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ρ1 is the density of the aa homozygotes, (1)

ρ2 is the density of the aA heterozygotes, (2)

ρ3 is the density of the AA homozygotes, (3)

σa is the density of the a gametes, and (4)

σA is the density of the A gametes. (5)
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One space dimension.
HFW Siam J. Math. Anal. 13 (1982) Bistable Fisher-KPP
equation:

∂u

∂t
=

∂2

∂x2
+ u[1− u]

Define a spreading speed c∗ and its properties. Replace the PDE
by an integral equation of Volterra type, then discretize the time
variable to turn the integral equation into an integro-difference
equation. Defines spreading speed c∗.
Missing: the symmetry u(x , t)→ u(−x , t), which implies that −c∗
is also a spreading speed.
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Roger Lui, J. of Math. Biol. 13 (1982-3).

u(x , t) =

∫ t

0

∫ t

0
K(x) ∗ u(·, s)ds + K(x , , 0) ∗ u(·, 0),

I smooth, positive.
Integral equation of Volterra type. Discretize time to get an
integro-difference equation. Produces a speed c∗.
Missing: If u(x , t) is a solution, so is u(−x , t). −c∗ is also a
spreading speed.
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{
∂

∂t
− δd

∂2

∂x2

}
ρ1 = −D1(ρ1 + ρ2 + ρ3)ρ1 + βσ2a (6){

∂

∂t
− δd

∂2

∂x2

}
ρ2 = −D2(ρ1 + ρ2 + ρ3)ρ2 + 2βσaσA (7){

∂

∂t
− δd

∂2

∂x2

}
ρ3 = −D3(ρ1 + ρ2 + ρ3)ρ3 + βσ2A (8){

∂

∂t
− δg

∂2

∂x2

}
σa = G [ρ1 + 1

2ρ2]− 2β[σa + σA]σa (9){
∂

∂t
− δg

∂2

∂x2

}
σA = G [12ρ2 + ρ3]− 2β[σa + σA]σA. (10)
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Define
ρ := ρ1 + ρ2 + ρ3, σ := σa + σA.{

∂

∂t
− δd

∂2

∂x2

}
σβ = −βσ2 + Gρ (11){

∂

∂t
− δg

∂2

∂x2

}
ρ ≥ −min

i
{Di (ρ)}ρ+ [2βσ + τ ]σ (12)
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Assume:
1. D ′i > 0.
2. mini{Di}(k1) = maxi{Di}(K3) = G , [2β`1 + τ ]`1 =
βk21 , [2βL3 + τ ]L3 = G
3. D3(k3) = D3(K3) = G , β`23 = Gk3, [2βL3 + τ ]L3 = GK3

Theorem: The set

{ρ1, rho2, ρ3σa, σa, σA) : k1 ≤ ρ ≤ K3, ell1 ≤ σ ≤ L3}

is a positive invariant set of the full system of equations. Moreover,
the function (ρ(x , t), σ(x , t) is invertible at the interior points of
this set, and either a or A is absent at each boundary point.
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Conclusion: no nontrivial solution has an extremal point. (Strong
maximum principle.) The integral kernel which corresponds to a
nonextremal point is of Volterra type, and its support is the whole
line.
A steady state solution with one of the alleles missing is a solution
of a pair of integral equations whose kernel has support on the
whole line.
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The heat operators are very special. To apply the ideas to more
general integral operators of the kind treated at this conference,
we replace the convolutions with two Gaussian kernels by the
applications of integral operators of the kind being discussed at
this conference. That is, convolutions by Gauss kernels with
diffusivities δd and δg are to be replaced by convolutions with two
integral kernels K(d) and K(g). Assume that each of the kernels is
everywhere positive. Then the analog of the above Theorem is
valid. That is, the solution of the integral equations has no
extreme points. In particular, any nontrivial solution of the integral
equation has an infinitely long tail where ρ and σ are positive.
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Conclusion: A solution of the integral equation cannot be confined
to a half-line, but must have a tail all the way to x = ±∞. If there
is a colony with a peak of the variable ρ3 upstream, the
corresponding ρ3 has a tail all the way to ±∞. This tail will
interact with and outcompete any a-only colony downstream.
Correct theorem: There are two speeds c(+) and c(−) such that
the regions where ρ(x) ∼ K3 and σ(x , t) ∼ L3 spread at no speed
above c(+) and at no speed below c(−).
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Note that K(x) now takes 2-vectors (ρ, σ) into 2-vectors, so that it
is a 2× 2 matrix. If there are n gene loci involved, one must deal
with ρ and sigma at the n sites, so K becomes a 2n × 2n matrix.
Compare with the talk of Mark Kot.


