
Computing Flexural-Gravity Waves in
Three Dimensions

Olga Trichtchenko

Applied Mathematics
University of Washington

ota6@uw.edu

November 3, 2016

Acknowledgements

This is joint work with

I Jean-Marc Vanden-Broeck at University College London

I Emilian Părău at UEA

I Paul Milewski at University of Bath

Outline

Motivation

Formulation

Numerics

Solutions

Conclusion and Future Work

Outline

Motivation

Formulation

Numerics

Solutions

Conclusion and Future Work

Goal

Compute solutions to Euler’s equations as efficiently and as
accurately as possible.

Outline

Motivation

Formulation

Numerics

Solutions

Conclusion and Future Work

Model for Water Waves

For an inviscid, incompressible fluid with velocity potential
φ(x , y , z , t), the forced Euler’s equations are given by

4φ = 0, (x , y , z) ∈ Ω,

φz = 0, z =−h,
ηt + ηxφx + ηyφy = φz , z =η(x , y , t),

φt +
1

2
|∇φ|2+

1

F 2
η + P(x , y , t) = −D δH

δη
, z =η(x , y , t),

where
h: depth
F : Froude number
D: flexural rigidity
η(x , y , t): variable surface
P(x , y , t): external pressure distribution
δH
δη : condition at the interface.
Ω = {−∞ < x <∞,−∞ < y <∞,−∞ < z < η(x , y , t)}

Models For a Thin Sheet of Ice

Outline Motivation Waves under an ice sheet in finite depth 3D hydroelastic waves Internal waves under an ice sheet Future work

Sketch of the problem

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

✻

❄
❄

✲

✻

H ρ

x

y

g

%%%%η(x , t)
❄❄p

• We are interested in steady and unsteady waves.

• The fluid is assumed inviscid and incompressible, and the flow
irrotational.

• There are different elastic models for the ice sheet (Hegarty & Squire
2002, Toland 2008) or visco-elastic models (e.g. Hosking et al. 1988).

We consider two models

I Biharmonic (linear) model

HL = D
1

2

∫
(4η)2dA

I Cosserat (nonlinear) model

HN = D
1

2

∫
(κ1 + κ2)2dS with κ1, κ2 principle curvatures

Models For a Thin Sheet of Ice

Outline Motivation Waves under an ice sheet in finite depth 3D hydroelastic waves Internal waves under an ice sheet Future work

Sketch of the problem

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

✻

❄
❄

✲

✻

H ρ

x

y

g

%%%%η(x , t)
❄❄p

• We are interested in steady and unsteady waves.

• The fluid is assumed inviscid and incompressible, and the flow
irrotational.

• There are different elastic models for the ice sheet (Hegarty & Squire
2002, Toland 2008) or visco-elastic models (e.g. Hosking et al. 1988).

We consider two models

I Biharmonic (linear) model

HL = D
1

2

∫
(4η)2dA

I Cosserat (nonlinear) model

HN = D
1

2

∫
(κ1 + κ2)2dS with κ1, κ2 principle curvatures

Reformulation: Bernoulli Equation

I Switch into surface variables via the velocity potential at the
surface

q(x , y , t) = φ(x , y , z =η, t)

I Go into a moving frame of reference

I Combine the dynamic and kinematic boundary conditions

Then the steady-state Bernoulli equation becomes

1

2

(1 + η2x)q2y + (1 + η2y)q2x − 2ηxηyqxqy

1 + η2x + η2y
+

η

F 2
+ P + D

δH

δη
=

1

2

Reformulation: Bernoulli Equation

I Switch into surface variables via the velocity potential at the
surface

q(x , y , t) = φ(x , y , z =η, t)

I Go into a moving frame of reference

I Combine the dynamic and kinematic boundary conditions

Then the steady-state Bernoulli equation becomes

1

2

(1 + η2x)q2y + (1 + η2y)q2x − 2ηxηyqxqy

1 + η2x + η2y
+

η

F 2
+ P + D

δH

δη
=

1

2

Reformulation: Bernoulli Equation

I Switch into surface variables via the velocity potential at the
surface

q(x , y , t) = φ(x , y , z =η, t)

I Go into a moving frame of reference

I Combine the dynamic and kinematic boundary conditions

Then the steady-state Bernoulli equation becomes

1

2

(1 + η2x)q2y + (1 + η2y)q2x − 2ηxηyqxqy

1 + η2x + η2y
+

η

F 2
+ P + D

δH

δη
=

1

2

Reformulation: Bernoulli Equation

I Switch into surface variables via the velocity potential at the
surface

q(x , y , t) = φ(x , y , z =η, t)

I Go into a moving frame of reference

I Combine the dynamic and kinematic boundary conditions

Then the steady-state Bernoulli equation becomes

1

2

(1 + η2x)q2y + (1 + η2y)q2x − 2ηxηyqxqy

1 + η2x + η2y
+

η

F 2
+ P + D

δH

δη
=

1

2

Reformulation: Bernoulli Equation

I Switch into surface variables via the velocity potential at the
surface

q(x , y , t) = φ(x , y , z =η, t)

I Go into a moving frame of reference

I Combine the dynamic and kinematic boundary conditions

Then the steady-state Bernoulli equation becomes

1

2

(1 + η2x)q2y + (1 + η2y)q2x − 2ηxηyqxqy

1 + η2x + η2y
+

η

F 2
+ P + D

δH

δη
=

1

2

Models for Ice

The two different models are considered

I Biharmonic (linear) model

δH

δη
= ∇4η

I Cosserat (nonlinear) model

δH

δη
=

2
√
a

[
∂x

(
1 + η2y
√
a
∂xH

)
− ∂x

(
ηxηy
√
a
∂yH

)
− ∂y

(
ηxηy
√
a
∂xH

)
+ ∂y

(
1 + η2x√

a
∂yH

)]

+ 4H3 − 4KH

where

a = 1 + η2x + η2y

H =
1

2
a3/2

[
(1 + η2y)ηxx − 2ηxyηxηy + (1 + η2x)ηyy

]
K =

1

a2

[
ηxxηyy − η2xy

]

Models for Ice

The two different models are considered

I Biharmonic (linear) model

δH

δη
= ∇4η

I Cosserat (nonlinear) model

δH

δη
=

2
√
a

[
∂x

(
1 + η2y
√
a
∂xH

)
− ∂x

(
ηxηy
√
a
∂yH

)
− ∂y

(
ηxηy
√
a
∂xH

)
+ ∂y

(
1 + η2x√

a
∂yH

)]

+ 4H3 − 4KH

where

a = 1 + η2x + η2y

H =
1

2
a3/2

[
(1 + η2y)ηxx − 2ηxyηxηy + (1 + η2x)ηyy

]
K =

1

a2

[
ηxxηyy − η2xy

]

Reformulation: Boundary Integral Method

Following the formulation by Forbes (1989), use Green’s second
identity ∫

V
(α∆β − β∆α)dV =

∮
S(V)

(
α
∂β

∂n
− β∂α

∂n

)
dS

where in three dimensions, β is the fundamental solution given by
the Green’s function

1

4π

1

((x − x∗)2 + (y − y∗)2 + (z − z∗)2)1/2

and α = φ− x , which satisfies Laplace’s equation.

System of Equations
The final form of equations to solve for flexural-gravity waves in
infinite depth is

1

2

(1+η2x)q2y +(1+η2y)q2x − 2ηxηyqxqy

1+η2x +η2y
+
η

F 2
+P+D

δH

δη
=

1

2∫ ∞
−∞

∫ ∞
−∞

[(q−q∗− x +x∗)K1 + ηxK2] dxdy = 2π(q∗−x∗)

where

K1 =
1

d3/2
(η − η∗ − (x − x∗)2ηx − (y − y∗)2ηy)

K2 =
1

d1/2

with

d(x , y , x∗, y∗, η) = (x − x∗)2 + (y − y∗)2 + (η − η∗)2

.

Symmetry
Symmetry in y direction

η(x , y) = η(x ,−y)

and
q(x , y) = q(x ,−y)

implies additional terms

1

2

(1+η2x)q2y +(1+η2y)q2x − 2ηxηyqxqy

1+η2x +η2y
+
η

F
− 1

2
= F (η)∫ ∞

0

∫ ∞
−∞

[
(q−q∗− x +x∗)K̃1 + ηx K̃2

]
dxdy = 2π(q∗−x∗)

where

K̃1 = K̄1(x , y , η, x∗, y∗, η∗) + K̄1(x ,−y , η, x∗, y∗, η∗)
K̃2 = K̄2(x , y , η, x∗, y∗, η∗) + K̄2(x ,−y , η, x∗, y∗, η∗)

Outline

Motivation

Formulation

Numerics

Solutions

Conclusion and Future Work

Discretisation

I Let xi and yj be equally spaced points such that i = 1, . . . ,N
and j = 1, . . . ,M.

I Let the vector of unknowns be qx (i ,j) and ηx (i ,j) such that

u =
[
qx (1,1), · · · , qx (N,1), · · · , qx (N,M), ηx (1,1), · · · , ηx (N,M)

]T
I Use finite differences to discretise the derivatives

I Obtain 2NM equations

G (u) = 0

Discretisation

I Let xi and yj be equally spaced points such that i = 1, . . . ,N
and j = 1, . . . ,M.

I Let the vector of unknowns be qx (i ,j) and ηx (i ,j) such that

u =
[
qx (1,1), · · · , qx (N,1), · · · , qx (N,M), ηx (1,1), · · · , ηx (N,M)

]T
I Use finite differences to discretise the derivatives

I Obtain 2NM equations

G (u) = 0

Discretisation

I Let xi and yj be equally spaced points such that i = 1, . . . ,N
and j = 1, . . . ,M.

I Let the vector of unknowns be qx (i ,j) and ηx (i ,j) such that

u =
[
qx (1,1), · · · , qx (N,1), · · · , qx (N,M), ηx (1,1), · · · , ηx (N,M)

]T
I Use finite differences to discretise the derivatives

I Obtain 2NM equations

G (u) = 0

Discretisation

I Let xi and yj be equally spaced points such that i = 1, . . . ,N
and j = 1, . . . ,M.

I Let the vector of unknowns be qx (i ,j) and ηx (i ,j) such that

u =
[
qx (1,1), · · · , qx (N,1), · · · , qx (N,M), ηx (1,1), · · · , ηx (N,M)

]T
I Use finite differences to discretise the derivatives

I Obtain 2NM equations

G (u) = 0

Numerical Approach

To solve the system

1. Set up an initial guess u0

2. Until convergence

2.1 Solve J(un)δn = −G (un)
2.2 Set un+1 = un + λδn, 0 < λ < 1
2.3 Test for convergence

This method relies on an initial guess u0 and the Jacobian J.

Numerical Approach

To solve the system

1. Set up an initial guess u0

2. Until convergence

2.1 Solve J(un)δn = −G (un)
2.2 Set un+1 = un + λδn, 0 < λ < 1
2.3 Test for convergence

This method relies on an initial guess u0 and the Jacobian J.

Numerical Approach

To solve the system

1. Set up an initial guess u0

2. Until convergence

2.1 Solve J(un)δn = −G (un)
2.2 Set un+1 = un + λδn, 0 < λ < 1
2.3 Test for convergence

This method relies on an initial guess u0 and the Jacobian J.

Numerical Approach

To solve the system

1. Set up an initial guess u0

2. Until convergence

2.1 Solve J(un)δn = −G (un)
2.2 Set un+1 = un + λδn, 0 < λ < 1
2.3 Test for convergence

This method relies on an initial guess u0 and the Jacobian J.

Numerical Approach

To solve the system

1. Set up an initial guess u0

2. Until convergence

2.1 Solve J(un)δn = −G (un)
2.2 Set un+1 = un + λδn, 0 < λ < 1
2.3 Test for convergence

This method relies on an initial guess u0 and the Jacobian J.

Numerical Approach

To solve the system

1. Set up an initial guess u0

2. Until convergence

2.1 Solve J(un)δn = −G (un)
2.2 Set un+1 = un + λδn, 0 < λ < 1
2.3 Test for convergence

This method relies on an initial guess u0 and the Jacobian J.

Numerical Approach

To solve the system

1. Set up an initial guess u0

2. Until convergence

2.1 Solve J(un)δn = −G (un)
2.2 Set un+1 = un + λδn, 0 < λ < 1
2.3 Test for convergence

This method relies on an initial guess u0 and the Jacobian J.

Jacobian

The sparsity of the linearised Jacobian for flexural-gravity waves

Solving the System of Equations

We consider two ways of solving the system of equations

1. Inexact Newton Method: (direct method) uses an inexact
Jacobian (not computed at each step).

2. Modified Newton Method: (iterative method) using a
preconditioned Krylov method to construct the solution, not
keeping the full Jacobian matrix.

I Preconditioner is constructed as shown in Pethiyagoda et al
(2014)

I Krylov subspace methods implemented using Sundials solver
KINSOL implemented in Matlab and C.

Solving the System of Equations

We consider two ways of solving the system of equations

1. Inexact Newton Method: (direct method) uses an inexact
Jacobian (not computed at each step).

2. Modified Newton Method: (iterative method) using a
preconditioned Krylov method to construct the solution, not
keeping the full Jacobian matrix.

I Preconditioner is constructed as shown in Pethiyagoda et al
(2014)

I Krylov subspace methods implemented using Sundials solver
KINSOL implemented in Matlab and C.

Solving the System of Equations

We consider two ways of solving the system of equations

1. Inexact Newton Method: (direct method) uses an inexact
Jacobian (not computed at each step).

2. Modified Newton Method: (iterative method) using a
preconditioned Krylov method to construct the solution, not
keeping the full Jacobian matrix.

I Preconditioner is constructed as shown in Pethiyagoda et al
(2014)

I Krylov subspace methods implemented using Sundials solver
KINSOL implemented in Matlab and C.

Solving the System of Equations

We consider two ways of solving the system of equations

1. Inexact Newton Method: (direct method) uses an inexact
Jacobian (not computed at each step).

2. Modified Newton Method: (iterative method) using a
preconditioned Krylov method to construct the solution, not
keeping the full Jacobian matrix.

I Preconditioner is constructed as shown in Pethiyagoda et al
(2014)

I Krylov subspace methods implemented using Sundials solver
KINSOL implemented in Matlab and C.

Initial Condition

Newton’s method is very sensitive to initial conditions. In order to
compute different wave amplitudes, generate a bifurcation diagram

I Guess a small amplitude solution

I Use this guess in Newton’s method to compute the true
solution.

I Scale the previous solution to get a guess for a larger
amplitude solution

I Apply Newton’s method to find the true solution.

Can use the Jacobians from previous steps in the bifurcation
branch as preconditioners.

Initial Condition

Newton’s method is very sensitive to initial conditions. In order to
compute different wave amplitudes, generate a bifurcation diagram

I Guess a small amplitude solution

I Use this guess in Newton’s method to compute the true
solution.

I Scale the previous solution to get a guess for a larger
amplitude solution

I Apply Newton’s method to find the true solution.

Can use the Jacobians from previous steps in the bifurcation
branch as preconditioners.

Initial Condition

Newton’s method is very sensitive to initial conditions. In order to
compute different wave amplitudes, generate a bifurcation diagram

I Guess a small amplitude solution

I Use this guess in Newton’s method to compute the true
solution.

I Scale the previous solution to get a guess for a larger
amplitude solution

I Apply Newton’s method to find the true solution.

Can use the Jacobians from previous steps in the bifurcation
branch as preconditioners.

Initial Condition

Newton’s method is very sensitive to initial conditions. In order to
compute different wave amplitudes, generate a bifurcation diagram

I Guess a small amplitude solution

I Use this guess in Newton’s method to compute the true
solution.

I Scale the previous solution to get a guess for a larger
amplitude solution

I Apply Newton’s method to find the true solution.

Can use the Jacobians from previous steps in the bifurcation
branch as preconditioners.

Initial Condition

Newton’s method is very sensitive to initial conditions. In order to
compute different wave amplitudes, generate a bifurcation diagram

I Guess a small amplitude solution

I Use this guess in Newton’s method to compute the true
solution.

I Scale the previous solution to get a guess for a larger
amplitude solution

I Apply Newton’s method to find the true solution.

Can use the Jacobians from previous steps in the bifurcation
branch as preconditioners.

Initial Condition

Newton’s method is very sensitive to initial conditions. In order to
compute different wave amplitudes, generate a bifurcation diagram

I Guess a small amplitude solution

I Use this guess in Newton’s method to compute the true
solution.

I Scale the previous solution to get a guess for a larger
amplitude solution

I Apply Newton’s method to find the true solution.

Can use the Jacobians from previous steps in the bifurcation
branch as preconditioners.

Outline

Motivation

Formulation

Numerics

Solutions

Conclusion and Future Work

Forcing Term
We use the following pressure as a forcing for depression waves

Sample Solutions
Solutions for forced waves underneath an ice sheet

Sample Solutions
Solutions for forced waves underneath an ice sheet

Sample Solutions
Solutions for forced waves underneath an ice sheet

Bifurcation Branch

Comparison of the bifurcation branches for flexural-gravity waves
with the linear and the nonlinear elasticity models

Note: both models give the same wave amplitude, but different
Froude numbers

Flexural-Gravity Wave Profiles

Comparison of the solution profiles for linear elasticity model and
the nonlinear elasticity model.

Flexural-Gravity Wave Profiles

Comparison of the solution profiles for linear elasticity model and
the nonlinear elasticity model.

Flexural-Gravity Bifurcation Branch
Comparison of the bifurcation branch for linear elasticity model
and the nonlinear elasticity model.

Elevation waves are represented as crosses and depression waves as
circles.

Outline

Motivation

Formulation

Numerics

Solutions

Conclusion and Future Work

Conclusions

I Can compute solutions to both models for flexural-gravity
waves

I Both models for produce similar shaped profiles, but at
different Froude numbers

I The code is easy to use and easy to modify

I A variety of numerical methods have been tested

Conclusions

I Can compute solutions to both models for flexural-gravity
waves

I Both models for produce similar shaped profiles, but at
different Froude numbers

I The code is easy to use and easy to modify

I A variety of numerical methods have been tested

Conclusions

I Can compute solutions to both models for flexural-gravity
waves

I Both models for produce similar shaped profiles, but at
different Froude numbers

I The code is easy to use and easy to modify

I A variety of numerical methods have been tested

Conclusions

I Can compute solutions to both models for flexural-gravity
waves

I Both models for produce similar shaped profiles, but at
different Froude numbers

I The code is easy to use and easy to modify

I A variety of numerical methods have been tested

Future Work

I Compute accurate free surface waves without a forcing

I Compare the different models quantitatively

I Do free surface depression or elevation waves bifurcate away
from 0?

I Switch to using a Modified Newton Method for solutions

Future Work

I Compute accurate free surface waves without a forcing

I Compare the different models quantitatively

I Do free surface depression or elevation waves bifurcate away
from 0?

I Switch to using a Modified Newton Method for solutions

Future Work

I Compute accurate free surface waves without a forcing

I Compare the different models quantitatively

I Do free surface depression or elevation waves bifurcate away
from 0?

I Switch to using a Modified Newton Method for solutions

Future Work

I Compute accurate free surface waves without a forcing

I Compare the different models quantitatively

I Do free surface depression or elevation waves bifurcate away
from 0?

I Switch to using a Modified Newton Method for solutions

Thank you for your attention

	Motivation
	Formulation
	Numerics
	Solutions
	Conclusion and Future Work

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	anm1:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	2.9:
	2.10:
	2.11:
	2.12:
	2.13:
	2.14:
	2.15:
	anm2:

