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Goal

Compute solutions to Euler’s equations as efficiently and as
accurately as possible.
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Model for Water Waves

For an inviscid, incompressible fluid with velocity potential
φ(x , y , z , t), the forced Euler’s equations are given by

4φ = 0, (x , y , z) ∈ Ω,

φz = 0, z =−h,
ηt + ηxφx + ηyφy = φz , z =η(x , y , t),

φt +
1

2
|∇φ|2+

1

F 2
η + P(x , y , t) = −D δH

δη
, z =η(x , y , t),

where
h: depth
F : Froude number
D: flexural rigidity
η(x , y , t): variable surface
P(x , y , t): external pressure distribution
δH
δη : condition at the interface.
Ω = {−∞ < x <∞,−∞ < y <∞,−∞ < z < η(x , y , t)}



Models For a Thin Sheet of Ice

Outline Motivation Waves under an ice sheet in finite depth 3D hydroelastic waves Internal waves under an ice sheet Future work

Sketch of the problem
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• We are interested in steady and unsteady waves.

• The fluid is assumed inviscid and incompressible, and the flow
irrotational.

• There are different elastic models for the ice sheet (Hegarty & Squire
2002, Toland 2008) or visco-elastic models (e.g. Hosking et al. 1988).

We consider two models

I Biharmonic (linear) model

HL = D
1

2

∫
(4η)2dA

I Cosserat (nonlinear) model

HN = D
1

2

∫
(κ1 + κ2)2dS with κ1, κ2 principle curvatures
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Reformulation: Bernoulli Equation

I Switch into surface variables via the velocity potential at the
surface

q(x , y , t) = φ(x , y , z =η, t)

I Go into a moving frame of reference

I Combine the dynamic and kinematic boundary conditions

Then the steady-state Bernoulli equation becomes

1

2

(1 + η2x)q2y + (1 + η2y )q2x − 2ηxηyqxqy

1 + η2x + η2y
+

η

F 2
+ P + D

δH

δη
=

1

2
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Models for Ice

The two different models are considered

I Biharmonic (linear) model

δH

δη
= ∇4η

I Cosserat (nonlinear) model

δH

δη
=

2
√
a

[
∂x

(
1 + η2y
√
a
∂xH

)
− ∂x

(
ηxηy
√
a
∂yH

)
− ∂y

(
ηxηy
√
a
∂xH

)
+ ∂y

(
1 + η2x√

a
∂yH

)]

+ 4H3 − 4KH

where

a = 1 + η2x + η2y

H =
1

2
a3/2

[
(1 + η2y )ηxx − 2ηxyηxηy + (1 + η2x )ηyy

]
K =

1

a2

[
ηxxηyy − η2xy

]
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Reformulation: Boundary Integral Method

Following the formulation by Forbes (1989), use Green’s second
identity ∫

V
(α∆β − β∆α)dV =

∮
S(V )

(
α
∂β

∂n
− β∂α

∂n

)
dS

where in three dimensions, β is the fundamental solution given by
the Green’s function

1

4π

1

((x − x∗)2 + (y − y∗)2 + (z − z∗)2)1/2

and α = φ− x , which satisfies Laplace’s equation.



System of Equations
The final form of equations to solve for flexural-gravity waves in
infinite depth is

1

2

(1+η2x)q2y +(1+η2y )q2x − 2ηxηyqxqy

1+η2x +η2y
+
η

F 2
+P+D

δH

δη
=

1

2∫ ∞
−∞

∫ ∞
−∞

[(q−q∗− x +x∗)K1 + ηxK2] dxdy = 2π(q∗−x∗)

where

K1 =
1

d3/2
(η − η∗ − (x − x∗)2ηx − (y − y∗)2ηy )

K2 =
1

d1/2

with

d(x , y , x∗, y∗, η) = (x − x∗)2 + (y − y∗)2 + (η − η∗)2

.



Symmetry
Symmetry in y direction

η(x , y) = η(x ,−y)

and
q(x , y) = q(x ,−y)

implies additional terms

1

2

(1+η2x)q2y +(1+η2y )q2x − 2ηxηyqxqy

1+η2x +η2y
+
η

F
− 1

2
= F (η)∫ ∞

0

∫ ∞
−∞

[
(q−q∗− x +x∗)K̃1 + ηx K̃2

]
dxdy = 2π(q∗−x∗)

where

K̃1 = K̄1(x , y , η, x∗, y∗, η∗) + K̄1(x ,−y , η, x∗, y∗, η∗)
K̃2 = K̄2(x , y , η, x∗, y∗, η∗) + K̄2(x ,−y , η, x∗, y∗, η∗)
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Discretisation

I Let xi and yj be equally spaced points such that i = 1, . . . ,N
and j = 1, . . . ,M.

I Let the vector of unknowns be qx (i ,j) and ηx (i ,j) such that

u =
[
qx (1,1), · · · , qx (N,1), · · · , qx (N,M), ηx (1,1), · · · , ηx (N,M)

]T
I Use finite differences to discretise the derivatives

I Obtain 2NM equations

G (u) = 0
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Numerical Approach

To solve the system

1. Set up an initial guess u0

2. Until convergence

2.1 Solve J(un)δn = −G (un)
2.2 Set un+1 = un + λδn, 0 < λ < 1
2.3 Test for convergence

This method relies on an initial guess u0 and the Jacobian J.
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Jacobian

The sparsity of the linearised Jacobian for flexural-gravity waves



Solving the System of Equations

We consider two ways of solving the system of equations

1. Inexact Newton Method: (direct method) uses an inexact
Jacobian (not computed at each step).

2. Modified Newton Method: (iterative method) using a
preconditioned Krylov method to construct the solution, not
keeping the full Jacobian matrix.

I Preconditioner is constructed as shown in Pethiyagoda et al
(2014)

I Krylov subspace methods implemented using Sundials solver
KINSOL implemented in Matlab and C.
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Initial Condition

Newton’s method is very sensitive to initial conditions. In order to
compute different wave amplitudes, generate a bifurcation diagram

I Guess a small amplitude solution

I Use this guess in Newton’s method to compute the true
solution.

I Scale the previous solution to get a guess for a larger
amplitude solution

I Apply Newton’s method to find the true solution.

Can use the Jacobians from previous steps in the bifurcation
branch as preconditioners.
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Forcing Term
We use the following pressure as a forcing for depression waves



Sample Solutions
Solutions for forced waves underneath an ice sheet
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Bifurcation Branch

Comparison of the bifurcation branches for flexural-gravity waves
with the linear and the nonlinear elasticity models

Note: both models give the same wave amplitude, but different
Froude numbers



Flexural-Gravity Wave Profiles

Comparison of the solution profiles for linear elasticity model and
the nonlinear elasticity model.



Flexural-Gravity Wave Profiles

Comparison of the solution profiles for linear elasticity model and
the nonlinear elasticity model.



Flexural-Gravity Bifurcation Branch
Comparison of the bifurcation branch for linear elasticity model
and the nonlinear elasticity model.

Elevation waves are represented as crosses and depression waves as
circles.
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Conclusions

I Can compute solutions to both models for flexural-gravity
waves

I Both models for produce similar shaped profiles, but at
different Froude numbers

I The code is easy to use and easy to modify

I A variety of numerical methods have been tested
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Future Work

I Compute accurate free surface waves without a forcing

I Compare the different models quantitatively

I Do free surface depression or elevation waves bifurcate away
from 0?

I Switch to using a Modified Newton Method for solutions
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Thank you for your attention
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