The three-dimensional free-boundary Euler equations with surface tension

Marcelo M. Disconzi Department of Mathematics, Vanderbilt University.

Joint work with David G. Ebin (SUNY at Stony Brook).

Recent Advances in Hydrodynamics.

BIRS, Banff, Canada, June 2016.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Consider an inviscid, incompressible fluid moving within a bounded region $\Omega \subset \mathbb{R}^3.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Consider an inviscid, incompressible fluid moving within a bounded region $\Omega \subset \mathbb{R}^3$. The equations describing the fluid motion are the Euler equations.

Consider an inviscid, incompressible fluid moving within a bounded region $\Omega \subset \mathbb{R}^3$. The equations describing the fluid motion are the Euler equations.

In many situations of interest, the domain Ω is not fixed, but is allowed to move due to the pressure exerted by the fluid on its boundary.

Consider an inviscid, incompressible fluid moving within a bounded region $\Omega \subset \mathbb{R}^3$. The equations describing the fluid motion are the Euler equations.

In many situations of interest, the domain Ω is not fixed, but is allowed to move due to the pressure exerted by the fluid on its boundary.

Consider an inviscid, incompressible fluid moving within a bounded region $\Omega \subset \mathbb{R}^3$. The equations describing the fluid motion are the Euler equations.

In many situations of interest, the domain Ω is not fixed, but is allowed to move due to the pressure exerted by the fluid on its boundary.

E.g.: liquid drop, star.

Consider an inviscid, incompressible fluid moving within a bounded region $\Omega \subset \mathbb{R}^3$. The equations describing the fluid motion are the Euler equations.

In many situations of interest, the domain Ω is not fixed, but is allowed to move due to the pressure exerted by the fluid on its boundary.

E.g.: liquid drop, star. Domain: $\Omega(t)$.

Consider an inviscid, incompressible fluid moving within a bounded region $\Omega \subset \mathbb{R}^3$. The equations describing the fluid motion are the Euler equations.

In many situations of interest, the domain Ω is not fixed, but is allowed to move due to the pressure exerted by the fluid on its boundary.

E.g.: liquid drop, star. Domain: $\Omega(t)$. The equations describing this situation are the free boundary Euler equations.

Consider an inviscid, incompressible fluid moving within a bounded region $\Omega \subset \mathbb{R}^3$. The equations describing the fluid motion are the Euler equations.

In many situations of interest, the domain Ω is not fixed, but is allowed to move due to the pressure exerted by the fluid on its boundary.

E.g.: liquid drop, star. Domain: $\Omega(t)$. The equations describing this situation are the free boundary Euler equations.

Goal: (i) establish well-posedness of the free boundary Euler equations; (ii) compare the behavior of solutions to the Euler equations (in a fixed domain) with those of the free boundary Euler equations.

Consider an inviscid, incompressible fluid moving within a bounded region $\Omega \subset \mathbb{R}^3$. The equations describing the fluid motion are the Euler equations.

In many situations of interest, the domain Ω is not fixed, but is allowed to move due to the pressure exerted by the fluid on its boundary.

E.g.: liquid drop, star. Domain: $\Omega(t)$. The equations describing this situation are the free boundary Euler equations.

Goal: (i) establish well-posedness of the free boundary Euler equations; (ii) compare the behavior of solutions to the Euler equations (in a fixed domain) with those of the free boundary Euler equations.

Terminology: fluids = incompressible inviscid fluids.

$$\begin{cases} \frac{\partial u}{\partial t} + (u \cdot \nabla)u = -\nabla p & \text{ in } \bigcup_{0 \le t \le T} \{t\} \times \Omega(t), \qquad (1a) \\ \operatorname{div}(u) = 0 & \operatorname{in } \Omega(t), \qquad (1b) \\ p = \kappa \mathcal{A} & \operatorname{on } \partial \Omega(t), \qquad (1c) \\ \partial_t + u^i \partial_i & \text{ is tangent to } \bigcup_{0 \le t \le T} \{t\} \times \Omega(t), \qquad (1d) \\ u(0) = u_0 \ \Omega(0) = \Omega & (1e) \end{cases}$$

 $\widehat{\Omega}(t_2)$ $\Omega(t) \subset \mathbb{R}^3$ is the time-dependent domain;

/□ ▶ | ∢ □ ▶

3 K 3

$$\begin{cases} \frac{\partial u}{\partial t} + (u \cdot \nabla)u = -\nabla p & \text{ in } \bigcup_{0 \le t \le T} \{t\} \times \Omega(t), \qquad (1a) \\ \operatorname{div}(u) = 0 & \operatorname{in } \Omega(t), \qquad (1b) \\ p = \kappa \mathcal{A} & \operatorname{on } \partial \Omega(t), \qquad (1c) \\ \partial_t + u^i \partial_i & \text{ is tangent to } \bigcup_{0 \le t \le T} \{t\} \times \Omega(t), \qquad (1d) \end{cases}$$

$$u(0)=u_0, \ \Omega(0)=\Omega,$$

)
$$\Omega(t) \subset \mathbb{R}^3$$
 is the time-dependent domain;

$$u =$$
 velocity; $p =$ pressure;

(1e)

$$\begin{cases} \frac{\partial u}{\partial t} + (u \cdot \nabla)u = -\nabla p & \text{ in } \bigcup_{0 \le t \le T} \{t\} \times \Omega(t), \\ \operatorname{div}(u) = 0 & \text{ in } \Omega(t), \end{cases}$$
(1a)

on
$$\partial \Omega(t)$$
, (1c)

$$\begin{cases} p = \kappa \mathcal{A} & \text{on } \partial \Omega(t), & (1c) \\ \partial_t + u^i \partial_i & \text{is tangent to } \bigcup_{0 \le t \le T} \{t\} \times \Omega(t), & (1d) \\ u(0) = u_0, \ \Omega(0) = \Omega, & (1e) \end{cases}$$

$$u(0) = u_0, \ \Omega(0) = \Omega,$$

Ω

 $\Omega(t) \subset \mathbb{R}^3$ is the time-dependent u = velocity; p = pressure;

→ 同下 → 目下 →

 $\exists \rightarrow$

Ω

⊾t

$$\begin{cases} \frac{\partial u}{\partial t} + (u \cdot \nabla)u = -\nabla p & \text{ in } \bigcup_{0 \le t \le T} \{t\} \times \Omega(t), \\ \operatorname{div}(u) = 0 & \text{ in } \Omega(t). \end{cases}$$
(1a)

on
$$\partial \Omega(t)$$
, (1c)

$$\partial_t + u^i \partial_i$$
 is tangent to $\bigcup_{0 \le t \le T} \{t\} \times \Omega(t)$, (1d)
 $u(0) = u_0, \ \Omega(0) = \Omega$, (1e)

 $p = \kappa \mathcal{A}$ $\partial_t + u^i \partial_i$

 $\Omega(t) \subset \mathbb{R}^3$ is the time-dependent domain; u = velocity; p = pressure;

 $\mathcal{A} = \text{mean curvature of } \partial \Omega(t);$ $\kappa = \text{coefficient of surface tension}$ (constant ≥ 0);

$$\begin{cases} \frac{\partial u}{\partial t} + (u \cdot \nabla)u = -\nabla p & \text{ in } \bigcup_{0 \le t \le T} \{t\} \times \Omega(t), \\ \operatorname{div}(u) = 0 & \operatorname{in } \Omega(t), \\ n = \kappa A & \operatorname{on } \partial \Omega(t) \end{cases}$$
(1a)

$$\begin{cases} \partial_t + u^i \partial_i & \text{is tangent to } \bigcup_{0 \le t \le T} \{t\} \times \Omega(t), \quad (1d) \\ u(0) = u_0, \ \Omega(0) = \Omega, \end{cases}$$
 (1e)

$$\mathsf{U}(0)=u_0,\,\Omega(0)=\Omega,$$

 $\Omega(t) \subset \mathbb{R}^3$ is the time-dependent domain; u = velocity; p = pressure;

 $\mathcal{A} = \text{mean curvature of } \partial \Omega(t);$ $\kappa = \text{coefficient of surface tension}$ (constant ≥ 0);

The unknowns in equations (1) are u, p, and $\Omega(t)$.

$$\begin{cases}
\frac{\partial u}{\partial t} + (u \cdot \nabla)u = -\nabla p & \text{in } \bigcup_{0 \le t \le T} \{t\} \times \Omega(t), \\
\text{div}(u) = 0 & \text{in } \Omega(t), \\
\frac{\partial u}{\partial t} = 0
\end{cases}$$
(1a)

on
$$\partial \Omega(t)$$
, (1c)

is tangent to
$$\bigcup_{0\leq t\leq \mathcal{T}}\{t\} imes \Omega(t),$$
 (1d)

 $\Omega(t) \subset \mathbb{R}^3$ is the time-dependent domain; u =velocity; p =pressure;

 $\mathcal{A} = \text{mean curvature of } \partial \Omega(t);$ $\kappa = \text{coefficient of surface tension}$ (constant ≥ 0);

The unknowns in equations (1) are u, p, and $\Omega(t)$. We write u_{κ} , p_{κ} , and $\Omega_{\kappa}(t)$.

Difficulty: handling the time-dependent domain $\Omega(t)$.

Difficulty: handling the time-dependent domain $\Omega(t)$.

One seeks to recast all quantities in terms of their dependence on the fixed domain $\Omega \equiv \Omega(0)$.

Difficulty: handling the time-dependent domain $\Omega(t)$.

One seeks to recast all quantities in terms of their dependence on the fixed domain $\Omega \equiv \Omega(0)$.

Consider the flow η of the vector field u, where u solves the free boundary Euler equations.

Difficulty: handling the time-dependent domain $\Omega(t)$.

One seeks to recast all quantities in terms of their dependence on the fixed domain $\Omega \equiv \Omega(0)$.

Consider the flow η of the vector field u, where u solves the free boundary Euler equations. I.e., let η solve

$$\frac{\partial \eta(t,x)}{\partial t} = u(t,\eta(t,x)), \ \eta(0,x) = x,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Difficulty: handling the time-dependent domain $\Omega(t)$.

One seeks to recast all quantities in terms of their dependence on the fixed domain $\Omega \equiv \Omega(0)$.

Consider the flow η of the vector field u, where u solves the free boundary Euler equations. I.e., let η solve

$$\frac{\partial \eta(t,x)}{\partial t} = u(t,\eta(t,x)), \ \eta(0,x) = x,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

or, briefly, $\dot{\eta} = u \circ \eta$.

Difficulty: handling the time-dependent domain $\Omega(t)$.

One seeks to recast all quantities in terms of their dependence on the fixed domain $\Omega \equiv \Omega(0)$.

Consider the flow η of the vector field u, where u solves the free boundary Euler equations. I.e., let η solve

$$\frac{\partial \eta(t,x)}{\partial t} = u(t,\eta(t,x)), \ \eta(0,x) = x,$$

or, briefly, $\dot{\eta} = u \circ \eta$.

 $\eta(t, \cdot) : \Omega \to \mathbb{R}^3$ is, for each *t*, a volume preserving embedding of Ω into \mathbb{R}^3 .

Difficulty: handling the time-dependent domain $\Omega(t)$.

One seeks to recast all quantities in terms of their dependence on the fixed domain $\Omega \equiv \Omega(0)$.

Consider the flow η of the vector field u, where u solves the free boundary Euler equations. I.e., let η solve

$$\frac{\partial \eta(t,x)}{\partial t} = u(t,\eta(t,x)), \ \eta(0,x) = x,$$

or, briefly, $\dot{\eta} = u \circ \eta$.

 $\eta(t, \cdot) : \Omega \to \mathbb{R}^3$ is, for each *t*, a volume preserving embedding of Ω into \mathbb{R}^3 . Then

 $\Omega(t) = \eta(t)(\Omega).$

Difficulty: handling the time-dependent domain $\Omega(t)$.

One seeks to recast all quantities in terms of their dependence on the fixed domain $\Omega \equiv \Omega(0)$.

Consider the flow η of the vector field u, where u solves the free boundary Euler equations. I.e., let η solve

$$\frac{\partial \eta(t,x)}{\partial t} = u(t,\eta(t,x)), \ \eta(0,x) = x,$$

or, briefly, $\dot{\eta} = u \circ \eta$.

 $\eta(t,\cdot):\Omega\to\mathbb{R}^3$ is, for each t, a volume preserving embedding of Ω into \mathbb{R}^3 . Then

 $\Omega(t) = \eta(t)(\Omega).$

The space of H^s volume preserving embeddings of Ω into \mathbb{R}^3 is denoted $\mathcal{E}^s_{\mu}(\Omega)$.

The free boundary Euler equations can be rewritten in terms of the flow η .

The free boundary Euler equations can be rewritten in terms of the flow $\eta.$ They read

$$\begin{cases} \ddot{\eta} = -\nabla p \circ \eta & \text{in } \Omega, \qquad (2a) \\ \operatorname{div}(u) = 0 & \operatorname{in } \eta(\Omega), \qquad (2b) \\ p = \kappa \mathcal{A} & \text{on } \partial \eta(\Omega), \qquad (2c) \\ \eta(0) = \operatorname{id}, \ \dot{\eta}(0) = u_0, \qquad (2d) \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $u = \dot{\eta} \circ \eta^{-1}$.

The free boundary Euler equations can be rewritten in terms of the flow $\eta.$ They read

$$\begin{cases} \ddot{\eta} = -\nabla p \circ \eta & \text{in } \Omega, \qquad (2a) \\ \operatorname{div}(u) = 0 & \operatorname{in } \eta(\Omega), \qquad (2b) \\ p = \kappa \mathcal{A} & \text{on } \partial \eta(\Omega), \qquad (2c) \\ \eta(0) = \operatorname{id}, \ \dot{\eta}(0) = u_0, \qquad (2d) \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $u = \dot{\eta} \circ \eta^{-1}$.

Advantage: Equation (2a) is defined on the fixed domain Ω .

The free boundary Euler equations can be rewritten in terms of the flow $\eta.$ They read

$$\begin{cases} \ddot{\eta} = -\nabla p \circ \eta & \text{in } \Omega, \\ \operatorname{div}(u) = 0 & \operatorname{in } \eta(\Omega), \\ p = \kappa \mathcal{A} & \text{on } \partial \eta(\Omega), \\ \eta(0) = \operatorname{id}, \ \dot{\eta}(0) = u_0, \end{cases}$$
(2a)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $u = \dot{\eta} \circ \eta^{-1}$.

Advantage: Equation (2a) is defined on the fixed domain Ω . The unknowns in (2) are η and p.

Theorem (D-, Ebin): Existence & uniqueness

Let $s > \frac{3}{2} + 2$, Ω be a bounded domain in \mathbb{R}^3 with a connected smooth boundary, and $u_0 \in H^s(\Omega, \mathbb{R}^3)$ be a divergence free vector field. Assume that $\kappa > 0$.

Let $s > \frac{3}{2} + 2$, Ω be a bounded domain in \mathbb{R}^3 with a connected smooth boundary, and $u_0 \in H^s(\Omega, \mathbb{R}^3)$ be a divergence free vector field. Assume that $\kappa > 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Then there exist a $T_{\kappa} > 0$ and a unique solution $(\eta_{\kappa}, p_{\kappa})$ to the free boundary Euler equations with initial condition u_0 .

Let $s > \frac{3}{2} + 2$, Ω be a bounded domain in \mathbb{R}^3 with a connected smooth boundary, and $u_0 \in H^s(\Omega, \mathbb{R}^3)$ be a divergence free vector field. Assume that $\kappa > 0$.

Then there exist a $T_{\kappa} > 0$ and a unique solution $(\eta_{\kappa}, p_{\kappa})$ to the free boundary Euler equations with initial condition u_0 . The solution satisfies:

$$\begin{split} \eta_{\kappa} &\in C^{0}([0, T_{\kappa}), \mathcal{E}_{\mu}^{s}(\Omega)), \, \dot{\eta}_{\kappa} \in L^{\infty}([0, T_{\kappa}), H^{s}(\Omega)), \\ \ddot{\eta}_{\kappa} &\in L^{\infty}([0, T_{\kappa}), H^{s-\frac{3}{2}}(\Omega)), \\ p_{\kappa} &\in L^{\infty}([0, T_{\kappa}), H^{s-\frac{1}{2}}(\Omega_{\kappa}(t))), \\ \text{and} \ \partial\Omega_{\kappa}(t) \text{ is } H^{s+1} \text{ regular,} \end{split}$$

where $\Omega_{\kappa}(t) = \eta_{\kappa}(t)(\Omega)$.

Let $s > \frac{3}{2} + 2$, Ω be a bounded domain in \mathbb{R}^3 with a connected smooth boundary, and $u_0 \in H^s(\Omega, \mathbb{R}^3)$ be a divergence free vector field. Assume that $\kappa > 0$.

Then there exist a $T_{\kappa} > 0$ and a unique solution $(\eta_{\kappa}, p_{\kappa})$ to the free boundary Euler equations with initial condition u_0 . The solution satisfies:

$$\begin{split} \eta_{\kappa} &\in C^{0}([0, T_{\kappa}), \mathcal{E}_{\mu}^{s}(\Omega)), \, \dot{\eta}_{\kappa} \in L^{\infty}([0, T_{\kappa}), H^{s}(\Omega)), \\ \ddot{\eta}_{\kappa} &\in L^{\infty}([0, T_{\kappa}), H^{s-\frac{3}{2}}(\Omega)), \\ p_{\kappa} &\in L^{\infty}([0, T_{\kappa}), H^{s-\frac{1}{2}}(\Omega_{\kappa}(t))), \\ \text{and} \ \partial\Omega_{\kappa}(t) \text{ is } H^{s+1} \text{ regular,} \end{split}$$

(日) (同) (三) (三) (三) (○) (○)

where $\Omega_{\kappa}(t) = \eta_{\kappa}(t)(\Omega)$. (Solution in Eulerian coordinates, $(u_{\kappa}, p_{\kappa}, \Omega_{\kappa}(t))$, automatically follows.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The larger the κ , the stiffer the domain.

The larger the κ , the stiffer the domain.

Thus, we expect that solutions to the free boundary Euler equations with large κ will be near solutions of the fixed domain Euler equations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The larger the κ , the stiffer the domain.

Thus, we expect that solutions to the free boundary Euler equations with large κ will be near solutions of the fixed domain Euler equations.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

 κ has units of $\frac{({\rm length})^3}{({\rm time})^2};$ large $\kappa?$
The coefficient of surface tension, κ , is the parameter controlling how stiff or rigid a domain is.

The larger the κ , the stiffer the domain.

Thus, we expect that solutions to the free boundary Euler equations with large κ will be near solutions of the fixed domain Euler equations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

 κ has units of $\frac{(\text{length})^3}{(\text{time})^2}$; large κ ? Large compared to the volume of the domain or some characteristic length.

The coefficient of surface tension, κ , is the parameter controlling how stiff or rigid a domain is.

The larger the κ , the stiffer the domain.

Thus, we expect that solutions to the free boundary Euler equations with large κ will be near solutions of the fixed domain Euler equations.

 κ has units of $\frac{(\text{length})^3}{(\text{time})^2}$; large κ ? Large compared to the volume of the domain or some characteristic length. Fix once and for all the volume of Ω and vary κ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

7/24

The coefficient of surface tension, κ , is the parameter controlling how stiff or rigid a domain is.

The larger the κ , the stiffer the domain.

Thus, we expect that solutions to the free boundary Euler equations with large κ will be near solutions of the fixed domain Euler equations.

 κ has units of $\frac{(\text{length})^3}{(\text{time})^2}$; large κ ? Large compared to the volume of the domain or some characteristic length. Fix once and for all the volume of Ω and vary κ .

More precisely, we would like to show that solutions to the free boundary Euler equations converge (in a suitable topology) to solutions of the fixed boundary Euler equations, when $\kappa \to \infty$.

In order to state the next theorem, we need to introduce Euler's equations in the fixed domain Ω :

$$\begin{cases} \frac{\partial \vartheta}{\partial t} + (\vartheta \cdot \nabla)\vartheta = -\nabla\pi & \text{ in } [0, T] \times \Omega, \\ \operatorname{div}(\vartheta) = 0 & \text{ in } \Omega, \\ \langle \vartheta, \nu \rangle = 0 & \text{ on } \partial\Omega, \\ \vartheta(0) = \vartheta_0, \end{cases}$$
(3a)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

where $\vartheta =$ velocity and $\pi =$ pressure.

In order to state the next theorem, we need to introduce Euler's equations in the fixed domain Ω :

$$\begin{cases} \frac{\partial \vartheta}{\partial t} + (\vartheta \cdot \nabla)\vartheta = -\nabla\pi & \text{ in } [0, T] \times \Omega, \\ \operatorname{div}(\vartheta) = 0 & \text{ in } \Omega, \\ \langle \vartheta, \nu \rangle = 0 & \text{ on } \partial\Omega, \\ \vartheta(0) = \vartheta_0, \end{cases}$$
(3a)

where $\vartheta =$ velocity and $\pi =$ pressure.

The unknown in (3) is ϑ (π is completely determined by the velocity ϑ).

Then $\zeta(t, \cdot) : \Omega \to \Omega$ is, for each *t*, a volume preserving diffeomorphism of the domain Ω .

Then $\zeta(t, \cdot) : \Omega \to \Omega$ is, for each t, a volume preserving diffeomorphism of the domain Ω . The space of H^s volume preserving diffeomorphisms of Ω is denoted $\mathcal{D}^s_{\mu}(\Omega)$.

Then $\zeta(t, \cdot) : \Omega \to \Omega$ is, for each t, a volume preserving diffeomorphism of the domain Ω . The space of H^s volume preserving diffeomorphisms of Ω is denoted $\mathcal{D}^s_{\mu}(\Omega)$.

In terms of ζ , Euler's equations (in the fixed domain) read

$$\int \ddot{\zeta} = -\nabla\pi \circ \zeta, \tag{4a}$$

$$\begin{cases} \operatorname{div}(\dot{\zeta} \circ \zeta^{-1}) = 0, \qquad (4b) \end{cases}$$

$$\zeta(0) = \mathrm{id}, \ \dot{\zeta}(0) = \vartheta_0.$$
 (4c)

- 日本 - 1 日本 - 1 日本 - 日本

Then $\zeta(t, \cdot) : \Omega \to \Omega$ is, for each t, a volume preserving diffeomorphism of the domain Ω . The space of H^s volume preserving diffeomorphisms of Ω is denoted $\mathcal{D}^s_{\mu}(\Omega)$.

In terms of ζ , Euler's equations (in the fixed domain) read

$$(\ddot{\zeta} = -\nabla \pi \circ \zeta,$$
 (4a)

$$\operatorname{div}(\dot{\zeta}\circ\zeta^{-1})=0, \tag{4b}$$

$$\zeta(0) = \mathrm{id}, \ \dot{\zeta}(0) = \vartheta_0.$$
 (4c)

Notice that $\mathcal{D}^{s}_{\mu}(\Omega) \subset \mathcal{E}^{s}_{\mu}(\Omega)$.

Let $s > \frac{3}{2} + 2$. Assume that Ω is a ball. Let $\{u_{0\kappa}\} \subset H^s(\Omega, \mathbb{R}^3)$ be a family of divergence free vector fields parametrized by the coefficient of surface tension κ , such that $u_{0\kappa}$ converges in $H^s(\Omega, \mathbb{R}^3)$, as $\kappa \to \infty$, to a divergence free vector field ϑ_0 which is tangent to the boundary.

Let $s > \frac{3}{2} + 2$. Assume that Ω is a ball. Let $\{u_{0\kappa}\} \subset H^s(\Omega, \mathbb{R}^3)$ be a family of divergence free vector fields parametrized by the coefficient of surface tension κ , such that $u_{0\kappa}$ converges in $H^s(\Omega, \mathbb{R}^3)$, as $\kappa \to \infty$, to a divergence free vector field ϑ_0 which is tangent to the boundary. Let $\zeta \in C^1([0, T], \mathcal{D}^s_{\mu}(\Omega))$ be the solution to Euler's equations in the fixed domain Ω , defined on some time interval [0, T].

Let $s > \frac{3}{2} + 2$. Assume that Ω is a ball. Let $\{u_{0\kappa}\} \subset H^s(\Omega, \mathbb{R}^3)$ be a family of divergence free vector fields parametrized by the coefficient of surface tension κ , such that $u_{0\kappa}$ converges in $H^s(\Omega, \mathbb{R}^3)$, as $\kappa \to \infty$, to a divergence free vector field ϑ_0 which is tangent to the boundary. Let $\zeta \in C^1([0, T], \mathcal{D}^s_{\mu}(\Omega))$ be the solution to Euler's equations in the fixed domain Ω , defined on some time interval [0, T]. Let $(\eta_{\kappa}, p_{\kappa})$ be the unique solution to the free boundary Euler equations on Ω with initial condition $u_{0\kappa}$, and defined on a time interval $[0, T_{\kappa})$ (taken as the maximal interval of existence).

Let $s > \frac{3}{2} + 2$. Assume that Ω is a ball. Let $\{u_{0\kappa}\} \subset H^s(\Omega, \mathbb{R}^3)$ be a family of divergence free vector fields parametrized by the coefficient of surface tension κ , such that $u_{0\kappa}$ converges in $H^s(\Omega, \mathbb{R}^3)$, as $\kappa \to \infty$, to a divergence free vector field ϑ_0 which is tangent to the boundary. Let $\zeta \in C^1([0, T], \mathcal{D}^s_{\mu}(\Omega))$ be the solution to Euler's equations in the fixed domain Ω , defined on some time interval [0, T]. Let $(\eta_{\kappa}, p_{\kappa})$ be the unique solution to the free boundary Euler equations on Ω with initial condition $u_{0\kappa}$, and defined on a time interval $[0, T_{\kappa})$ (taken as the maximal interval of existence).

Then, if T is sufficiently small, we find that $T_{\kappa} \geq T$ for all κ sufficiently large, and, as $\kappa \to \infty$, $\eta_{\kappa}(t) \to \zeta(t)$ as a continuous curve in $\mathcal{E}^{s}_{\mu}(\Omega)$ (recall $\mathcal{D}^{s}_{\mu}(\Omega) \subset \mathcal{E}^{s}_{\mu}(\Omega)$).

Let $s > \frac{3}{2} + 2$. Assume that Ω is a ball. Let $\{u_{0\kappa}\} \subset H^s(\Omega, \mathbb{R}^3)$ be a family of divergence free vector fields parametrized by the coefficient of surface tension κ , such that $u_{0\kappa}$ converges in $H^s(\Omega, \mathbb{R}^3)$, as $\kappa \to \infty$, to a divergence free vector field ϑ_0 which is tangent to the boundary. Let $\zeta \in C^1([0, T], \mathcal{D}^s_{\mu}(\Omega))$ be the solution to Euler's equations in the fixed domain Ω , defined on some time interval [0, T]. Let $(\eta_{\kappa}, p_{\kappa})$ be the unique solution to the free boundary Euler equations on Ω with initial condition $u_{0\kappa}$, and defined on a time interval $[0, T_{\kappa})$ (taken as the maximal interval of existence).

Then, if T is sufficiently small, we find that $T_{\kappa} \geq T$ for all κ sufficiently large, and, as $\kappa \to \infty$, $\eta_{\kappa}(t) \to \zeta(t)$ as a continuous curve in $\mathcal{E}^{s}_{\mu}(\Omega)$ (recall $\mathcal{D}^{s}_{\mu}(\Omega) \subset \mathcal{E}^{s}_{\mu}(\Omega)$). Also, $\dot{\eta}_{\kappa}(t) \to \dot{\zeta}(t)$ in $H^{s}(\Omega)$ as $\kappa \to \infty$. In a nutshell:

If the coefficient of surface tension κ goes to infinity, then solutions to the free-boundary Euler equations converge to solutions of the fixed boundary Euler equations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Remark 1. In Eulerian coordinates, the theorem states the convergence $u_{\kappa} \circ \eta_{\kappa} \to \vartheta \circ \zeta$ (u_{κ} and ϑ are defined on different domains).

Remark 1. In Eulerian coordinates, the theorem states the convergence $u_{\kappa} \circ \eta_{\kappa} \to \vartheta \circ \zeta$ (u_{κ} and ϑ are defined on different domains).

Remark 2. The assumption that Ω is a ball cannot be removed, i.e., convergence $\eta_{\kappa} \rightarrow \zeta$ fails otherwise.

Remark 1. In Eulerian coordinates, the theorem states the convergence $u_{\kappa} \circ \eta_{\kappa} \to \vartheta \circ \zeta$ (u_{κ} and ϑ are defined on different domains).

Remark 2. The assumption that Ω is a ball cannot be removed, i.e., convergence $\eta_{\kappa} \rightarrow \zeta$ fails otherwise.

Remark 3. There was no statement about convergence of p_{κ} . Notice that only $\nabla \pi$ (and not π) is well-defined for the fixed domain equations, thus we need to talk about convergence of ∇p_{κ} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Remark 1. In Eulerian coordinates, the theorem states the convergence $u_{\kappa} \circ \eta_{\kappa} \to \vartheta \circ \zeta$ (u_{κ} and ϑ are defined on different domains).

Remark 2. The assumption that Ω is a ball cannot be removed, i.e., convergence $\eta_{\kappa} \to \zeta$ fails otherwise.

Remark 3. There was no statement about convergence of p_{κ} . Notice that only $\nabla \pi$ (and not π) is well-defined for the fixed domain equations, thus we need to talk about convergence of ∇p_{κ} . This convergence fails in general, even if the initial data is smooth.

Remark 1. In Eulerian coordinates, the theorem states the convergence $u_{\kappa} \circ \eta_{\kappa} \to \vartheta \circ \zeta$ (u_{κ} and ϑ are defined on different domains).

Remark 2. The assumption that Ω is a ball cannot be removed, i.e., convergence $\eta_{\kappa} \to \zeta$ fails otherwise.

Remark 3. There was no statement about convergence of p_{κ} . Notice that only $\nabla \pi$ (and not π) is well-defined for the fixed domain equations, thus we need to talk about convergence of ∇p_{κ} . This convergence fails in general, even if the initial data is smooth. Notice that from $\ddot{\eta}_{\kappa} = \nabla p \circ \eta_{\kappa}$ and $\ddot{\zeta} = \nabla \pi_{\kappa} \circ \zeta$, convergence $\nabla p_{\kappa} \circ \eta_{\kappa} \rightarrow \nabla \pi \circ \zeta$ would be equivalent to $\ddot{\eta}_{\kappa} \rightarrow \ddot{\zeta}$ (not true).

(日) (日) (日) (日) (日) (日) (日) (日)

Remark 1. In Eulerian coordinates, the theorem states the convergence $u_{\kappa} \circ \eta_{\kappa} \to \vartheta \circ \zeta$ (u_{κ} and ϑ are defined on different domains).

Remark 2. The assumption that Ω is a ball cannot be removed, i.e., convergence $\eta_{\kappa} \to \zeta$ fails otherwise.

Remark 3. There was no statement about convergence of p_{κ} . Notice that only $\nabla \pi$ (and not π) is well-defined for the fixed domain equations, thus we need to talk about convergence of ∇p_{κ} . This convergence fails in general, even if the initial data is smooth. Notice that from $\ddot{\eta}_{\kappa} = \nabla p \circ \eta_{\kappa}$ and $\ddot{\zeta} = \nabla \pi_{\kappa} \circ \zeta$, convergence $\nabla p_{\kappa} \circ \eta_{\kappa} \to \nabla \pi \circ \zeta$ would be equivalent to $\ddot{\eta}_{\kappa} \to \ddot{\zeta}$ (not true). However, in view of the convergence $\dot{\eta}_{\kappa} \to \dot{\zeta}$ we have that

$$\int_0^t \nabla \rho_\kappa \circ \eta_\kappa \to \int_0^t \nabla \pi \circ \zeta,$$

(日) (同) (三) (三) (三) (○) (○)

in H^s for any t > 0.

Well-posedness: Lindblad (2005) for $\kappa = 0$ (Taylor sign condition), Coutand and Shkoller (2007) for $\kappa \ge 0$.

Well-posedness: Lindblad (2005) for $\kappa = 0$ (Taylor sign condition), Coutand and Shkoller (2007) for $\kappa \ge 0$. Other results: Schweizer (2005), Shatah and Zeng (2008), Zhang and Zhang (2007).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Well-posedness: Lindblad (2005) for $\kappa = 0$ (Taylor sign condition), Coutand and Shkoller (2007) for $\kappa \ge 0$. Other results: Schweizer (2005), Shatah and Zeng (2008), Zhang and Zhang (2007). D- and Ebin (2016).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Well-posedness: Lindblad (2005) for $\kappa = 0$ (Taylor sign condition), Coutand and Shkoller (2007) for $\kappa \ge 0$. Other results: Schweizer (2005), Shatah and Zeng (2008), Zhang and Zhang (2007). D- and Ebin (2016). These all use significantly different techniques.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Well-posedness: Lindblad (2005) for $\kappa = 0$ (Taylor sign condition), Coutand and Shkoller (2007) for $\kappa \ge 0$. Other results: Schweizer (2005), Shatah and Zeng (2008), Zhang and Zhang (2007). D- and Ebin (2016). These all use significantly different techniques.

Irrotational flows or 2d (including $\kappa = 0$): many more results, in various directions: Alazard, Ambrose, Bieri, Burq, Christodoulou, Craig, Deng, Germain, Hunter, Ifrim, Ionescu, Kukavica, Miao, Masmoudi, Nalimov, Nishida, Ogawa, Pausader, Pusareti, Shatah, Tani, Tataru, Tuffaha, Vicol, Yosihara, Wu, Zuily, to cite a few.

Well-posedness: Lindblad (2005) for $\kappa = 0$ (Taylor sign condition), Coutand and Shkoller (2007) for $\kappa \ge 0$. Other results: Schweizer (2005), Shatah and Zeng (2008), Zhang and Zhang (2007). D– and Ebin (2016). These all use significantly different techniques.

Irrotational flows or 2d (including $\kappa = 0$): many more results, in various directions: Alazard, Ambrose, Bieri, Burq, Christodoulou, Craig, Deng, Germain, Hunter, Ifrim, Ionescu, Kukavica, Miao, Masmoudi, Nalimov, Nishida, Ogawa, Pausader, Pusareti, Shatah, Tani, Tataru, Tuffaha, Vicol, Yosihara, Wu, Zuily, to cite a few.

Convergence part of our theorem: D- and Ebin in 2d (2014).

 $\mathcal{D}^{s}_{\mu}(\Omega)$ is a submanifold of $H^{s}(\Omega, \mathbb{R}^{3})$. It has a normal bundle given by the L^{2} metric on $H^{s}(\Omega, \mathbb{R}^{3})$.

 $\mathcal{D}^{s}_{\mu}(\Omega)$ is a submanifold of $H^{s}(\Omega, \mathbb{R}^{3})$. It has a normal bundle given by the L^{2} metric on $H^{s}(\Omega, \mathbb{R}^{3})$.

A tangent vector to $\mathcal{D}^{s}_{\mu}(\Omega)$ at β is of the form $v \circ \beta$ (div v = 0 and v is tangent to $\partial\Omega$), and a normal vector to $\mathcal{D}^{s}_{\mu}(\Omega)$ at β is of the form $\nabla f \circ \beta$.

 $\mathcal{D}^{s}_{\mu}(\Omega)$ is a submanifold of $H^{s}(\Omega, \mathbb{R}^{3})$. It has a normal bundle given by the L^{2} metric on $H^{s}(\Omega, \mathbb{R}^{3})$.

A tangent vector to $\mathcal{D}^{s}_{\mu}(\Omega)$ at β is of the form $v \circ \beta$ (div v = 0 and v is tangent to $\partial\Omega$), and a normal vector to $\mathcal{D}^{s}_{\mu}(\Omega)$ at β is of the form $\nabla f \circ \beta$.

The exponential map from the normal bundle to $H^{s}(\Omega, \mathbb{R}^{3})$ is a diffeomorphism in a neighborhood of $\mathcal{D}_{\mu}^{s}(\Omega)$.

It follows that if η_{κ} is near $\mathcal{D}^{s}_{\mu}(\Omega)$, then there exist β_{κ} and ∇f_{κ} such that

$$\eta_{\kappa} = (\mathsf{id} + \nabla f_{\kappa}) \circ \beta_{\kappa}. \tag{5}$$

It follows that if η_{κ} is near $\mathcal{D}^{s}_{\mu}(\Omega)$, then there exist β_{κ} and ∇f_{κ} such that

$$\eta_{\kappa} = (\mathsf{id} + \nabla f_{\kappa}) \circ \beta_{\kappa}. \tag{5}$$

Since $\eta_{\kappa}(0) = id \in \mathcal{D}^{s}_{\mu}(\Omega)$, $\eta_{\kappa}(t)$ is near $\mathcal{D}^{s}_{\mu}(\Omega)$ for small time, and decomposition (5) applies.

For the rest of the talk, assume: κ large, Ω a ball.

For the rest of the talk, assume: κ large, Ω a ball. The formula

$$\eta_{\kappa} = (\mathsf{id} + \nabla f_{\kappa}) \circ \beta_{\kappa},$$
For the rest of the talk, assume: κ large, Ω a ball. The formula

$$\eta_{\kappa} = (\mathsf{id} + \nabla f_{\kappa}) \circ \beta_{\kappa},$$

decomposes η_{κ} as a motion that fixes the boundary β_{κ} :

 $\beta_{\kappa} = \beta_{\kappa}(t, x), \ \beta_{\kappa}(t, \cdot) : \Omega \to \Omega$ is, for each t, a volume preserving diffeomorphism of Ω , thus $\beta_{\kappa}(\partial \Omega) = \partial \Omega$;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

For the rest of the talk, assume: κ large, Ω a ball. The formula

$$\eta_{\kappa} = (\mathsf{id} + \nabla f_{\kappa}) \circ \beta_{\kappa},$$

decomposes η_{κ} as a motion that fixes the boundary β_{κ} :

 $\beta_{\kappa} = \beta_{\kappa}(t, x), \ \beta_{\kappa}(t, \cdot) : \Omega \to \Omega$ is, for each t, a volume preserving diffeomorphism of Ω , thus $\beta_{\kappa}(\partial \Omega) = \partial \Omega$;

and a boundary oscillation id $+\nabla f_{\kappa}$:

 $f_{\kappa} = f_{\kappa}(t,x)$, $f_{\kappa}(t,\cdot): \Omega \to \mathbb{R}$, so ∇f_{κ} controls the boundary motion.

(日) (同) (目) (日) (日) (0) (0)

For the rest of the talk, assume: κ large, Ω a ball. The formula

$$\eta_{\kappa} = (\mathsf{id} + \nabla f_{\kappa}) \circ \beta_{\kappa},$$

decomposes η_{κ} as a motion that fixes the boundary β_{κ} :

 $\beta_{\kappa} = \beta_{\kappa}(t, x), \ \beta_{\kappa}(t, \cdot) : \Omega \to \Omega$ is, for each t, a volume preserving diffeomorphism of Ω , thus $\beta_{\kappa}(\partial \Omega) = \partial \Omega$;

and a boundary oscillation id $+\nabla f_{\kappa}$:

 $f_{\kappa} = f_{\kappa}(t,x), f_{\kappa}(t,\cdot) : \Omega \to \mathbb{R}$, so ∇f_{κ} controls the boundary motion.

Goal: write the free boundary Euler equations as equations for f_{κ} and β_{κ} , and derive estimates showing that $\nabla f_{\kappa} \sim \frac{1}{\kappa}$, i.e., ∇f_{κ} is small.

Since η_{κ} and β_{κ} are volume preserving, the Jacobian J gives

$$\begin{split} 1 &= J(\eta_{\kappa}) = J((\mathsf{id} + \nabla f_{\kappa}) \circ \beta_{\kappa}) \\ &= J(\mathsf{id} + \nabla f_{\kappa}) \underbrace{J(\beta_{\kappa})}_{=1} \\ &= J(\mathsf{id} + \nabla f_{\kappa}). \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Since η_{κ} and β_{κ} are volume preserving, the Jacobian J gives

$$\begin{split} 1 &= J(\eta_{\kappa}) = J((\mathsf{id} + \nabla f_{\kappa}) \circ \beta_{\kappa}) \\ &= J(\mathsf{id} + \nabla f_{\kappa}) \underbrace{J(\beta_{\kappa})}_{=1} \\ &= J(\mathsf{id} + \nabla f_{\kappa}). \end{split}$$

Expanding $J(\operatorname{id} + \nabla f_{\kappa})$:

$$\Delta f_{\kappa} + O((D^2 f_{\kappa})^2) + O((D^2 f_{\kappa})^3) = 0 \text{ in } \Omega.$$
(6)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Since η_{κ} and β_{κ} are volume preserving, the Jacobian J gives

$$\begin{split} 1 &= J(\eta_{\kappa}) = J((\mathsf{id} + \nabla f_{\kappa}) \circ \beta_{\kappa}) \\ &= J(\mathsf{id} + \nabla f_{\kappa}) \underbrace{J(\beta_{\kappa})}_{=1} \\ &= J(\mathsf{id} + \nabla f_{\kappa}). \end{split}$$

Expanding $J(\operatorname{id} + \nabla f_{\kappa})$:

$$\Delta f_{\kappa} + O((D^2 f_{\kappa})^2) + O((D^2 f_{\kappa})^3) = 0 \text{ in } \Omega.$$
 (6)

Given $f_{\kappa}|_{\partial\Omega}$, equation (6) is a non-linear Dirichlet problem for f_{κ} . Therefore, if f_{κ} is small, it is determined by its boundary values.

$$\hat{f}_{\kappa} = \mathscr{A}_{\kappa}(\beta_{\kappa}, \mathsf{v}_{\kappa}, f_{\kappa}) + \mathscr{B}_{\kappa} \text{ on } \partial\Omega.$$
 (7)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\ddot{f}_{\kappa} = \mathscr{A}_{\kappa}(\beta_{\kappa}, \mathsf{v}_{\kappa}, f_{\kappa}) + \mathscr{B}_{\kappa} \text{ on } \partial\Omega.$$
 (7)

(日) (日) (日) (日) (日) (日) (日) (日) (日)

 \mathscr{A}_{κ} is a third order pseudo-differential operator on f_{κ} , and \mathscr{B}_{κ} is lower order.

$$\hat{f}_{\kappa} = \mathscr{A}_{\kappa}(\beta_{\kappa}, \mathsf{v}_{\kappa}, f_{\kappa}) + \mathscr{B}_{\kappa} \text{ on } \partial\Omega.$$
 (7)

(日) (日) (日) (日) (日) (日) (日) (日) (日)

 \mathscr{A}_{κ} is a third order pseudo-differential operator on f_{κ} , and \mathscr{B}_{κ} is lower order. \mathscr{A}_{κ} comes from $p_{\kappa} = \kappa \mathcal{A}_{\kappa}$ on $\partial \Omega(t)$; \mathcal{A}_{κ} is second order on id $+\nabla f_{\kappa}$.

$$\hat{f}_{\kappa} = \mathscr{A}_{\kappa}(\beta_{\kappa}, \mathsf{v}_{\kappa}, f_{\kappa}) + \mathscr{B}_{\kappa} \text{ on } \partial\Omega.$$
 (7)

(日) (同) (目) (日) (日) (0) (0)

 \mathscr{A}_{κ} is a third order pseudo-differential operator on f_{κ} , and \mathscr{B}_{κ} is lower order. \mathscr{A}_{κ} comes from $p_{\kappa} = \kappa \mathcal{A}_{\kappa}$ on $\partial \Omega(t)$; \mathcal{A}_{κ} is second order on id $+\nabla f_{\kappa}$. In (7) we have that $\partial_t \sim \partial_x^{\frac{3}{2}}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Therefore, we are led to consider the following equations for f_{κ} :

$$\left(\begin{array}{c} \ddot{f}_{\kappa} = \mathscr{A}_{\kappa}(\beta_{\kappa}, \mathsf{v}_{\kappa}, f_{\kappa}) + \mathscr{B}_{\kappa} \\ \end{array} \right) \quad \text{on } \partial\Omega, \qquad (8a)$$

$$\left\{ \Delta f_{\kappa} + O((D^2 f_{\kappa})^2) + O((D^2 f_{\kappa})^3) = 0 \quad \text{in } \Omega, \quad (8b) \right\}$$

$$\int f_{\kappa}(0) = 0, \, \dot{f}_{\kappa}(0) = f_{1}. \, \left(\nabla \dot{f}_{\kappa}(0) = Q(u_{0}).\right)$$
(8c)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Therefore, we are led to consider the following equations for f_{κ} :

$$(\ddot{f}_{\kappa} = \mathscr{A}_{\kappa}(\beta_{\kappa}, \mathbf{v}_{\kappa}, f_{\kappa}) + \mathscr{B}_{\kappa}$$
 on $\partial \Omega$, (8a)

$$\left\{ \Delta f_{\kappa} + O((D^2 f_{\kappa})^2) + O((D^2 f_{\kappa})^3) = 0 \quad \text{in } \Omega, \quad (8b) \right.$$

$$\int f_{\kappa}(0) = 0, \, \dot{f}_{\kappa}(0) = f_{1}. \, \left(\nabla \dot{f}_{\kappa}(0) = Q(u_{0}).\right)$$
(8c)

Given $f_1 \in H^{s+\frac{1}{2}}(\partial \Omega)$ and $\beta_{\kappa}, v_{\kappa} \in H^s(\Omega)$, we can solve (8) and obtain a solution in $f_{\kappa} \in H^{s+2}(\partial \Omega)$, or $\nabla f_{\kappa} \in H^{s+\frac{3}{2}}(\Omega)$.

Therefore, we are led to consider the following equations for f_{κ} :

$$(\ddot{f}_{\kappa} = \mathscr{A}_{\kappa}(\beta_{\kappa}, \mathbf{v}_{\kappa}, f_{\kappa}) + \mathscr{B}_{\kappa}$$
 on $\partial \Omega$, (8a)

$$\left\{ \Delta f_{\kappa} + O((D^2 f_{\kappa})^2) + O((D^2 f_{\kappa})^3) = 0 \quad \text{in } \Omega, \quad (8b) \right.$$

$$\int f_{\kappa}(0) = 0, \, \dot{f}_{\kappa}(0) = f_{1}. \, \left(\nabla \dot{f}_{\kappa}(0) = Q(u_{0}).\right)$$
(8c)

Given $f_1 \in H^{s+\frac{1}{2}}(\partial \Omega)$ and $\beta_{\kappa}, v_{\kappa} \in H^s(\Omega)$, we can solve (8) and obtain a solution in $f_{\kappa} \in H^{s+2}(\partial \Omega)$, or $\nabla f_{\kappa} \in H^{s+\frac{3}{2}}(\Omega)$. Think "wave equation:" data for $\dot{f}(0)$ in $H^{s+\frac{1}{2}}(\partial \Omega)$ gives back one "spatial" derivative;

Therefore, we are led to consider the following equations for f_{κ} :

$$\left(\begin{array}{c} \ddot{f}_{\kappa} = \mathscr{A}_{\kappa}(\beta_{\kappa}, \mathbf{v}_{\kappa}, f_{\kappa}) + \mathscr{B}_{\kappa} \end{array} \right) \quad \text{on } \partial\Omega, \quad (8a)$$

$$\left\{ \Delta f_{\kappa} + O((D^2 f_{\kappa})^2) + O((D^2 f_{\kappa})^3) = 0 \quad \text{in } \Omega, \quad (8b) \right.$$

$$\int f_{\kappa}(0) = 0, \ \dot{f}_{\kappa}(0) = f_{1}. \ (\nabla \dot{f}_{\kappa}(0) = Q(u_{0}).)$$
(8c)

Given $f_1 \in H^{s+\frac{1}{2}}(\partial\Omega)$ and $\beta_{\kappa}, v_{\kappa} \in H^s(\Omega)$, we can solve (8) and obtain a solution in $f_{\kappa} \in H^{s+2}(\partial\Omega)$, or $\nabla f_{\kappa} \in H^{s+\frac{3}{2}}(\Omega)$. Think "wave equation:" data for $\dot{f}(0)$ in $H^{s+\frac{1}{2}}(\partial\Omega)$ gives back one "spatial" derivative; but "spatial" is $\frac{3}{2}$ more regular here.

Solving the boundary-interior system; estimates

Solving the system

$$\left(\begin{array}{c} \ddot{f}_{\kappa} = \mathscr{A}_{\kappa}(\beta_{\kappa}, \mathsf{v}_{\kappa}, f_{\kappa}) + \mathscr{B}_{\kappa} \\ \end{array} \right) \quad \text{on } \partial\Omega, \qquad (9a)$$

$$\left\{ \Delta f_{\kappa} + O((D^2 f_{\kappa})^2) + O((D^2 f_{\kappa})^3) = 0 \quad \text{in } \Omega, \quad (9b) \right\}$$

$$f_{\kappa}(0) = 0, \dot{f}_{\kappa}(0) = f_{1}. \ (\nabla \dot{f}_{\kappa}(0) = Q(u_{0}).)$$
 (9c)

is at the core of the work.

Solving the boundary-interior system; estimates

Solving the system

$$\left(\begin{array}{c} \ddot{f}_{\kappa} = \mathscr{A}_{\kappa}(\beta_{\kappa}, v_{\kappa}, f_{\kappa}) + \mathscr{B}_{\kappa} \\ \end{array} \right) \quad \text{on } \partial\Omega, \qquad (9a)$$

$$\Delta f_{\kappa} + O((D^2 f_{\kappa})^2) + O((D^2 f_{\kappa})^3) = 0 \qquad \text{in } \Omega, \qquad (9b)$$

$$f_{\kappa}(0) = 0, \dot{f}_{\kappa}(0) = f_{1}. \ (\nabla \dot{f}_{\kappa}(0) = Q(u_{0}).)$$
 (9c)

is at the core of the work. The method is inspired on Kato's "The Cauchy problem for quasi-linear symmetric hyperbolic systems."

Solving the boundary-interior system; estimates

Solving the system

$$\left(\begin{array}{c} \ddot{f}_{\kappa} = \mathscr{A}_{\kappa}(\beta_{\kappa}, \mathsf{v}_{\kappa}, f_{\kappa}) + \mathscr{B}_{\kappa} \\ \end{array} \right) \quad \text{on } \partial\Omega, \qquad (9a)$$

$$\Delta f_{\kappa} + O((D^2 f_{\kappa})^2) + O((D^2 f_{\kappa})^3) = 0 \qquad \text{in } \Omega, \qquad (9b)$$

$$f_{\kappa}(0) = 0, \dot{f}_{\kappa}(0) = f_{1}. \ (\nabla \dot{f}_{\kappa}(0) = Q(u_{0}).)$$
 (9c)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

is at the core of the work. The method is inspired on Kato's "The Cauchy problem for quasi-linear symmetric hyperbolic systems." The extra regularity $\nabla f_{\kappa} \in H^{s+\frac{3}{2}}(\Omega)$ gives that $\partial \Omega(t)$ is H^{s+1} regular.

Solving the system

$$\left(\begin{array}{c} \ddot{f}_{\kappa} = \mathscr{A}_{\kappa}(\beta_{\kappa}, \mathbf{v}_{\kappa}, f_{\kappa}) + \mathscr{B}_{\kappa} \\ \end{array} \right) \quad \text{on } \partial\Omega, \qquad (9a)$$

$$\Delta f_{\kappa} + O((D^2 f_{\kappa})^2) + O((D^2 f_{\kappa})^3) = 0 \qquad \text{in } \Omega, \qquad (9b)$$

$$f_{\kappa}(0) = 0, \dot{f}_{\kappa}(0) = f_{1}. \ (\nabla \dot{f}_{\kappa}(0) = Q(u_{0}).)$$
 (9c)

is at the core of the work. The method is inspired on Kato's "The Cauchy problem for quasi-linear symmetric hyperbolic systems." The extra regularity $\nabla f_{\kappa} \in H^{s+\frac{3}{2}}(\Omega)$ gives that $\partial \Omega(t)$ is H^{s+1} regular. If f_1 is small, we also obtain the estimates

$$\|\nabla f_{\kappa}\|_{s+\frac{3}{2}} \leq \frac{C}{\kappa}, \|\nabla \dot{f}_{\kappa}\|_{s} \leq \frac{C}{\sqrt{\kappa}}.$$

(extra regularity of $\partial \Omega(t)$; recall previous comments on $\frac{3}{2}$ derivatives.)

Solving the system

$$\left(\begin{array}{c} \ddot{f}_{\kappa} = \mathscr{A}_{\kappa}(\beta_{\kappa}, \mathsf{v}_{\kappa}, f_{\kappa}) + \mathscr{B}_{\kappa} \\ \end{array} \right) \quad \text{on } \partial\Omega, \qquad (9a)$$

$$\Delta f_{\kappa} + O((D^2 f_{\kappa})^2) + O((D^2 f_{\kappa})^3) = 0 \qquad \text{in } \Omega, \qquad (9b)$$

$$f_{\kappa}(0) = 0, \dot{f}_{\kappa}(0) = f_{1}. \ (\nabla \dot{f}_{\kappa}(0) = Q(u_{0}).)$$
 (9c)

is at the core of the work. The method is inspired on Kato's "The Cauchy problem for quasi-linear symmetric hyperbolic systems." The extra regularity $\nabla f_{\kappa} \in H^{s+\frac{3}{2}}(\Omega)$ gives that $\partial \Omega(t)$ is H^{s+1} regular. If f_1 is small, we also obtain the estimates

$$\|\nabla f_{\kappa}\|_{s+\frac{3}{2}} \leq \frac{C}{\kappa}, \|\nabla \dot{f}_{\kappa}\|_{s} \leq \frac{C}{\sqrt{\kappa}}.$$

(extra regularity of $\partial \Omega(t)$; recall previous comments on $\frac{3}{2}$ derivatives.) This essentially takes care of the convergence part of our result. Since

$$\eta_{\kappa} = (\mathsf{id} + \nabla f_{\kappa}) \circ \beta_{\kappa} = \beta_{\kappa} + \nabla f_{\kappa} \circ \beta_{\kappa},$$

the mean curvature of $\partial \Omega_{\kappa}(t)$ contains a contribution \mathcal{H}_{κ} from from β_{κ} .

Since

$$\eta_{\kappa} = (\mathsf{id} + \nabla f_{\kappa}) \circ \beta_{\kappa} = \beta_{\kappa} + \nabla f_{\kappa} \circ \beta_{\kappa},$$

the mean curvature of $\partial \Omega_{\kappa}(t)$ contains a contribution \mathcal{H}_{κ} from from β_{κ} . Recalling that ∇p_{κ} enters in the equation and that $p_{\kappa}|_{\partial\Omega(t)} = \kappa \mathcal{A}$, \mathcal{H}_{κ} gives a term like

$$\kappa \nabla \mathcal{H}_{\kappa},$$

which increases linearly with κ , diverging in the limit $\kappa \to \infty$ if \mathcal{H}_{κ} is not constant.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Since

$$\eta_{\kappa} = (\mathsf{id} + \nabla f_{\kappa}) \circ \beta_{\kappa} = \beta_{\kappa} + \nabla f_{\kappa} \circ \beta_{\kappa},$$

the mean curvature of $\partial \Omega_{\kappa}(t)$ contains a contribution \mathcal{H}_{κ} from from β_{κ} . Recalling that ∇p_{κ} enters in the equation and that $p_{\kappa}|_{\partial\Omega(t)} = \kappa \mathcal{A}$, \mathcal{H}_{κ} gives a term like

$$\kappa \nabla \mathcal{H}_{\kappa},$$

which increases linearly with κ , diverging in the limit $\kappa \to \infty$ if \mathcal{H}_{κ} is not constant.

- Thank you for your attention -

Write $u_{\kappa} = w_{\kappa} + \nabla h_{\kappa}$.

Write $u_{\kappa} = w_{\kappa} + \nabla h_{\kappa}$. Taking *P* of the free boundary Euler equations, we obtain an ODE in H^s for $z_{\kappa} = w_{\kappa} \circ \eta_{\kappa}$:

$$\dot{z}_{\kappa} = F(z_{\kappa}).$$

Write $u_{\kappa} = w_{\kappa} + \nabla h_{\kappa}$. Taking *P* of the free boundary Euler equations, we obtain an ODE in H^s for $z_{\kappa} = w_{\kappa} \circ \eta_{\kappa}$:

$$\dot{z}_{\kappa}=F(z_{\kappa}).$$

The function h_{κ} is harmonic and solves

$$\begin{cases} \Delta h_{\kappa} = 0, & \text{in } (\mathrm{id} + \nabla f_{\kappa})(\Omega), \\ \frac{\partial h_{\kappa}}{\partial N_{\kappa}} = \langle (\nabla \dot{f}_{\kappa} + D_{v_{\kappa}} \nabla f_{\kappa} + v_{\kappa}) \circ (\mathrm{id} + \nabla f_{\kappa})^{-1}, N_{\kappa} \rangle & \text{on } \partial (\mathrm{id} + \nabla f_{\kappa})(\Omega). \end{cases}$$

(日) (日) (日) (日) (日) (日) (日) (日)

Write $u_{\kappa} = w_{\kappa} + \nabla h_{\kappa}$. Taking *P* of the free boundary Euler equations, we obtain an ODE in H^s for $z_{\kappa} = w_{\kappa} \circ \eta_{\kappa}$:

$$\dot{z}_{\kappa}=F(z_{\kappa}).$$

The function h_{κ} is harmonic and solves

$$\begin{cases} \Delta h_{\kappa} = 0, & \text{in } (\mathrm{id} + \nabla f_{\kappa})(\Omega), \\ \frac{\partial h_{\kappa}}{\partial N_{\kappa}} = \langle (\nabla \dot{f}_{\kappa} + D_{v_{\kappa}} \nabla f_{\kappa} + v_{\kappa}) \circ (\mathrm{id} + \nabla f_{\kappa})^{-1}, N_{\kappa} \rangle & \text{on } \partial (\mathrm{id} + \nabla f_{\kappa})(\Omega). \end{cases}$$

Crucial: extra regularity of $\partial \Omega_{\kappa}(t) = (id + \nabla f_{\kappa})(\Omega)$.

Write $u_{\kappa} = w_{\kappa} + \nabla h_{\kappa}$. Taking *P* of the free boundary Euler equations, we obtain an ODE in H^s for $z_{\kappa} = w_{\kappa} \circ \eta_{\kappa}$:

$$\dot{z}_{\kappa}=F(z_{\kappa}).$$

The function h_{κ} is harmonic and solves

$$\begin{cases} \Delta h_{\kappa} = 0, & \text{in } (\mathrm{id} + \nabla f_{\kappa})(\Omega), \\ \frac{\partial h_{\kappa}}{\partial N_{\kappa}} = \langle (\nabla f_{\kappa} + D_{v_{\kappa}} \nabla f_{\kappa} + v_{\kappa}) \circ (\mathrm{id} + \nabla f_{\kappa})^{-1}, N_{\kappa} \rangle & \text{on } \partial (\mathrm{id} + \nabla f_{\kappa})(\Omega). \end{cases}$$

Crucial: extra regularity of $\partial \Omega_{\kappa}(t) = (\mathrm{id} + \nabla f_{\kappa})(\Omega)$.

Finally, the pressure p_{κ} decomposes as $p_{\kappa} = p_{0,\kappa} + \kappa \mathcal{A}^H_{\kappa}$, where $p_{0,\kappa}$ solves

$$\begin{cases} \Delta p_{0,\kappa} = -\operatorname{div}((u_{\kappa} \cdot \nabla)u_{\kappa}), & \text{ in } (\operatorname{id} + \nabla f_{\kappa})(\Omega), \\ p_{0,\kappa} = 0 & \text{ on } \partial(\operatorname{id} + \nabla f_{\kappa})(\Omega). \end{cases}$$

 $(\mathcal{A}^{\mathcal{H}}_{\kappa}$ has been taken care of in the f_{κ} equation).

Start with $f_{\kappa} \equiv 0$ and $\eta_{\kappa} = \zeta$ (solution on Ω).

Start with $f_{\kappa} \equiv 0$ and $\eta_{\kappa} = \zeta$ (solution on Ω).

1. Given a curve of embeddings η_{κ} in H^s , use the normal bundle decomposition to obtain β_{κ} (and thus v_{κ}) in H^s (not enough to get ∇f_{κ}).

Start with $f_{\kappa} \equiv 0$ and $\eta_{\kappa} = \zeta$ (solution on Ω).

1. Given a curve of embeddings η_{κ} in H^s , use the normal bundle decomposition to obtain β_{κ} (and thus v_{κ}) in H^s (not enough to get ∇f_{κ}).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2. Obtain $p_{0,\kappa}$ as described.

Start with $f_{\kappa} \equiv 0$ and $\eta_{\kappa} = \zeta$ (solution on Ω).

1. Given a curve of embeddings η_{κ} in H^s , use the normal bundle decomposition to obtain β_{κ} (and thus v_{κ}) in H^s (not enough to get ∇f_{κ}).

- 2. Obtain $p_{0,\kappa}$ as described.
- 3. Use v_{κ} and $p_{0,\kappa}$ as input to solve the f_{κ} equation.

Start with $f_{\kappa} \equiv 0$ and $\eta_{\kappa} = \zeta$ (solution on Ω).

1. Given a curve of embeddings η_{κ} in H^s , use the normal bundle decomposition to obtain β_{κ} (and thus v_{κ}) in H^s (not enough to get ∇f_{κ}).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 2. Obtain $p_{0,\kappa}$ as described.
- 3. Use v_{κ} and $p_{0,\kappa}$ as input to solve the f_{κ} equation.
- 4. Obtain h_{κ} as described.

Start with $f_{\kappa} \equiv 0$ and $\eta_{\kappa} = \zeta$ (solution on Ω).

1. Given a curve of embeddings η_{κ} in H^s , use the normal bundle decomposition to obtain β_{κ} (and thus v_{κ}) in H^s (not enough to get ∇f_{κ}).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 2. Obtain $p_{0,\kappa}$ as described.
- 3. Use v_{κ} and $p_{0,\kappa}$ as input to solve the f_{κ} equation.
- 4. Obtain h_{κ} as described.
- 5. Obtain z_{κ} as described.

Start with $f_{\kappa} \equiv 0$ and $\eta_{\kappa} = \zeta$ (solution on Ω).

1. Given a curve of embeddings η_{κ} in H^s , use the normal bundle decomposition to obtain β_{κ} (and thus v_{κ}) in H^s (not enough to get ∇f_{κ}).

- 2. Obtain $p_{0,\kappa}$ as described.
- 3. Use v_{κ} and $p_{0,\kappa}$ as input to solve the f_{κ} equation.
- 4. Obtain h_{κ} as described.
- 5. Obtain z_{κ} as described.
- 6. Set

$$\eta_{\kappa} = \mathsf{id} + \int_0^t (z_{\kappa} + \nabla h_{\kappa} \circ (\mathsf{id} + \nabla f_{\kappa}) \circ \beta_{\kappa}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Start with $f_{\kappa} \equiv 0$ and $\eta_{\kappa} = \zeta$ (solution on Ω).

1. Given a curve of embeddings η_{κ} in H^s , use the normal bundle decomposition to obtain β_{κ} (and thus v_{κ}) in H^s (not enough to get ∇f_{κ}).

- 2. Obtain $p_{0,\kappa}$ as described.
- 3. Use v_{κ} and $p_{0,\kappa}$ as input to solve the f_{κ} equation.
- 4. Obtain h_{κ} as described.
- 5. Obtain z_{κ} as described.
- 6. Set

$$\eta_{\kappa} = \mathsf{id} + \int_0^t (z_{\kappa} + \nabla h_{\kappa} \circ (\mathsf{id} + \nabla f_{\kappa}) \circ \beta_{\kappa}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Iterate the process, and obtain a fixed point.
Let λ be a positive scale factor and assume η is a solution to the free boundary Euler equations on Ω .

Let λ be a positive scale factor and assume η is a solution to the free boundary Euler equations on Ω . Then on the scaled domain $\lambda\Omega$ define α by $\alpha(\lambda x) = \lambda \eta(t)(x)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let λ be a positive scale factor and assume η is a solution to the free boundary Euler equations on Ω . Then on the scaled domain $\lambda\Omega$ define α by $\alpha(\lambda x) = \lambda \eta(t)(x)$. Then letting $y = \lambda x$ we find that $\ddot{\alpha}(t)(y) = \lambda \ddot{\eta}(t)(x)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let λ be a positive scale factor and assume η is a solution to the free boundary Euler equations on Ω . Then on the scaled domain $\lambda\Omega$ define α by $\alpha(\lambda x) = \lambda \eta(t)(x)$. Then letting $y = \lambda x$ we find that $\ddot{\alpha}(t)(y) = \lambda \ddot{\eta}(t)(x)$. A computation shows that α satisfies the equations on $\lambda\Omega$ with p replaced by q, where $q(y) = \lambda^2 p(x)$.

Let λ be a positive scale factor and assume η is a solution to the free boundary Euler equations on Ω . Then on the scaled domain $\lambda\Omega$ define α by $\alpha(\lambda x) = \lambda \eta(t)(x)$. Then letting $y = \lambda x$ we find that $\ddot{\alpha}(t)(y) = \lambda \ddot{\eta}(t)(x)$. A computation shows that α satisfies the equations on $\lambda\Omega$ with p replaced by q, where $q(y) = \lambda^2 p(x)$. However, the mean curvature of $\partial \alpha(\lambda \Omega) = \partial \lambda \eta(\Omega)$ is $(1/\lambda)\mathcal{A}$ (\mathcal{A} = mean curvature of $\partial \eta(\Omega)$).

Let λ be a positive scale factor and assume η is a solution to the free boundary Euler equations on Ω . Then on the scaled domain $\lambda\Omega$ define α by $\alpha(\lambda x) = \lambda \eta(t)(x)$. Then letting $y = \lambda x$ we find that $\ddot{\alpha}(t)(y) = \lambda \ddot{\eta}(t)(x)$. A computation shows that α satisfies the equations on $\lambda\Omega$ with p replaced by q, where $q(y) = \lambda^2 p(x)$. However, the mean curvature of $\partial \alpha(\lambda \Omega) = \partial \lambda \eta(\Omega)$ is $(1/\lambda)\mathcal{A}$ (\mathcal{A} = mean curvature of $\partial \eta(\Omega)$). Thus

$$q=\lambda^2 p=\lambda^2 \kappa {\cal A}=\lambda^3 \kappa (1/\lambda) {\cal A}_{
m c}$$

so the scaled motion has an effective coefficient of surface tension of $\lambda^3 \kappa$.

(日) (同) (三) (三) (三) (○) (○)