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Waves over Depth-Varying Currents and Vortices

m Currents are ubiquitous in fluids. How do they interact with
free surfaces and interfaces?

m Eddies are ubiquitous as well. Same question.

m How much of the above questions can we answer with
simple vorticity models?



Depth-Varying Currents

z=m(x,t)+ H

z = 1(z,1)
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Figure: Density stratified fluid with piecewise constant vorticity.
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Depth Varying Currents
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Figure: Discontinuous Linear Shear Profiles.
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Irrotational Point Vortices

V4

z=n(x,t)+H




The DNO and AFM Methods

m To close our system in terms of surface height » and
surface velocity potential g, we introduce the DNO G(n)
(see the ouvre of Craig and collaborators) so that

ne = G(n)q.

m A complimentary point of view to doing this is the method
of Ablowitz, Fokas, and Mussilimani (AFM). One can
readily show the AFM and DNO approaches are formally
equivalent.

m AFM leverages solving A¢ = 0 so that you can turn the
boundary equation into the equivalent set of integral
equations

/ e~ " (cosh(k(n + h))n: + igx sinh(k(n + h))) dx = 0, k # 0.



Outline

m Part I: We use the AFM approach to deal with the
depth-varying currents, derive shallow-water
approximations, and present numerical results of
dynamics.

m Part Il: We use a modified version of AFM to rewrite the

problem in terms of surface variables and vortex positions
alone. We then use the DNO to build numerical schemes.



Part I: Waves over Currents

m The constant vorticity and shear flow literature is far too
vast to summarize.

m Civil engineer, Dalrymple, began looking at layer models to
study more general density and shear profiles.

m Maslow and Redekopp also study arbitrary incompressible
density/shear profiles varying in vertical.

m Generally, one surface, or rigid lid/internal layer is studied.



Problem Formulation

m Restricting ourselves to a linear shear, or constant vorticity,
background flow within each layer of the fluid (j = 1, 2),
Euler’s equations of motion for (x, z) € D; become

V- U/' = 0, (1)

V X U = w/-? (2)
1 2

o +u; - Vu; = _EV'Dj -9z, (3)
j

where u; = [u; v]” represents the fluid velocities in D;.



Problem Formulation

m At the various interfaces, we enforce the kinematic
boundary conditions

vo =0, z=—h,

O = Vi — Uy O0x1, z=mni(x,t)+ H,
Otz = Vi — U1 Ox1p, z=ny(x,1t)
Otnz2 = Vo — U20x72, z=n, (X, 1)

as well as the pressure relations given by

p1:p07 22771(X7t)+H7
p1 = po, z =m(x, ).

By n, and n, we mean the regions just above and just
below the surface z = n(x, t) respectively.



Problem Formulation

m Using u; = w;zZ + V¢ coupled with AFM, we can find a
closed system describing the evolution of the surface and
internal layer.

m We rescale the bistratified, bilinear shear system via the
following non-dimensional parameters

X=x/L, 2=2z/H, i= Vth, k = Lk,

nj = afjj, Q=

m Take the balances



Problem Formulation

m While complicated, AFM formulation readily allows for
asymptotically reduced models to be derived.
m However, just putting interfaces next to one another is not

always physically sensible i.e. what about
Kelvin—Helmholtz instabilities?



Kelvin—Helmholtz Instabilities

m Using e~ ™+ we find the dispersion relationship

M =k* ((p+ ds?p($)p(@9))2* + (plwrp(s) + wadip(ds)) — 2puor
+ (1w = (1 +wR)p(S) + (W] — 2wrwap — p)dip(ds) + wn (w
+ dp(ds) (2w1(p — 1)+ wB(wap — wr) + 2wy — plon +wp +
+(p = 1)dp(35)(~w} + p(s)(1 + )

where s = vk, 0 = Q/k, and

__tanh(s)
==

©(8)

m | know | left a formula trailing off the edge of the slide. But
that kind of makes my point.



Kelvin—Helmholtz Instabilities

m Taking d < 1, we can use asymptotic arguments to show
there are shear/density configurations for which only real
spectra can be found for all wave numbers.

m Letting d = .25, p = 820, we get the following plot of the
maximum imaginary part of the spectrum for 0 < s < 300.




Kelvin—Helmholtz Instabilities

m Letting d = 4, p = 1.5, we get the following plot of the
maximum imaginary part of the spectrum for 0 < s < 300.




Reduced Model/System of KdV equations

m To capture nonlinear effects, we take the balance e = ~2,
and then expand in e.

m From e = 0 problem, we have four wave speeds ); as
e — 0.

m This ultimately leads to four KdV equations of the form

Cn/(Aj)VVj(O)agj W/_(O) + cd(A/)ag W/-(O) + Ct(Aj)aT W/(O) =0,
m This allows us to recreate the surface profiles via the

equations

4
M 1) ~ D (1 = pt p(dway + A7)/A)w” (x = At et),
=1

-
Il

n2(x, 1) ~ > wO(x — At et).

VR

1

~
I



Finding Nonlinear Response: Strong Stratification

m Define

cb(A)—ﬁwc('K()gw(M(A?—qu) (1;‘)+p>+1>7

m Looking at ¢p();), we can determine when we expect large
initial conditions in the rescaled KdV equation
e + OFW + W = 0.

m Roughly, the larger the initial condition that goes into this
rescaled equation, the more nonlinear phenomena we
expect to see.



Finding Nonlinear Response: Strong Stratification

logyo(ICh(A2)1), 10g10(|Cb(A3))
Figure: Contour plots of c,();) for p = 820 and d = .25.



Finding Nonlinear Response: Strong Stratification

7 SO
nl(x,400)+4
2 —1,(x,400)
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(a) Surface wave for 410 < x < 430.

nl(x,400)+4
2 —n,x400)
| —
%0 =75 =70 =65

(b) Internal wave for —80 < x < —65.

Figure: wy = .1, wp = —4.62, p = 820, d = .25, and ¢ = .0025.



Conclusion for Part One

m Shear and density variation can result in significant
nonlinear wave response, especially along internal layers.

m Hints at a wide variety of phenomena in the presence of
more layers.

m Also calls for higher order, or fully nonlinear solves.

m Traveling waves? Almost done with K. Oliveras... fully
nonlinear, and stability.



Part Il: Point Vortices under Waves

m In 2D, for vorticity w(x, t) we have
wt+Uu-Vw=0.

m Close the system via Biot-Savart and harmonic potential ¢
so that

u= /K(x — y)ely, B)dy + V.
m Let
1 N
w(x, t) = 5- > Tis(x = xi(t)),
j=1

and so we can approximate arbitrary vorticity profiles
(technical details: see Cottet et al., Krasny, and several
others) via irrotational point vortices.



Irrotational Vortices under Waves

m The fluid velocity u is given by the gradient of a potential,
say ¢ where

o(x,z,1) = dpy(x, 2, 1) + d(x, 2, 1).

m ¢, is defined to be
ov(x,z,t) = ZF,d)ijzt)

with I'; denoting the circulation strength of the vortices and

¢V»/(X7 Z, t) = (DP(X_X/(t)v Z_Z/(t))_d)P(X_X/(t)>Z+Z/(t))a

where
> z
_1 =
> tan <x — 2mL> :

m=—oo



Irrotational Vortices under Waves

m This modifies the boundary equations so that
nt = _nX(EX +$Z + PV(X17217' o 7XN7ZN)7
and
. 12
bi+ 5|V +an= Vo, Vo+Ex, 21, X, 2n)

m Apologies, but P, and E, are not very nice to look at.



Irrotational Vortices under Waves

m Likewise we now tack on the ODE’s

. 1
X = 4L(F,cotanh< >+2Zr, )Jrqux,,z,,t),

I#

Z = 1 smh( ZI)ZF/ + ¢2(x;, Zj, 1),
I#]

(v)

m v and v; ’ are even worse to look at.

jl



Irrotational Vortices under Waves

m So AFM lets us write for 7j; = n; — P,
L .
/ e~ "™/L (cosh(k(n + H))iit + iGx sinh(k(n + H))) dx = 0
—L

m But now we need ¢x(X;, z;, t) and (X, Zj, t) in terms of
surface variables and vortex positions alone to close the
system.

m Modify original AFM argument by introducing fundamental
solutions
U(X,2,t) = — 417 > (n(Fn+2) +in(F+ 22, )

m=—oo



Irrotational Vortices under Waves

m Use Green'’s third identity and some tricks, we end up with

L
Ox(Xj, Zj, t) = — /_ . ((ne = Pv) Oxtj + @x0z) |, | 1y OX

m Likewise we can show

qi)z(Xj, zj, == /LL ((m -Py) 8le~)] - axax&j)' ax

z=n+H

m So we have now closed the system in terms of surface
variables and vortex positions alone.



Shallow-Water Scalings

m We now choose the following non-dimesionalizations

o
I

x=2,2=2 1= t, = dii, ¢ = ul\/gHo,

X z
L' H

where we define the non-dimensional parameters

_4d _H
N - H? ’Y - LJ
and where we define the Froude number F to be
r

~ uly/gH



Shallow-Water Scalings

m From now on, the Froude number determines the strength
of vortex interactions.

m Can now readily find the DNO expansion
1 2
Nt — ;/:’v(x,1 + un, t) = (Go+/~LG1 + p G.2+'“> Q

where Q = Q.
m Numerically simple and fast to implement. Extends to 3D.
m But David Ambrose has a point.



Numerics

m Pseudo-spectral in space, 4th order Runge-Kutta in time.
m If we run to time t;, truncate DNO expansion when

|Gx

|1GxQll,
< mach. prec.
QI P

m The range here is 18 < N < 35.
m Orszag’s 2/3-rule is used for filtering.
m Quiescent fluid: we track energy input into the surface via

1 1 1 1 :
_2/1 qG(n)de+2/1n dx



Numerics: Cnoidal Waves

m Can show as F — 0, we can derive KdV equation
1
2Q; + 3QQ§ ol 50555 =0

m Thus we can look at how vortices modify propagation of
‘cnoidal’ profiles where



Numerics: Cnoidal Waves

m Place two vortices of opposite signs at

x1(0) = —py, %(0) = pvy, z1(0) = 22(0) = .25.
m Then we get

0.6

0.4r

02— ‘ ‘ ‘ ‘
008 006  -0.04  -0.02 0

X
Figure: Paths of the left-side vortex moving under a cnoidal wave

for 0 < t < 5 for Froude numbers F = 0 (dashed line), .02
(dashed/dotted line), and .2 (solid line).



Numerics: Cnoidal Waves

Figure: Paths of the right-side vortex moving under a cnoidal wave for
0 < t < 5 for Froude numbers F = 0 (dashed line), .02
(dashed/dotted line), and .2 (solid line).



Numerics: Cnoidal Waves

n(X,t)

Figure: Surface response 7(x, 5) elliptic modulus m = .2 and Froude
number F = .02.



Numerics: Cnoidal Waves

n(X,t)

Figure: Surface response 7(x, 5) with elliptic modulus m = .2 and
Froude number F = .2.



Two Counter Propagating Vortices

m Start from a quiescent surface.
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Figure: Surface response n(x,t) att =3, t = 6, and t = 9 over two
counter-propagating vortices. F = .2




Two Counter Propagating Vortices
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Figure: Motion of the two counter-propagating vortices for 0 < t < 9.
The light grey dots indicate where the vortices begin and the black
dots indicate their positionsatt=9. F = .2



Two Counter Propagating Vortices
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Figure: Log plot of the power spectrum at ¢ = 9 over wave numbers
—256 < k < 256. As can be seen, the rising vortices pump more
energy into higher wavenumbers in the surface profile.



Two Counter Propagating Vortices

x10°

Figure: Surface energy profile E(t) for a surface over two vortices for
0<t<o.



Four Counter Propagating Vortices

m Place four vorices at

x1(0) = —2uy — py/2, x2(0)

= —2py + /2,
X3(0) = 2py — puy/2, Xa(0) = 2py + pvy/2,
z(0) = .25in +/+, —/— configuration. Take F = .2.
0.15
0.1
:;; 0.05
=
0.05

Figure: Surface response n(x, t) for t = 2, 4, and 6 over four
vortices in the Plus/Plus, Minus/Minus configuration.



Four Counter Propagating Vortices
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Figure: Motion of four vortices in the Plus/Plus, Minus/Minus
configuration for 0 < t < 6.



Four Counter Propagating Vortices
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Figure: Surface energy profile E(t) in response to the motion of four
vortices in the Plus/Plus, Minus/Minus configuration for 0 < t < 6.



