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Study conservation law

dtu—+0xf(u,v) = 0
d¢v + 0xg(u, v)
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Study conservation law
dtu—+0xf(u,v) = 0 } ()
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d¢v + 0xg(u, v)

Riemann problem:
u, x<0
u, x>0

u(x,0) = up(x) = {

v;, x<0
Ve, x>0

v(x,0) = w(x) = {
Weak solutions:

/]R+/IR (udrp 4 f(u, v)oxep) dxdt+ '/]R uo(x)p(x,0) dx =0
/th/ﬂ; (vorp + g(u, v)oxep) dxdt + /]R vo(x)@(x,0) dx =0

For some initial data, the Riemann problem may not have a solution.
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Delta shocks: early work

o Korchinski (PhD thesis, Adelphi University, 1978)
us + (%uz)x =0
ve + (%uv)x =0

o Keyfitz & Kranzer (JDE, 1995)

o Hayes & Le Floch (Nonlinearity, 1996)

w30 +12), =0
vi+(uv—u)x =0
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Delta shocks: early work

o Keyfitz & Kranzer (JDE, 1995)
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Delta shocks: early work

o Keyfitz & Kranzer (JDE, 1995)
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Introduce Rankine-Hugoniot deficit:
clu] = [v*=v]=0, (1)
clv]+ [%u3 - u] =a/(t), (2)
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Delta shocks: early work

o Hayes & Le Floch (Nonlinearity, 1996): Brio system

ut—|—%(u2—|—v2)X:0
ve+ (uv —u)x =0

Not genuinly nonlinear at v = 0.

RW1
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Delta shocks: early work

o Hayes & Le Floch (Nonlinearity, 1996): Brio system

ut+%(u2+v2)X:0
vi+ (uv—u)x =0
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Delta shocks: early work

o Hayes & Le Floch (Nonlinearity, 1996): Brio system
ur + %(u2—i-v2)X =0
vi+ (uv—u)x =0
Similar system:
u + (%uz)x =0

ve+ (uv —u)x =0

If uj > u, + 2, the solutions contains singular shocks with Dirac delta
distributions:

u(x,t) = u + (ur — u))H(x — ct)
vix,t) = vi+ (vy — vj))H(x — ct) + a(t)6(x — ct)

To understand the term uv, use theory of

Dal Maso et al. (J. Math. Pure Appl. 1995)
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otu—+0xf(u,v) = 0
orv +0xg(u,v) = 0

Riemann problem:

u(x,0) = up(x) = {Ul’ x<0

u, x>0

v(x,0) = w(x) = {v,, x<0

ve,, x>0

Weak solutions: u, V € L®, v =V +a(t)d(x — ct)

/H;+/ﬂ? (udep + f(u, V)oxe) dxdt + /]R uo(x)@(x,0)dx =

/&/]R (Varg + glu, V)axp) dxdt

+/ vo(x)@(x,0) dx + a(t)%—(f

{x=ct}

0

+(0)9(0,0)
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Generalized weak solution (Danilov & Shelkovich, JDE, 2005)
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Generalized weak solution (Danilov & Shelkovich, JDE, 2005)

Suppose I = {; | i € I} is a graph in the upper half plane, containing arcs 7;,
i € 1. Let Iy be the subset of / containing all indices of arcs that connect to the
x-axis, and let To = {x? | k € Iy} be the set of initial points of the arcs 7, with
k € .

Define the singular part by a(x, t)6(I) = Y ai(x, £)6(7yi).
Let u, V € L°(R x R4), and let v(x, t) = V(x, t) 4+ a(x, t)5(T).

Definition 1

The pair of distributions u and v = V + «(x, t)6(T') are called a generalized 6-shock
wave solution of system (x) with the initial data up(x) and
Vo(x) + Ly ak (x5, 0)8 (x — xQ) if the integral identities

/]l.h/]I.( (udr g + f(u, V)9xg) dxdt + /]R uo(x)@(x,0) dx =0,
/]R/]R (VIrg +g(u, V)3xp) dxdt

+Z/_a,(x, ) 2e0ct) +/}R VO(x)p(x,0) dx+ ¥ ai(x2,0)9(x0,0) =0,

i€l kel

hold for all test functions ¢ € D(R x R4.).
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Generalized weak solution (Danilov & Shelkovich, JDE, 2005)

Definition 1 is quite general, allowing a combination of initial steps and delta
distributions; but its effectiveness is already demonstrated by considering the
Riemann problem with a single jump. Indeed, for this configuration it can be shown
that a J-shock wave solution exists for any 2 x 2 system of conservation laws.
Consider the Riemann problem for (x) with initial data u(x, 0) = up(x) and

v(x,0) = vg(x), where

uy, x<0 v, x<0
Uo(X){ : Vo(X){ :

u, x>0 v,, x>0
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Oru+ 0xf(u,v) =
dtv+0xg(u,v) = 0

I
o
—

(*)

Theorem 1 (K. and Mitrovic)

a) If u; # u, then the pair of distributions

u(x,t) = wp(x—ct),
vix,t) = w(x—ct)+a(t)d(x— ct),
where
o= LW _ Hn ) 2T M) - g o) = (e[V) - [g(u V),

[u] uy — uy

represents the 5-shock wave solution of (x) with initial data up(x) and vo(x) in the
sense of Definition 1.

o’
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Link between RH-deficit and ¢ solutions?

Weak asymptotic method
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Link between RH-deficit and ¢ solutions?

Weak asymptotic method

Definition 2

Let f.(x) € D'(R) be a family of distributions depending on ¢ € (0,1), We say that
f, = op/ (1) if for any test function ¢(x) € D(R), we have

(fe¢) = 0(1), as € =0
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Link between RH-deficit and ¢ solutions?

Weak asymptotic method

Definition 2

Let f.(x) € D'(R) be a family of distributions depending on ¢ € (0,1), We say that
f, = op/ (1) if for any test function ¢(x) € D(R), we have

(fe¢) = 0(1), as € =0

Definition 3 (K. and Mitrovic)

| A

The collection of smooth complex-valued distributions (uz) and (v:) represent a
weak asymptotic solution to (x) if there exist real-valued distributions
u,v € C(Ry;D'(R)), such that for every fixed t € Ry

u—u, ve—v as ¢ —0,
in the sense of distributions in D'(R), and

Orug + 0xf(us, ve) = opi(1),
Orve + 0xg (e, ve) = opi(1).

In addition, we need
ug(x,0) = u(x,0) and v(x,0) = v(x,0).
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Example: shallow-water equations

i g nexo

Shallow-water equations:
7t + houx + (qu)x =0 (1)
ur +gix +uu =0 (2)

Assumptions:

o p=ypg(y—2z) ( hydrostatic)
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Example: shallow-water equations

i g nexo

Shallow-water equations:

e + houx + (u)x =0 1)
Ut + gfx + utx =0 )
Assumptions:
° p=pg(n—2z) ( hydrostatic)
o u=u(xt) ( no vertical acceleration)

Momentum conservation:

[(ho +m)u], + [(ho +)u’ + %g(ho + W)Z]X =0

Energy conservation:

%[(ho+ﬂ)u2+(ho+ﬂ)2]t + [%(h0+17)u3+gu(ho+11)2L =0
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Shallow-water equations with bottom topography

Mass conservation:

(h], + [uh] =0 \/\/\/wu

Conservation of total head:

[l + lath+b)+ 5], =0 1.

Momentum balance:

[hu], + [h?+ gh?] = —ghb, 3)

Energy conservation:

(3 + 302+ 6]+ [3u® +guh(h+b)| =0 (4)

X
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Traveling hydraulic jump

A traveling hydraulic jump over an even bottom must respect conservation of mass
and momentum.

In shallow-water theory, it is useful to consider the jump as having a discontinuity at
the bore front. Rankine-Hugoniot conditions

c[h] = [uh]
cluh] = [u*h+ Lgh?]
The velocity can be expressed as

_uphy— by (uPhe+ 3gh?) — (u?h + Lgh?)

hy — h/ urh, — u,h,

h;

Surface profile of a traveling hydraulic jump Shallow-water approximation
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Traveling hydraulic jump: induced Rankine-Hugoniot deficit

Relative veclocity:

g /1 1
=h —c)=h —c)=Fhhy/2 | —+—
m = hy(ur — c) = h(u —c) = Fheh 2(h,+h,)
Energy loss:
1 g me(h —h)°
oY 4h,hy
Head loss: ( 3
h; — h,
AH
4h;h,
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Traveling hydraulic jump over flat bottom

Mass conservation:
c[h} — [uh] =0
Head loss:
clu] — [g(h+b)+ %] =gAH

Momentum balance:

c[hu} — [hu2 + %gh2] =0
Energy loss:
1

c %hu2+%h2+bh] - [%u3+guh(h+b)] = SyE
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Weak asymptotics for traveling hydraulic jump

Let p € CP(R) be non-negative, smooth, compactly supported even function with
suppp C (—1,1) and [ p(z)dz =1
Define C = [ p?(z)dz, and

Rx.t) = 5 p (%’-‘—ﬂ i <%t+2s> |
Se(x,t) = %%P (x—gct)
u;, x < ct—20¢,

Ue(x,t) =40, ct—10e < x < ct+ 10g,
u,, x > ct+ 20¢,

h;, x < ct—20e,
He(x,t) =<0, ct—10e < x < ct+ 10¢,
h,, x> ct+20e.

Now make the ansatz
he(x,t) = He(x — ct),

ug(x, t) = Ug(x — ct) + a(t)(de(x — ct) + Re(x — ct)) + 1/ ca(t)Se(x — ct)
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We can show that

1
0t Ue + 50 U? + g9y H, + o (£)6e —ca(t)8 + cadyS2 = opy (1)
N~—_—————
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We can show that

1
0t Ue + 50 U? + g9y H, + o (£)6e —ca(t)8 + cadyS2 = opy (1)
N~—_—————
1
9 Ue + Eaxug + g0 He + o' (t)6: = opr (1)
Choosing

W(6) = (ur — w)e+ 5 (F — ) + g(hy — )

he and u, are solutions of shallow water (1), (2) in the sense of Definition 3.

Note that the Rankine-Hugoniot deficit is nonzero:

o' (t) =gAH #0
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Bottom step transition

For a bottom step, mass and energy need to be conserved.
Rankine-Hugoniot conditions are

uh] =0 (5)
lguh(h+b) + h%] =0 (6)
The second condition can be replaced by the simpler condition
[g(h+b)+ 4] =0 7
These are standard relations in hydraulic theory (Henderson, 1966).

h, hy
- T I

r r

~T—> by ' by

X

Surface profile over a bottom transition Shallow-water approximation
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Bottom step transition

Mass conservation:
c[h} — [uh] =0

Conservation of total head:

clu] — [gh+b)+%]=0
Momentum loss:
c[hu] — [hu?+ 3gr?] #0

Energy balance:

[3hu? + 312 + bh] — [3u? + guh(h+b)] = 0
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Interaction Shock / Bottom step

h, ]
hr

Initial configuration: Shock approaching a bottom step

Solve this using conservation of mass and total head:
he + (hu)x =0 (1)
ur+g(h+b)x+ uux =0 &)
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Interaction Shock / Bottom step

hr

Initial configuration: Shock approaching a bottom step

Solve this using conservation of mass and total head:

ht+(hu)x =0 (1)
ur+g(h+b)x+ uux =0 (2)
I R ‘:\—,—’\;
Initial configuration Riemann problem over bottom step Solution

Henrik Kalisch
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Interaction Shock / Bottom step

Solution of Riemann problem
over bottom step can be solved .

by requiring 1 Step transition 2
x=0

@ Energy conservation across x=oit
bottom step

x:02|

@ Momentum conservation X
across flat bottom

Alcrudo and Benkhaldoun, S,
Computers and Fluids, 2001

Shock trajectories

— _ T,
Initial configuration Riemann problem over bottom step Solution
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Interaction Shock / Bottom step

Different approaches due to .
S‘ Step transition Sz
x=0
G. Rosatti and L. Begnudelli, x=c t e
J. Comp. Physics, 2010 ’
Fjordholm et al.
J. Comp. Physics, 2011 S,

Shock trajectories

- hN— . ‘\_,L
Initial configuration Riemann problem over bottom step Solution
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Solution of Riemann problem for Brio systen

ut+%(u2+v2)X:O = }

vit(uv—u)xy=0 = (8)

Definition

A J-shock solution of the Brio system (8), connecting a left state L = (u1,v1) and a
right state R = (up, v2) is i-admissible if

Ai(u2, v2) < ¢ < Aj(ug, vi), (9)

for i =1 or i = 2. For such ¢ shock wave we say that it is compressive.

Lemma

Assume Riemann data are such that uy = u; = 0, vi = 0 and v, < 0. Then, the
d-shock solution

u(x,t) =0+ a(t)d(x — ct),

v(x,t) =0, (10)

where a(t) and c are given by Thm 1, is a 1-admissible 6-shock solution of (8).
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Solution of Riemann problem for Brio systen

Proof.

The functions given by (10) represent J shock solution to (8), (9) according to
Theorem 1, b). In order to prove that the solution is 1-admissible, recall that

c= w Then, due to (9), we need to show:
2= V1

—1)- ~1
Al(uz,vz):[,271/27,/1/4+v22g"2(“2 Vi_z(‘” )

<u—1/2- \/1/4+V1 =/\1(U1,V1).

Since u; = up = u and v; = 0, the latter reduces to

u—1/2—4/1/4+v3<u—-1 <« 1/2—./1/4+v3<0,

which is clearly true. O
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Solution of Riemann problem for Brio systen

H. K. and D. Mitrovic,
Proc. Edinburgh Math. Soc., 2012

u
SWa
Um _ RW»
SWy
_ RW;,
Upm _ RW,
SW

U, Um () fw, v
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Solution of Cauchy problem for n x n system

a) We split the x-axis into the intervals (xix,xgl) of length Ax.

b) We approximate the functions U? and Ug by the functions

Upiax(x) = '§1 V{’AXX(XKX:XZT)(X) and U9, (x) = '; Vé'AXx(Xix:Xiil)(X)'

respectively, which are piecewise constant on the intervals defined in item a).
For j € IN, denote by

MR AR — A e i) (Y

Ci
) = -
V/'/,AX - Vi/,AX
i.e. the speeds given by the Rankine-Hugoniot conditions of the first and

second equations (i = 1,2).

c) We thus obtain series of Riemann problems (at the edge of each interval from
item a)) which we solve using Definition 1 such that ¢, satisfies the minimum
amplitude condition

_ ]G 1wy ~ RV < |G lwl - [A)]
J Cjz, else

The é-distribution is adjoined to the function for which the minimum is not
reached.

d) We obtain the family (uix, uix) of distributions which can be represented as
a sum of bounded functions U,, and é-distributions, satisfying Definition 1
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