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The motion of inviscid fluids

Consider an inviscid, incompressible fluid moving within a bounded region

Ω ⊂ R3.

The equations describing the fluid motion are the Euler equations.

In many situations of interest, the domain Ω is not fixed, but is allowed to

move due to the pressure exerted by the fluid on its boundary.

Ω(t)Ω(0)

E.g.: liquid drop, star. Domain: Ω(t). The equations describing this

situation are the free boundary Euler equations.

Goal: (i) establish well-posedness of the free boundary Euler equations; (ii)

compare the behavior of solutions to the Euler equations (in a fixed

domain) with those of the free boundary Euler equations.

Terminology: fluids = incompressible inviscid fluids.
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The free boundary Euler equations

∂u

∂t
+ (u · ∇)u = −∇p in

⋃
0≤t≤T

{t} × Ω(t), (1a)

div(u) = 0 in Ω(t), (1b)

p = κA on ∂Ω(t), (1c)

∂t + ui∂i is tangent to
⋃

0≤t≤T
{t} × Ω(t), (1d)

u(0) = u0, Ω(0) = Ω, (1e)

Ω

t

Ω

Ω(t1)

Ω(t2) Ω(t) ⊂ R3 is the time-dependent

domain;

u = velocity; p = pressure;

A = mean curvature of ∂Ω(t);

κ = coefficient of surface tension
(constant ≥ 0);

The unknowns in equations (1) are u, p, and Ω(t). We write uκ, pκ, and

Ωκ(t).
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Lagrangian coordinates for the free boundary equations

Difficulty: handling the time-dependent domain Ω(t).

One seeks to recast all quantities in terms of their dependence on the fixed

domain Ω ≡ Ω(0).

Consider the flow η of the vector field u, where u solves the free boundary

Euler equations. I.e., let η solve

∂η(t, x)

∂t
= u(t, η(t, x)), η(0, x) = x ,

or, briefly, η̇ = u ◦ η.

η(t, ·) : Ω→ R3 is, for each t, a volume preserving embedding of Ω into

R3. Then

Ω(t) = η(t)(Ω).

The space of Hs volume preserving embeddings of Ω into R3 is denoted

E sµ(Ω).
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Lagrangian coordinates

The free boundary Euler equations can be rewritten in terms of the flow η.

They read 
η̈ = −∇p ◦ η in Ω, (2a)

div(u) = 0 in η(Ω), (2b)

p = κA on ∂η(Ω), (2c)

η(0) = id, η̇(0) = u0, (2d)

where u = η̇ ◦ η−1.

Advantage: Equation (2a) is defined on the fixed domain Ω.

The unknowns in (2) are η and p.
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Theorem (D–, Ebin): Existence & uniqueness

Let s > 3
2 + 2, Ω be a bounded domain in R3 with a connected smooth

boundary, and u0 ∈ Hs(Ω,R3) be a divergence free vector field. Assume

that κ > 0.

Then there exist a Tκ > 0 and a unique solution (ηκ, pκ) to the free

boundary Euler equations with initial condition u0. The solution satisfies:

ηκ ∈ C 0([0,Tκ), E sµ(Ω)), η̇κ ∈ L∞([0,Tκ),Hs(Ω)),

η̈κ ∈ L∞([0,Tκ),Hs− 3
2 (Ω)),

pκ ∈ L∞([0,Tκ),Hs− 1
2 (Ωκ(t))),

and ∂Ωκ(t) is Hs+1 regular,

where Ωκ(t) = ηκ(t)(Ω). (Solution in Eulerian coordinates,

(uκ, pκ,Ωκ(t)), automatically follows.)
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Rigid domains: surface tension

The coefficient of surface tension, κ, is the parameter controlling how stiff

or rigid a domain is.

The larger the κ, the stiffer the domain.

Thus, we expect that solutions to the free boundary Euler equations with

large κ will be near solutions of the fixed domain Euler equations.

κ has units of (length)3

(time)2 ; large κ? Large compared to the volume of the

domain or some characteristic length. Fix once and for all the volume of Ω

and vary κ.

More precisely, we would like to show that solutions to the free boundary

Euler equations converge (in a suitable topology) to solutions of the fixed

boundary Euler equations, when κ→∞.
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and vary κ.

More precisely, we would like to show that solutions to the free boundary

Euler equations converge (in a suitable topology) to solutions of the fixed

boundary Euler equations, when κ→∞.
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The (fixed boundary) Euler equations

In order to state the next theorem, we need to introduce Euler’s equations

in the fixed domain Ω:

∂ϑ

∂t
+ (ϑ · ∇)ϑ = −∇π in [0,T ]× Ω, (3a)

div(ϑ) = 0 in Ω, (3b)

〈ϑ, ν〉 = 0 on ∂Ω, (3c)

ϑ(0) = ϑ0, (3d)

where ϑ = velocity and π = pressure.

The unknown in (3) is ϑ (π is completely determined by the velocity ϑ).
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Equations in Lagrangian coordinates

As done for the free boundary equations, we can introduce the flow of the

vector field ϑ by ζ̇ = ϑ ◦ ζ, ζ(t, 0) = id.

Then ζ(t, ·) : Ω→ Ω is, for each t, a volume preserving diffeomorphism of

the domain Ω. The space of Hs volume preserving diffeomorphisms of Ω is

denoted Ds
µ(Ω).

In terms of ζ, Euler’s equations (in the fixed domain) read
ζ̈ = −∇π ◦ ζ, (4a)

div(ζ̇ ◦ ζ−1) = 0, (4b)

ζ(0) = id, ζ̇(0) = ϑ0. (4c)

Notice that Ds
µ(Ω) ⊂ Esµ(Ω).
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Theorem (D–, Ebin): Convergence

Let s > 3
2 + 2. Assume that Ω is a ball. Let {u0κ} ⊂ Hs(Ω,R3) be a

family of divergence free vector fields parametrized by the coefficient of

surface tension κ, such that u0κ converges in Hs(Ω,R3), as κ→∞, to a

divergence free vector field ϑ0 which is tangent to the boundary.

Let

ζ ∈ C 1
(
[0,T ],Ds

µ(Ω)
)

be the solution to Euler’s equations in the fixed

domain Ω, defined on some time interval [0,T ]. Let (ηκ, pκ) be the unique

solution to the free boundary Euler equations on Ω with initial condition

u0κ, and defined on a time interval [0,Tκ) (taken as the maximal interval

of existence).

Then, if T is sufficiently small, we find that Tκ ≥ T for all κ sufficiently

large, and, as κ→∞, ηκ(t)→ ζ(t) as a continuous curve in E sµ(Ω) (recall

Ds
µ(Ω) ⊂ Esµ(Ω)). Also, η̇κ(t)→ ζ̇(t) in Hs(Ω) as κ→∞.
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Convergence: summary

In a nutshell:

If the coefficient of surface tension κ goes to infinity, then solutions to the

free-boundary Euler equations converge to solutions of the fixed boundary

Euler equations.

11/24



Remarks

Remark 1. In Eulerian coordinates, the theorem states the convergence

uκ ◦ ηκ → ϑ ◦ ζ (uκ and ϑ are defined on different domains).

Remark 2. The assumption that Ω is a ball cannot be removed, i.e.,

convergence ηκ → ζ fails otherwise.

Remark 3. There was no statement about convergence of pκ.

Notice that only ∇π (and not π) is well-defined for the fixed domain

equations, thus we need to talk about convergence of ∇pκ. This

convergence fails in general, even if the initial data is smooth. Notice that

from η̈κ = ∇p ◦ ηκ and ζ̈ = ∇πκ ◦ ζ, convergence ∇pκ ◦ ηκ → ∇π ◦ ζ
would be equivalent to η̈κ → ζ̈ (not true). However, in view of the

convergence η̇κ → ζ̇ we have that∫ t

0
∇pκ ◦ ηκ →

∫ t

0
∇π ◦ ζ,

in Hs for any t > 0.
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Brief review of previous results

Many authors have worked in the free boundary Euler equations.

Well-posedness: Lindblad (2005) for κ = 0 (Taylor sign condition),

Coutand and Shkoller (2007) for κ ≥ 0. Other results: Schweizer (2005),

Shatah and Zeng (2008), Zhang and Zhang (2007). D– and Ebin (2016).

These all use significantly different techniques.

Irrotational flows or 2d (including κ = 0): many more results, in various

directions: Alazard, Ambrose, Bieri, Burq, Christodoulou, Craig, Deng,

Germain, Hunter, Ifrim, Ionescu, Kukavica, Miao, Masmoudi, Nalimov,

Nishida, Ogawa, Pausader, Pusareti, Shatah, Tani, Tataru, Tuffaha, Vicol,

Yosihara, Wu, Zuily, to cite a few.

Convergence part of our theorem: D– and Ebin in 2d (2014).
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Core of the proof: decomposition of ηκ

Dsµ(Ω)

Hs(Ω)

β

∇f ◦ β

v ◦ β

Ds
µ(Ω) is a submanifold of Hs(Ω,R3). It has a normal bundle given by the

L2 metric on Hs(Ω,R3).

A tangent vector to Ds
µ(Ω) at β is of the form v ◦ β (div v = 0 and v is

tangent to ∂Ω), and a normal vector to Ds
µ(Ω) at β is of the form ∇f ◦ β.

The exponential map from the normal bundle to Hs(Ω,R3) is a

diffeomorphism in a neighborhood of Ds
µ(Ω).
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Core of the proof: decomposition of ηκ

Dsµ(Ω)

Hs(Ω)

β

∇f ◦ β

v ◦ β

η

It follows that if ηκ is near Ds
µ(Ω), then there exist βκ and ∇fκ such that

ηκ = (id +∇fκ) ◦ βκ. (5)

Since ηκ(0) = id ∈ Ds
µ(Ω), ηκ(t) is near Ds

µ(Ω) for small time, and

decomposition (5) applies.
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Small oscillation

For the rest of the talk, assume: κ large, Ω a ball.

The formula

ηκ = (id +∇fκ) ◦ βκ,

decomposes ηκ as a motion that fixes the boundary βκ:

βκ = βκ(t, x), βκ(t, ·) : Ω→ Ω is, for each t, a volume preserving

diffeomorphism of Ω, thus βκ(∂Ω) = ∂Ω;

and a boundary oscillation id +∇fκ:

fκ = fκ(t, x), fκ(t, ·) : Ω→ R, so ∇fκ controls the boundary motion.

Goal: write the free boundary Euler equations as equations for fκ and βκ,

and derive estimates showing that ∇fκ ∼ 1
κ , i.e., ∇fκ is small.
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Elliptic equation for fκ

Since ηκ and βκ are volume preserving, the Jacobian J gives

1 = J(ηκ) = J((id +∇fκ) ◦ βκ)

= J(id +∇fκ) J(βκ)︸ ︷︷ ︸
=1

= J(id +∇fκ).

Expanding J(id +∇fκ):

∆fκ + O((D2fκ)2) + O((D2fκ)3) = 0 in Ω. (6)

Given fκ|∂Ω, equation (6) is a non-linear Dirichlet problem for fκ.

Therefore, if fκ is small, it is determined by its boundary values.
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Equation for fκ|∂Ω

Differentiating ηκ = (id +∇fκ) ◦ βκ and using the original equation

η̈κ = −∇pκ ◦ ηκ, we obtain an equation for fκ on the boundary:

f̈κ = Aκ(βκ, vκ, fκ) + Bκ on ∂Ω. (7)

Aκ is a third order pseudo-differential operator on fκ, and Bκ is lower

order. Aκ comes from pκ = κAκ on ∂Ω(t); Aκ is second order on id +∇fκ.

In (7) we have that ∂t ∼ ∂
3
2
x .
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The boundary-interior system

Aκ(βκ, vκ, fκ) depends on the interior values of fκ (Aκ ∼ ∆∂Ω∂ν), hence

on the extension of fκ to Ω, given by the previous elliptic equation. (Think

of Aκ as Dirichlet-Neumann type of operator.)

Therefore, we are led to consider the following equations for fκ:
f̈κ = Aκ(βκ, vκ, fκ) + Bκ on ∂Ω, (8a)

∆fκ + O((D2fκ)2) + O((D2fκ)3) = 0 in Ω, (8b)

fκ(0) = 0, ḟκ(0) = f1. (∇ḟκ(0) = Q(u0).) (8c)

Given f1 ∈ Hs+ 1
2 (∂Ω) and βκ, vκ ∈ Hs(Ω), we can solve (8) and obtain a

solution in fκ ∈ Hs+2(∂Ω), or ∇fκ ∈ Hs+ 3
2 (Ω). Think “wave equation:”

data for ḟ (0) in Hs+ 1
2 (∂Ω) gives back one “spatial” derivative; but

“spatial” is 3
2 more regular here.
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Given f1 ∈ Hs+ 1
2 (∂Ω) and βκ, vκ ∈ Hs(Ω), we can solve (8) and obtain a

solution in fκ ∈ Hs+2(∂Ω), or ∇fκ ∈ Hs+ 3
2 (Ω). Think “wave equation:”
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Solving the boundary-interior system; estimates

Solving the system
f̈κ = Aκ(βκ, vκ, fκ) + Bκ on ∂Ω, (9a)

∆fκ + O((D2fκ)2) + O((D2fκ)3) = 0 in Ω, (9b)

fκ(0) = 0, ḟκ(0) = f1. (∇ḟκ(0) = Q(u0).) (9c)

is at the core of the work.

The method is inspired on Kato’s “The Cauchy

problem for quasi-linear symmetric hyperbolic systems.” The extra

regularity ∇fκ ∈ Hs+ 3
2 (Ω) gives that ∂Ω(t) is Hs+1 regular. If f1 is small,

we also obtain the estimates

‖ ∇fκ ‖s+ 3
2
≤ C

κ
, ‖ ∇ḟκ ‖s≤

C√
κ
.

(extra regularity of ∂Ω(t); recall previous comments on 3
2 derivatives.)

This essentially takes care of the convergence part of our result.
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, ‖ ∇ḟκ ‖s≤

C√
κ
.

(extra regularity of ∂Ω(t); recall previous comments on 3
2 derivatives.)

This essentially takes care of the convergence part of our result.

20/24



Solving the boundary-interior system; estimates

Solving the system
f̈κ = Aκ(βκ, vκ, fκ) + Bκ on ∂Ω, (9a)

∆fκ + O((D2fκ)2) + O((D2fκ)3) = 0 in Ω, (9b)
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Hypothesis that Ω is a ball

Since

ηκ = (id +∇fκ) ◦ βκ = βκ +∇fκ ◦ βκ,

the mean curvature of ∂Ωκ(t) contains a contribution Hκ from from βκ.

Recalling that ∇pκ enters in the equation and that pκ|∂Ω(t) = κA, Hκ
gives a term like

κ∇Hκ,

which increases linearly with κ, diverging in the limit κ→∞ if Hκ is not

constant.

— Thank you for your attention —
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Appendix: existence, determining the remaining quantities

Write uκ = wκ +∇hκ.

Taking P of the free boundary Euler equations, we

obtain an ODE in Hs for zκ = wκ ◦ ηκ:

żκ = F (zκ).

The function hκ is harmonic and solves{
∆hκ = 0, in (id +∇fκ)(Ω),
∂hκ
∂Nκ

= 〈(∇ḟκ + Dvκ∇fκ + vκ) ◦ (id +∇fκ)−1,Nκ〉 on ∂(id +∇fκ)(Ω).

Crucial: extra regularity of ∂Ωκ(t) = (id +∇fκ)(Ω).

Finally, the pressure pκ decomposes as pκ = p0,κ + κAH
κ , where p0,κ solves{

∆p0,κ = − div((uκ · ∇)uκ), in (id +∇fκ)(Ω),

p0,κ = 0 on ∂(id +∇fκ)(Ω).

(AH
κ has been taken care of in the fκ equation).
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Appendix, existence: solution via iteration

Start with fκ ≡ 0 and ηκ = ζ (solution on Ω).

1. Given a curve of embeddings ηκ in Hs , use the normal bundle

decomposition to obtain βκ (and thus vκ) in Hs (not enough to get ∇fκ).

2. Obtain p0,κ as described.

3. Use vκ and p0,κ as input to solve the fκ equation.

4. Obtain hκ as described.

5. Obtain zκ as described.

6. Set

ηκ = id +

∫ t

0
(zκ +∇hκ ◦ (id +∇fκ) ◦ βκ).

Iterate the process, and obtain a fixed point.
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Appendix: scaling by length

Let λ be a positive scale factor and assume η is a solution to the free

boundary Euler equations on Ω.

Then on the scaled domain λΩ define α by

α(λx) = λη(t)(x). Then letting y = λx we find that α̈(t)(y) = λη̈(t)(x).

A computation shows that α satisfies the equations on λΩ with p replaced

by q, where q(y) = λ2p(x). However, the mean curvature of

∂α(λΩ) = ∂λη(Ω) is (1/λ)A (A = mean curvature of ∂η(Ω)). Thus

q = λ2p = λ2κA = λ3κ(1/λ)A,

so the scaled motion has an effective coefficient of surface tension of λ3κ.
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