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Constant vorticity water waves

The setting:

inviscid incompressible fluid flow (Euler equations)

infinite bottom

free boundary

constant vorticity

with gravity

periodic or nonperiodic setting

Question:

Study long time solutions: lifespan bounds for small data.
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Overview:

Earlier work:

Local well-posedness in Sobolev spaces:
I Lindblad & Christodoulou (2000), Lindblad (2003)
I Lindblad (2005) - higher regularity (s > n/2 + 3/2) (all dimensions)
I Coutand-Shkoller (2006) - regularity of the initial data in H3 (3D)

Our goals:

To use the formulation of the equations in holomorphic
coordinates (Nalimov ’74) in order to provide a simpler approach
to the local problem

To use the quasilinear modified energy method we previously
introduced, improving on the normal form method. This method
yields an easier route to long time solutions
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The standard formulation
Fluid domain: fluid body Ω(t), free boundary Γ(t).
Parameters: velocity field u, pressure p, gravity g, no surface tension

Euler equations in the fluid domain Ω(t):
ut + u · ∇u = −∇p− gj
div u = 0

curl u = c 6= 0

u(0, x) = u0(x)

Boundary conditions on Γ(t):{
∂t + u · ∇ is tangent to

⋃
Γ(t) (kinematic)

p = p0 on Γ(t) (dynamic)

Γ(t) is transported along the flow; same happens with the vorticity!
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Rotational flows

Velocity potential ϕ {
ux + yy = 0

ω = uy − vx = −c,

⇒ u = (cy + ϕx, ϕy), ∆ϕ = 0 in Ω(t).

(Generalized) velocity potential

Then ϕ is uniquely determined by its values on the free surface Γ(t).

Analogue to the Bernoulli’s equation:

Dynamic boundary condition (harmonic conjugate θ):

ϕt − cθ + cyϕx +
1

2
(ϕ2

x + ϕ2
y) + gy = 0 on Γ(t).
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Reducing the dimensionality
Equations reduced to the boundary in Eulerian formulation in (η, ψ),
where ψ(t, x) = ϕ(t, η(t, x))) (Zakharov 1968):

∂tη −G(η)ψ = 0

∂tψ + gη +
1

2
|∇ψ|2 − 1

2

(∇η · ∇ψ +G(η)ψ)2

1 + |∇η|2
= 0.

√
1 + η2x(5ϕ ·N) = G(η) = Dirichlet to Neuman operator,

where N is the unit normal at the free surface.

Closed system in (η, ϕ)

Not trivial to see that this is a closed system of equations in (η, “ϕ”, ω)!
Check D. Lannes and A. Castro paper: Well-posedness and shallow
water stability for a new hamiltonian formulation of the water waves
equations with vorticity

Ifrim, Tataru (UC Berkeley) 2-d water waves Banff 2016 6 / 26



Holomorphic (Conformal) coordinates:

Not new: Ovsjannikov, Dyachenko-Zakharov-Kuznetsov, Wu,
Choi-Camassa, Li-Hyman-Choi, Hunter-I.-Tataru, I.-Tataru, . . .

Conformal map:

Z : {=z ≤ 0} → Ω(t), Z(α+ iβ)− (α+ iβ)→ 0 at infinity

Boundary condition at infinity:

Z(α)− α→ 0 (nonperiodic) Z(α)− α,Q periodic (periodic)

Taking ϕ to be the velocity potential we define ψ = ϕ ◦ z and take
its harmonic conjugate to be θ

We then define the holomorphic function (call it holomorphic
velocity potential)

Q(t, α) = ψ(t, α, 0) + iθ(t, α, 0)

We may then write the water wave equations as a system for the
holomorphic functions (Z,Q). Pert. of steady state: W = Z − α.
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Water wave equations in holomorphic coords.

P - Projection onto negative wavenumbers

Equations for (W,Q):
Wt + (Wα + 1)F + i

c

2
W = 0

Qt − igW + FQα + icQ+ P

[
|Qα|2

J

]
− i c

2
T1 = 0,

where

J :=|1 +Wα|2, P =
1

2
(I − iH),

F :=P

[
Qα − Q̄α

J

]
, F1 := P

[
W

1 + W̄α
+

W̄

1 +Wα

]
,

F :=F − i c
2
F1, T1 := P

[
WQ̄α

1 + W̄α
− W̄Qα

1 +Wα

]
.

These equations are considered either in R× R or in R× S1.
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Conserved energies:

The Hamiltonian:

E(W,Q) =<
∫
g|W |2(1 +Wα)− iQQ̄α + cQα(=W )2

− c3

2i
|W |2W (1 +Wα) dα

The horizontal momentum:

P(W,Q) =

∫ {
1

i

(
Q̄Wα −QW̄α

)
− c|W |2 +

c

2

(
W 2W̄α + W̄ 2Wα

)}
dα

Symmetries:

Translations in α and t.

The space-time scaling (g unchanged , but c→ λc)

(W (t, α), Q(t, α))→ λ−2W (λt, λ2x), λ−3Q(λt, λ2x)

The purely spatial scaling (c unaffected, but g → λ−1g)

(W (t, α), Q(t, α))→ λ−2W (t, λ2x), λ−3Q(t, λ2x)
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Physical parameters:

R =
Qα

1 +Wα
- velocity field on the free boundary

b := b− i c
2
b1 - advection coeff. (high freq. velocity limit)

I b = 2<P
[

R

1 + W̄α

]
I b1 := P

[
W

1 + W̄

]
− P̄

[
W̄

1 + W

]
a := a+

c

2
a1 - normal derivative of the pressure = g + a

I a := 2=P[RR̄α] > 0

I a1 := 2<R−N , where N := 2<P
[
WR̄α − W̄R

]

Alternate quasilinear system for diagonal variables (W = Wα, R)
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Almost self-contained system in (W, R):


Wt + P[ bWα] + P

[
(1 + W)Rα

1 + W̄

]
= G

Rt + icR+ P[ bRα] + iP

[
g + a

1 + W

]
= K,

where

G = (1 + W)P

[
R̄α

1 + W
+

RW̄α

(1 + W̄)2

]
+ [P,W]

(
Rα

1 + W
+

R̄Wα

(1 + W)2

)
+ i

c

2
P [(1 + W)M1] + i

c

2
P
[
W(W − W̄)

]
K = −P

[
RR̄α

]
− i c

2
PN

represent perturbative terms in the equation.
M1 := P

[
WȲ

]
α
− P̄

[
W̄Y

]
α
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The linearized equation
In linearized var. (w, q): non-diagonal degenerate first order hyperbolic
system. Better, use diagonal variables (w, r) = A(w, q) = (w, q −Rw):

wt + P [bwα] + P

[
1

1 + W̄
rα

]
+ P

[
Rα

1 + W̄
w

]
= G(w, r)

rt + P [brα] + icr − iP
[
g + a

1 + W
w

]
= K(w, r).

Quasilinear energy:

E(w, r) =

∫
R

(g + a)|w|2 + =(r̄rα)dα

Control norms for purely gravity waves:

A := ‖W‖L∞ + ‖Y ‖L∞ + ‖|D|
1
2R‖L∞ (scale invariant)

B := ‖|D|
1
2W‖BMO + ‖Rα‖BMO (control. by ‖(W, R)‖Ḣ1)

‖(w, r)‖2Ḣn
:=

n∑
k=0

‖∂kα(w, r)‖2
L2×Ḣ

1
2
, n ≥ 1.
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Control norms for lower order terms introduced by ω:

A−1/2 := ‖|D|
1
2W‖L∞ + ‖R‖L∞ (controlled by Ḣ0 norm of (W, R))

A−1 := ‖W‖L∞ (controlled by Ḣ 1
2

norm of (W,Q))

Notations:

B := B + cA+ c2A−1/2, A := A+ cA−1/2 + c2A−1.

Energy estimate:

d

dt
E(w, r) .A (B + cA )E(w, r)

Local well-posedness:

The translation invariance assures us that the pair (W, R) solves the
linearized equation → leads to the local well-posedness result.
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Normal forms and long time existence
Goal: Find improved lifespan estimates for small data solutions.

(i) Equations with quadratic nonlinearities:

d

dt
E(u) . ‖u‖E(u)

For data ‖u(0)‖ = ε� 1 this leads by Gronwall to a lifespan Tε ≈ ε−1

(ii) Equations with cubic nonlinearities:

d

dt
E(u) . ‖u‖2E(u)

For data ‖u(0)‖ = ε� 1 this leads by Gronwall to a lifespan Tε ≈ ε−2

Solution 1: Normal form method (Shatah ’85): transform an equation
with a quadratic nonlinearity into one with a cubic one via a normal
form transformation,

u→ v = u+B(u, u).
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Solution 2: Improved normal form choices
Find a cubic and higher correction

u→ v = u+B(u, u) +B3+(u), such that

the normal form transformation becomes invertible

the equation in v is a good equation to work with

Ways to achieve this:

S. Wu (2009, gravity water waves): direct (partial) change of
coordinates and a secondary normal form transfomation

Hunter-I. (2011, Burgers-Hilbert equation, and gravity water
waves): change of coordinates obtained via a flow:

(?)
d

dε
uε = B(uε, uε), u0 = u, t = 1→ v = u1

I Burgers-Hilbert (2010) : eqn. (?) is Hilbert (Burgers).
I Gravity water waves (2011): eqn. (?) is Hilbert (Burgers) in both

variables.
Just “rediscovered” by Craig, Walter in 2016.
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Solution 3: Quasilinear modified energy method
The idea is to change the energy rather than change the equations.
This was first implemented in for the Burgers-Hilbert equation by
Hunter-I. Tataru-Wong (2012), and then to various water wave
equations:

Gravity waves in deep water by Hunter-I.-Tatatru (2014),

Capillary waves in deep water by I.-Tataru (2014),

Constant vorticity gravity waves in deep water by I.-Tataru (2015),

Finite depth gravity waves by Harrop-Griffiths-I.-Tataru (2016)

The goal is to construct an energy En(u) with the properties:

It is equivalent to the linear energy functional of the problem

En(u) = (1 +O(‖u‖))‖u‖2Hn

It has good cubic energy estimates

d

dt
En(u) . ‖u‖2En(u).
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Dispersive character ( c 6= 0 gravity waves)
Linearization around zero:{

∂tw + qα = 0

∂tq + icq − igw = 0

Energy:

E =

∫
R
|w|2 − iqq̄α dα = ‖(w, q)‖2Ḣ0 = ‖w‖2L2 + ‖q‖2

Ḣ
1
2
.

Dispersion relation:

τ2 + cτ + gξ = 0, ξ ≤ 0

Group velocity of waves:

v = ± g√
c2 − 4gξ

Quasilinear model:{
(∂t + b∂α)w + qα = 0

(∂t + b∂α)q + icq − i(g + a)w = 0
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τ2 + 2τ + ξ = 0

ξ

τ

Figure : Dispersion relation (v)
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Normal forms for gravity water waves

Existence of a normal form transformation is related to the absence of
resonant bilinear interactions. For 2-d gravity waves in holomorphic
coordinates, such a normal form transformation exists and is given by

W̃ = W + PW [2]

Q̃ = Q+ PQ[2]

The normal variables solve an equation of the form{
∂tW̃ + Q̃α = cubic and higher

∂tQ̃− iW̃ = cubic and higher

However, the cubic and higher nonlinearities also contain higher
derivatives, so one cannot close the energy estimates. This is related to
the fact that the normal form transformation is not invertible, and
further to the fact that the water wave equation is quasilinear, rather
than semilinear.
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The expressions for (W [2], Q[2]):

W [2] = − (W + W̄ )Wα −
c

2g

[
(Q+ Q̄)Wα + (W + W̄ )Qα

]
+
ic2

2g

[
(∂−1W − ∂−1W̄ )Wα +W 2 +

1

2
|W |2

]
− c2

4g2
(Q+ Q̄)Qα

+
ic3

4g2
[
(Q+ Q̄)W + (∂−1W − ∂−1W̄ )Qα

]
+

c4

4g2
(∂−1W − ∂−1W̄ )W,

Q[2] = − (W + W̄ )Qα −
c

2g
(Q+ Q̄)Qα +

ic

4
(W 2 + 2|W |2)

+
ic2

2g

[
(∂−1W − ∂−1W̄ )Qα +

1

2
(Q+ Q̄)W

]
+
c3

4g
(∂−1W − ∂−1W̄ )W.
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The modified energy method
Idea: Modify the energy rather than the equation in order to get cubic
energy estimates.

Step 1: Construct a cubic normal form energy

EnNF (W,Q) = (quadratic+ cubic)(‖W̃ (n)‖2L2 + ‖Q̃(n)‖2
Ḣ

1
2
)

Then
d

dt
EnNF (W,Q) = quartic+ higher

Here higher derivatives arise on the right, making it impossible to close.

Step 2: Switch EnNF (W,Q) to diagonal variables EnNF (W, R).

Step 3: To account for the fact that the equation is quasilinear,
replace the leading order terms in EnNF (W, R) with their natural
quasilinear counterparts to obtain a good cubic quasilinear energy
En(W, R).
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Cubic estimates, I:

Observation

We do not have cubic energy estimates for the linearized equation
as in the irrotational case!

We do have cubic energy estimates for the diff. eqs in (W, R) etc.

Toy model:


wt + P [bwα] + P

[
1

1 + W̄
rα

]
+ P

[
Rα

1 + W̄
w

]
= −P [Wr̄α]

+ P [Rw̄α] +G

rt + P [brα] + icr − iP
[
g + a

1 + W
w

]
= −P[Rr̄α] +K.

Modified energy:

E3(w, r) :=

∫
R

(g + a)|w|2 + =(rr̄α) + 2=(R̄wrα)− 2<(W̄w2) dα.
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Cubic estimates, II:

Equivalence:
E3(w, r) ≈ E2(w, r).

Estimate:

d

dt
E3(w, r) = 2<

∫
R

[
(g + a)w̄ − iR̄αrα − 2W̄w

]
G

− i
[
r̄α − (R̄w)α

]
K dα

+ c2=R|w|2 dα+OA(AB)E2(w, r).

(Ḣ0 bound for linearized eqn (w, r) = (w, q −Rw))
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Energy estimates for constant vorticity gravity
waves

Applies directly to (W, R). Higher order counterpart holds.

Energy estimates:

We can construct energy functionals En(W, R) with these properties:

(i) Energy equivalence:

En,(3)(W, R) = (1+O(A ))E(∂nW, ∂nR)+O(c4A )E(∂n−1W, ∂n−1R)

(ii) Cubic energy estimate:

d

dt
En,(3)(W, R) .A BA

(
E(∂nW, ∂nR) + c4E(∂n−1W, ∂n−1R)

)
.
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Cubic lifespan bounds

Theorem

Let (W,Q) be a solution for the system system whose initial data
satisfies

‖(W0, Q0)‖Ḣ0
+ ‖(W0, R0)‖Ḣ1

≤ ε� 1.

Then the solution exists for a time Tε ≈ ε−2, with bounds

‖(W,Q)(t)‖Ḣ0
+ ‖(W, R)(t)‖Ḣ1

. ε, |t| < Tε.

Further, higher regularity is also preserved,

‖(W, R)(t)‖Ḣn
. ‖(W, R)(0)‖Ḣn

|t| < Tε,

whenever the norm on the right is finite.

Proof idea: quasilinear modified energy method
Bounds for these and higher norms propagate on same timescale.

Later similar result obtained by Bieri, Miao, Shahsahani, Wu.
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Thank you !
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