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Notations

Floating device: ship or wave energy convertor

Notation

If f is defined on Rd , we write

fe = f|E and fi = f|I
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Basic equations

In the fluid domain Ωt

∂tU + U · ∇X ,zU = −1

ρ
∇X ,zP − gez

div U = 0,

curl U = 0

At the surface

∀X ∈ E(t), Pe(t,X ) := P(t,X , ζe(t,X )) = Patm,

∀X ∈ Rd , ∂tζ − U · N = 0 with N =

(
−∇ζ

1

)
,

At the bottom

Ub · Nb = 0 with Nb =

(
−∇b

1

)
.
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Interior equations and coupling

Constraint in the interior domain

The surface of the fluid coincides with the wetted portion of the body

ζi = ζw

Coupling conditions on Γ(t) := ∂I(t) = ∂E(t)

Continuity of the surface elevation and of the surface pressure

ζe(t, ·) = ζi(t, ·) and Pe(t, ·) = P i(t, ·) on Γ(t)
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History of the problem
Fritz John, CPAM, 1949 and 1950: The floating body problem

I Linear fluid model
I Variations of the wetted zone neglected
I Choice of variables not adapted to boundary conditions

Numerical computations: linear models (e.g. Wamit) or CFD
Recent works on totally immersed solids in a fixed domain Rd+1 or Ω:
importance of the added-mass effect
Similar issues in other fluid-interactions problems [CausinGerbeauNobile05]

David Lannes, U. Bordeaux et CNRS On the Dynamics of Floating Structures Banff 5 / 24



History of the problem
Fritz John, CPAM, 1949 and 1950: The floating body problem

I Linear fluid model
I Variations of the wetted zone neglected
I Choice of variables not adapted to boundary conditions

Numerical computations: linear models (e.g. Wamit) or CFD

Recent works on totally immersed solids in a fixed domain Rd+1 or Ω:
importance of the added-mass effect
Similar issues in other fluid-interactions problems [CausinGerbeauNobile05]

David Lannes, U. Bordeaux et CNRS On the Dynamics of Floating Structures Banff 5 / 24



History of the problem
Fritz John, CPAM, 1949 and 1950: The floating body problem

I Linear fluid model
I Variations of the wetted zone neglected
I Choice of variables not adapted to boundary conditions

Numerical computations: linear models (e.g. Wamit) or CFD
Recent works on totally immersed solids in a fixed domain Rd+1 or Ω:
importance of the added-mass effect

Similar issues in other fluid-interactions problems [CausinGerbeauNobile05]

David Lannes, U. Bordeaux et CNRS On the Dynamics of Floating Structures Banff 5 / 24



History of the problem
Fritz John, CPAM, 1949 and 1950: The floating body problem

I Linear fluid model
I Variations of the wetted zone neglected
I Choice of variables not adapted to boundary conditions

Numerical computations: linear models (e.g. Wamit) or CFD
Recent works on totally immersed solids in a fixed domain Rd+1 or Ω:
importance of the added-mass effect
Similar issues in other fluid-interactions problems [CausinGerbeauNobile05]

David Lannes, U. Bordeaux et CNRS On the Dynamics of Floating Structures Banff 5 / 24



The free surface Euler equations in (ζ,Q) variables

Goal: dimension reduction
I Zakharov: ψ = Φ|z=ζ

I Here: vertical integration

Q(t,X ) =

∫ ζ(t,X )

−h0

V (t,X , z).

Conservation of mass∫ ζ

−h0

(
∇ · V + ∂zw

)
= 0  ∂tζ +∇ · Q = 0

David Lannes, U. Bordeaux et CNRS On the Dynamics of Floating Structures Banff 6 / 24



The free surface Euler equations in (ζ,Q) variables

Goal: dimension reduction
I Zakharov: ψ = Φ|z=ζ

I Here: vertical integration

Q(t,X ) =

∫ ζ(t,X )

−h0

V (t,X , z).

Conservation of mass∫ ζ

−h0

(
∇ · V + ∂zw

)
= 0  ∂tζ +∇ · Q = 0

David Lannes, U. Bordeaux et CNRS On the Dynamics of Floating Structures Banff 6 / 24



Momentum equation
I Pressure from vertical component of the Euler equation∫ ζ

z

(
∂tw + U · ∇X ,zw + g +

1

ρ
∂zP

)
= 0

 P(z) = Patm + ρg(ζ − z) + PNH

I Plug into the integrated horizontal Euler equation∫ ζ

−h0

(
∂tV + U · ∇X ,zV +

1

ρ
∇P
)

= 0

 ∂tQ +∇ ·
(∫ ζ

−h0

V ⊗ V
)

+ gh∇ζ + = 0
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The free surface Euler equations in (ζ,Q) variables
∂tζ +∇ · Q = 0,

∂tQ + gh∇ζ +∇ ·
(∫ ζ

−h0

V ⊗ V
)

+ haNH = 0,

 The equations are exact

 They are closed
 They are of compressible type

Acceleration of the free surface

∂2
t ζ = −∇ · ∂tQ

= ∇ ·
[
gh∇ζ + . . .

]︸ ︷︷ ︸
:=aFS(ζ,Q)
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Adaptation in the presence of a floating body

The equations on ζ and Q{
∂tζ +∇ · Q = 0,

∂tQ + gh∇ζ +∇ ·
( ∫ −H0+h
−H0

V ⊗ V
)

+ aNH = −h
ρ∇P,

with Pe = Patm on E(t) and P i unknown on I(t).

But we also know that

ζ = ζw on I(t).

and therefore
∇ · Q = −∂tζw

David Lannes, U. Bordeaux et CNRS On the Dynamics of Floating Structures Banff 9 / 24



Adaptation in the presence of a floating body

The equations on ζ and Q{
∂tζ +∇ · Q = 0,

∂tQ + gh∇ζ +∇ ·
( ∫ −H0+h
−H0

V ⊗ V
)

+ aNH = −h
ρ∇P,

with Pe = Patm on E(t) and P i unknown on I(t).

But we also know that

ζ = ζw on I(t).

and therefore
∇ · Q = −∂tζw

David Lannes, U. Bordeaux et CNRS On the Dynamics of Floating Structures Banff 9 / 24



Finding the pressure in the interior domain

Formulation as an incompressible problem in the interior region{
∇ · Q = −∂tζw,

∂tQ +∇ ·
( ∫ ζ
−h0

V ⊗ V
)

+ gh∇ζ + haNH = −h
ρ∇P i.

 Recall that aFS is the acceleration of the FS without floating body
The wetted pressure is found by solving{

−∇ · (hρ∇P i) = −∂2
t ζw + aFS on I(t)

P i|Γ(t)
= Patm.
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Removing the constraint

If (ζ,V ) and Γ(t) solve
∂tζ +∇ · Q = 0,

∂tQ +∇ ·
∫ ζ

−h0

V ⊗ V + gh∇ζ + haNH = −h

ρ
∇P,

with the surface pressure P given by

Pe = Patm and

{
−∇ · (hρ∇Pi) = −∂2

t ζw + aFS on I(t),

Pi|Γ(t)
= Patm,

and with the coupling conditions at the contact line

ζe = ζi and Qe = Qi on Γ(t)

then ζi = ζw for all time.

 Interior pressure recovered through a d dimensional elliptic equation.
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Coupling with the solid dynamics

The interior pressure equation

−∇ · (h
ρ
∇P i) = aFS − ∂2

t ζw on I(t).

From the continuity of the normal velocity

∂tζw = Uw · Nw

= (UG + ω × rG ) · Nw
Therefore

−∇ · (h
ρ
∇P i) = aFS−(U̇G + ω̇ × rG ) · Nw + II(Uw,τ ,Uw,τ ) + . . .

 Three different components of the pressure
Force exerted on the solid

Ffluid =

∫
I(t)

P iNw = F I + F II + F III

Added mass effect F II = −Ma(t)U̇G .
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The case of a freely floating structure

Newtons’s laws – take ω = 0 for simplicity –

mU̇G = −mgez + Ffluid

The resulting force exerted by the fluid is

Ffluid = F I + F II + F III

Added mass effect

F II = −Ma(t)U̇G .

Newton’s law then becomes – with ω = 0 –

(m + Ma(t)
)
U̇G = −mgez + F I + F III
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Evolution of the contact line

NOT kinematic
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Simplified models in shallow water
∂th +∇ · Q = 0,

∂tQ +∇ ·
( ∫ ζ

−h0

V ⊗ V
)

+ gh∇ζ + haNH = −h

ρ
∇P

Two terms can be simplified in shallow water
1 The ”Reynolds tensor”∫ ζ

−h0

V ⊗ V ≈ hV ⊗ V =
1

h
Q ⊗ Q

 Valid with very good precision except if a significant vorticity is
present and a ”turbulence-like” analysis is needed [Castro-L. 2015].

2 Non-hydrostatic terms

1

ρ

∫ ζ

−h0

∇PNH ≈ 0.

 First order approximation (neglect dispersive effects).
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 First order approximation (neglect dispersive effects).
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The shallow water equations with an immersed device

∂th +∇ · (hV ) = 0,

∂t(hV ) +∇ · (hV ⊗ V ) + gh∇ζ = −h

ρ
∇P,

The same approximations must be done for the interior pressure

Extension to dispersive models: Boussinesq, Green-Naghdi, etc.

Extension to numerical scheme: the discretization of the source term
must be such that the discrete pressure is the discrete Lagrange
multiplier
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Numerical simulation

The solid has vertical walls

It is allowed to move vertically only

The hydrodynamic model is the nonlinear shallow water system

Proposition

- The computations are explicit. The distance δ of the center of mass to
its equilibrium satisfies the ODE

(m + ma(δ))δ̈ = −2ρgRδ ︸︷︷︸
Damping+coupling

- In the return to equilibrium problem one obtains a closed, explicit, ODE
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- In the return to equilibrium problem one obtains a closed, explicit, ODE
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The hydrodynamic model is the nonlinear shallow water system

Proposition

- The computations are explicit. The distance δ of the center of mass to
its equilibrium satisfies the ODE

(m + ma(δ))δ̈ = −2ρgRδ − 2ρgR(h0 − τ0(
R

2
√
g
δ̇g )2)︸ ︷︷ ︸

Damping+coupling

- In the return to equilibrium problem one obtains a closed, explicit, ODE
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Numerical simulations: Fixed object
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





Numerical simulations: Fixed object

David Lannes, U. Bordeaux et CNRS On the Dynamics of Floating Structures Banff 19 / 24


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}




Numerical simulations: Forced motion
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}




Numerical simulations: Floating

 Validated with explicit solution for the solid motion
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}




Numerical simulations: Floating
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Numerical simulations: Floating with dispersive effects
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Ongoing
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