..., Ym(s) be iid spatial processes

I The pointwise maximum process is

Ỹ (s) =
m∨

l=1

Yl(s)

I If there exist constants aL and bL so that

Z (s) = am + bmỸ (s)

converges to a valid process as m→∞, then Z is
max-stable

I The marginal distribution of Z at each s is GEV
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Spectral representation theorem

I Any max-stable process can be written as a pointwise
maximum of m processes (de Haan)

I Max-linear model (Wang and Stoev):

Z (s) =
L∨

l=1

Bl(s)Al

where Bl(s) > 0,
∑

l Bl(s) = 1 for all s, and Al
iid∼ GEV

I If we view the Bl(s) as basis functions constant over time,
these can play the role of PCs/eigen-functions

I The Al change over time and play the role of the loadings
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Low-rank positive-stable representation

I It is unlikely that realizations will identically equal the
point-wise maximum of L processes

I Following Reich and Shaby (2012), let Zt(s), the value at
site s and time t , be

Zt(s) = θt(s)εt(s)

where θt is a spatial process and εt(s)
iid∼ GEV(1, α, α)

I The spatial process is

θt(s) =

(
L∑

l=1

Bl(s)1/αAtl

)α

where Atl ∼ PS(α)
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The parameter α ∈ (0,1) controls the “nugget”
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Low-rank positive-stable representation

I Zt is max-stable marginally over the random effects Atl

I The joint is GEV - asymmetric Laplace

I Dependence is measured by the extremal coefficient ϑ,
defined via

Prob[Zt(s1) < c,Zt(s2) < c] = Prob[Zt(s1) < c]ϑ(s1,s2)

I For the low-rank PS model

ϑ(s1, s2) =
L∑

l=1

[
Bl(s1)

1/α + Bl(s2)
1/α
]α
∈ [1,2]
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Estimating the EBFs, Bl(s)

1. Use a rank transformation to standardize data for each s

2. Estimate the extremal dependence between each pair of
sites (using χ or madogram), ϑ̂(si , sj)

3. Spatially (4D) smooth the sample dependence measures

4. Constrained least squares (next slide) to minimize the
distance between sample (ϑ̂) and model (ϑ as a function of
the B) spatial dependence

5. Order the terms by vl =
∑

s Bl(s)
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Estimating the EBFs, Bl(s)

I The objective function to estimate the Bl is∑
i<j

[
ϑ̂(si , sj)− ϑ(si , sj)

]2

where ϑ(si , sj) is a function of Bl

I The EBFs must satisfy Bl(s) > 0 and
∑

l Bl(s) = 1 for all s

I The solution is approximated by cycling through the sites
and solving a series of constrained optimization problems
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Contrasts with PCA

I Basis functions are not orthonormal

I Loadings are positive stable, not Gaussian

I Loadings Alt may not be independent

I Computing A and B is not as simple as a few matrix
operations
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Analogy with PCA

I Reduces the dimension from n to L

I Maps of Bl(s) tell us about the most important spatial
patterns

I Captures a non-stationary spatial dependence structure

I The vl tell us how many important features are present

I Loadings Alt can be estimated and fed into future analyses
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Bayesian implementation

I Given the basis function Bl(s) we can proceed with
MCMC to estimate the remaining parameters

I GEV location: µt(s) = βµ,int(s) + βµ,time(s)t

I GEV scale: log[σt(s)] = βσ,int(s) + βσ,time(s)t

I GEV shape: ξ for all s and t

I The β have Gaussian process priors

I We use cross-validation (quantile and Bries scores) to
select L

I Alternative: select L so that
∑L

l=1 vl = 0.8
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Application 1 - forest fires in GA

I The data are the number of acres burned by forest fires
each year (1965-2014) in each county of Georgia

I We censor the data at the local 95th percentile, T (s)

I The censored data are modeled as GEV with
spatially-varying location and scale

I The objectives are to map fire risk and determine if it is
changing with time
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GA Fires – time series for each county
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GA Fires – picking the threshold
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GA Fires – 95th percentile by county, T (s)
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Model comparisons

L Brier Score Quantile score
5 5.64 135.7
10 5.33 127.3
15 5.00 128.3
20 4.93 122.4
25 4.78 116.9
40 4.72 115.7
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GA Fires – EBF weights, vl
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GA Fires – EBF’s Bl(s)
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GA Fires – Ecoregions
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Time trend (βµ,time, βσ,time) – posterior mean
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Time trend (βµ,time, βσ,time) – posterior SD
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Time trend (βµ,time, βσ,time) – prob > 0
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Application 2 – NARCCAP climate model output

I Data consist of annual maximum precipitation at
697 grid cells in the Eastern US

I The model is run separately for 1969-2000 and 2039-2077

I The objective is the compare the extremes in the two
climate periods

I We fit the same model as for the fire data except without
censoring

I We fit the model separately for the two periods
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Climate model output for 1969
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Precip – EBF weights, vl
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Precip – EBFs Bl(s)
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Back to a Gaussian process model

I The max-stable process is an elegant approach,
but does that mean it’s the right model?

I In reality, it is only an approximation

I There are less complicated approximations

I For example, we could model daily data as a Gaussian
process (GP)

I If the goal is spatial interpolation, perhaps this is
competitive?
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GP - asymptotic independence

I A GP leads to simple interpretation and computing,
but asymptotic independence.

I The extremal dependence between Yt(s1) and Yt(s2) is

χ(s1, s2) = lim
c→∞

Prob[Yt(s1) > c|Yt(s2) > c]

I If Yt(s1) and Yt(s2) are bivariate normal then χ(s1, s2) = 0,
i.e., asymptotic independence

I This suggests Kriging will not capture extremes

I But so much is known for the Gaussian case:
nonstationarity, multivariate, numerical approximations,...

I Rather than toss it out, can we patch it up?
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Spatial skew-t process

A spatial skew-t process (Azzalinia and Capitanio, 2014)
resembles a GP but exhibits asymptotic dependence

Yt(s) = X(s)Tβ + λσt |zt |+ σtvt(s)
zt ∼ Normal(0,1)
σ2

t ∼ InvGamma(a/2,b/2)
vt ∼ Spatial GP

I Location: X(s)Tβ

I Scale: b > 0

I Skewness: λ ∈ R

I Degrees of freedom: a > 0
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Good properties

I Flexible t marginal distribution with four parameters
including the degrees of freedom which allows for heavy
tails (a = 1 gives a Cauchy)

I Computation on the order of a GP; the only extra steps are
zt and σt which have conjugate full conditionals

I Asymptotic dependence: χ(s1, s2) > 0 for all s1 and s2
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Bad properties and remedies

I Modeling all the data (bulk and extreme) can lead to
poor tail probability estimates if the model is misspecified

I We use a censored likelihood to focus on the tails

I Long-range dependence: χ(s1, s2) > 0 for all s1 and s2
even if s1 and s2 are far apart

I This occurs because all sites share zt and σt

I We propose a local skew-t process
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Censored likelihood

I Censored likelihood: We censor the data

Ỹt(s) =
{

T for Yt(s) ≤ T
Yt(s) for Yt(s) > T

I Censoring is handled using standard Bayesian imputation
methods

I The threshold T is chosen by cross-validation
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Local skew-t process

I Let the knots v1, ..., vK follow a homogeneous Poisson
process over the domain of interest (in practice we fix K )

I Associated with each is ztk ∼ Normal(0,1) and
σ2

tk ∼ InvGamma(a/2,b/2)

I The knots partition the domain if we assign location s to
subregion k = arg minl ||s− vl ||.

I If s is in subregion k then

Yt(s) = X(s)Tβ + λσtk |ztk |+ σtkvt(s)

I The marginal distribution remains a t , but partitioning
breaks long-range spatial dependence
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Extremal coefficient by h = ||s1 − s2||

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h

χ(
h)

Skew-t, K=1
Skew-t, K=3
Skew-t, K=5
Skew-t, K=10
Gaussian

Emeric Thibaud and Brian Reich EVA for large spatial data sets 46 / 55



Results of a simulation study

In terms of Brier and quantile scores for spatial prediction:

I Data generated as a GP:

skew-t is close to GP
max-stable is 15% worse than GP

I Data generated as a skew-t:

skew-t is 15% better than GP
max-stable is 30% worse than GP

I Data generated as max-stable:

skew-t is close to GP
max-stable performs 10% better than GP
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Application to ozone

I The USEPA has an extensive network of ozone monitors
throughout the US

I We will analyze ozone for 31 days in July, 2005 at
n = 1,089 stations

I Currently the EPA regulates the annual 99th percentile

I Our objective is to map the probability of an extreme ozone
event
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Ozone on July 10
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Skew-t qqplot
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Cross-validation

I We split the sites into training and testing

I The model was fit assuming independence over days

I We found that K = 15 knots and censoring at T equal to
the median gave the best results

I Results were not sensitive to these tuning parameters

I This model was 8% more accurate (Brier score) than GP

I The max-stable model fit was 15% less accurate than GP
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Fitted 99th percentile - Gaussian(a) Gaussian

60

70

80

90

100

110

120

(b) Skew-t, K=1, T=0, No Time Series, 

60

70

80

90

100

110

120

(c) Skew-t, K=5, T=50, No Time Series

60

70

80

90

100

110

120

(d) Sym-t, K=10, T=75, Time Series

60

70

80

90

100

110

120

(e) Difference of (d) - (a)

0

2

4

6

8

(f) Difference of (d) - (b)

-2

0

2

4

6

8

Emeric Thibaud and Brian Reich EVA for large spatial data sets 52 / 55



Fitted 99th percentile - Skew-t
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Difference (Skew-t - Gaussian)

(a) Gaussian
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Summary

I We proposed two methods to handle large spatial
datasets: EBF and skew-t

I After this exploration, I personally feel:
I EBF nice for exploratory analysis

I Skew-t is a nice balance between theoretical properties and
computational feasibility

I This should at least be used as a benchmark for more
sophisticated approaches

I Work supported by NSF, NIH, DOI, and EPA

I Thanks!
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