Special Values of Euler's Function

Forrest Francis

University of Lethbridge
March 18, 2017

Alberta Number Theory Days IX

Euler's Function

Definition

Let $n \in \mathbb{N}$. Euler's totient function is the multiplicative function

$$
\phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

which counts the natural numbers less than and coprime to n.

Euler's Function

Landau's Theorem

Theorem (Landau, 1909)

$$
\limsup _{n \rightarrow \infty} \frac{n}{\phi(n) \log \log n}=e^{\gamma}
$$

where e is Euler's number and γ is the Euler-Mascheroni constant.
Note: $e^{\gamma} \approx 1.7811$.

Landau's Theorem

Landau's Theorem: Notes

In the proof of Landau's theorem, the relevant sequence is the primorials.

Definition

The k-th primorial, N_{k}, is the product of the first k primes. That is,

$$
N_{k}=\prod_{i=1}^{k} p_{i}
$$

where p_{i} is the i-th prime.

Landau's Theorem: Notes

Additionally, the proof requires two important theorems, Mertens' (3rd) theorem and the Prime Number Theorem.

Theorem (Mertens, 1874)

$$
\prod_{p \leq x}\left(1-\frac{1}{p}\right) \sim \frac{e^{-\gamma}}{\log x}
$$

as $x \rightarrow \infty$.

$$
\begin{aligned}
& \text { Theorem (Hadamard and de la Vallée-Poussin, 1896) } \\
& \text { Let } x \geq 2 \text { and } \theta(x)=\sum_{p \leq x} \log (p) \text {. Then, } \\
& \qquad \theta(x) \sim x \\
& \text { as } x \rightarrow \infty \text {. }
\end{aligned}
$$

A Question of Rosser and Schoenfeld

In their celebrated paper, Approximate formulas for some functions of prime numbers, J. B. Rosser and L. Schoenfeld prove that, for $n \geq 3$, $n \neq 223092870$,

$$
\frac{n}{\phi(n) \log \log n} \leq e^{\gamma}+\frac{5}{2} \frac{1}{(\log \log n)^{2}} .
$$

Furthermore, the following question is suggested.

Question

Are there infinitely many $n \in \mathbb{N}$ for which

$$
\frac{n}{\phi(n) \log \log n}>e^{\gamma} ?
$$

An Answer of Nicolas

Yes!
Theorem (Nicolas, 1983)
There exist infinitely many $n \in \mathbb{N}$ for which

$$
\frac{n}{\phi(n) \log \log n}>e^{\gamma}
$$

In fact, Nicolas said something much stronger, relating this problem to the Riemann hypothesis.

The Riemann Hypothesis

Definition

The Riemann zeta function, $\zeta(s)$, is defined to be the analytic continuation of the infinite series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

valid where $s=\sigma+i t$ is a complex number with $\sigma>1$. Its nontrivial zeroes are those zeroes found in the critical strip $0<\Re(s)<1$.

Conjecture (The Riemann hypothesis)

If $\rho=\beta+i \gamma$ is a nontrivial zero of the Riemann zeta function, then $\beta=1 / 2$.

Nicolas' Answer, Revisted

The theorem of Nicolas already mentioned is an immediate consequence of the following theorem.

Theorem (Nicolas, 1983)

If the Riemann Hypothesis is true, then for all $k \in \mathbb{N}$,

$$
\frac{N_{k}}{\phi\left(N_{k}\right)}>e^{\gamma} \log \log N_{k} .
$$

On the other hand, if the Riemann Hypothesis is false, there are infinitely many k for which the above inequality is true and also infinitely many k for which the above inequality is false.

An Observation

This means that the Riemann Hypothesis is true if and only if there are only finitely many primorials for which

$$
\frac{N_{k}}{\phi\left(N_{k}\right)} \leq e^{\gamma} \log \log N_{k}
$$

Generalizing Landau

We might recognize the major players in Landau's Theorem have analogues when we replace primes with primes from a fixed arithmetic progression. In particular...

Mertens' (3rd) Theorem for Arithmetic Progressions

Theorem (Languasco and Zaccagnini, 2009)

Let $x \geq 2$ and $q, a \in \mathbb{N}$ such that $\operatorname{gcd}(q, a)=1$. Then,

$$
\prod_{p=a \leq x}^{p \equiv(\bmod q)}\left(1-\frac{1}{p}\right) \sim \frac{C(q, a)}{(\log x)^{\frac{1}{\phi(q)}}}
$$

as $x \rightarrow \infty$, where $C(q, a)^{\phi(q)}$ is given by

$$
e^{-\gamma} \prod_{p}\left(1-\frac{1}{p}\right)^{\alpha(p ; q, a)}
$$

and

$$
\alpha(p ; q, a)= \begin{cases}\phi(q)-1 & \text { if } p \equiv a(\bmod q) \\ -1 & \text { otherwise }\end{cases}
$$

PNT in Arithmetic Progressions

Moreover,

Theorem (Prime Number Theorem in Arithmetic Progressions)

Let $x \geq 2$ and $q, a \in \mathbb{N}$ such that $\operatorname{gcd}(q, a)=1$. Define

$$
\theta(x ; q, a)=\sum_{\substack{p \leq x \\ p \equiv a(\bmod q)}} \log p .
$$

Then,

$$
\theta(x ; q, a) \sim \frac{x}{\phi(q)},
$$

as $x \rightarrow \infty$.

A Notation

Consider the following set

Notation

For $q, a \in \mathbb{N}$ such that $\operatorname{gcd}(q, a)=1$, we set

$$
S_{q, a}=\{n \in \mathbb{N} ; p \mid n \Longrightarrow p \equiv a(\bmod q)\}
$$

Example

$$
S_{5,2}=\{1,2,4,7,8,14,16,17,28,32 \ldots\}
$$

A Generalization

Theorem

Let $q, a \in \mathbb{N}$ such that $\operatorname{gcd}(q, a)=1$, then

$$
\limsup _{n \in S_{q, a}} \frac{n}{\phi(n)(\log \log n)^{1 / \phi(q)}}=\frac{1}{C(q, a)},
$$

where $C(q, a)$ is the constant arising in Mertens' Theorem for arithmetic progressions.

Languasco and Zaccagnini have recent work on computing the constants $C(q, a)$. For example, $\frac{1}{C(5,2)} \approx 1.8282$.

A Generalization

$C(q, a)^{-1}$ for small q

q	a	$C(q, a)^{-1}$
2	1	$0.8905 \ldots$
3	1	$0.7125 \ldots$
3	2	$1.6664 \ldots$
4	1	$0.7738 \ldots$
4	3	$1.1508 \ldots$
5	1	$0.8161 \ldots$
5	2	$1.8282 \ldots$
5	3	$1.2407 \ldots$
5	4	$0.7696 \ldots$

Table: Some values of $C(q, a)^{-1}$ for small q

A Generalization

Rosser and Schoenfeld, Revisted

Given this generalization of Landau, it is natural to ask an analogue of the question of Rosser and Schoenfeld. Namely,

Question

For a fixed q, a such that $\operatorname{gcd}(q, a)=1$, are there infinitely many $n \in S_{q, a}$ for which

$$
\frac{n}{\phi(n)(\log \log n)^{1 / \phi(q)}}>\frac{1}{C(q, a)} ?
$$

Arithmetic Primorials

To discuss what an answer to such a question might look like, we need some analogues of the elements arising in Nicolas' Theorem. Firstly,

Definition

Let $(q, a)=1$. The k-th (q, a)-arithmetic primorial, \bar{N}_{k}, is the product of the first k primes congruent to a modulo q. These will be denoted,

$$
\bar{N}_{k}=\prod_{i=1}^{k} \bar{p}_{i},
$$

where \bar{p}_{i} is the i-th prime congruent to $a(\bmod q)$.

Dirichlet L-functions

Definition

Given a Dirichlet character χ, we define the corresponding Dirichlet L-function, $L(s, \chi)$, to be the analytic continuation of the infinite series

$$
\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}
$$

valid where $s=\sigma+i t$ is a complex number with $\sigma>1$. Its nontrivial zeroes are those zeroes found in the critical strip $0<\Re(s)<1$.

Speculation

We would like to be able to prove:

Statement

For a fixed q, a such that $\operatorname{gcd}(q, a)=1$, there are infinitely many $n \in S_{q, a}$ for which

$$
\frac{n}{\phi(n)(\log \log n)^{1 / \phi(q)}}>\frac{1}{C(q, a)}
$$

It seems likely that an infinite set satisfying this inequality will be the (q, a)-arithmetic primorials.

The Main Result

Theorem (F.)

For a fixed q, a such that $\operatorname{gcd}(q, a)=1$, there are infinitely many $n \in S_{q, a}$ for which

$$
\frac{n}{\phi(n)(\log \log n)^{1 / \phi(q)}}>\frac{1}{C(q, a)},
$$

provided:

- For $x \geq x_{0}$, there exists $c \geq 0, m \geq 2$ s.t. $\theta(x ; q, a) \leq \psi(x ; q, a)-c x^{1 / m}$.
- There are no zeroes of $L(s, \chi)$ on the real part of the critical strip for any character $\chi(\bmod q)$.
- There exists $\chi(\bmod q)$ for which $L(s, \chi)$ has a zero which is not a zero for any $L\left(s, \chi^{\prime}\right)$, where $\chi^{\prime} \neq \chi$ is a character modulo q.

The Function $f(x)$

Let's define the following function:

$$
f(x)=\frac{(\log \theta(x ; q, a))^{\frac{1}{\phi(q)}}}{C(q, a)} \cdot \prod_{\substack{p \leq x \\ p \equiv a(\bmod q)}}\left(1-\frac{1}{p}\right) .
$$

Then observe that, for $\bar{p}_{k} \leq x<\bar{p}_{k+1}$,

$$
f(x)=\frac{\left(\log \log \bar{N}_{k}\right)^{\frac{1}{\phi(q)}}}{C(q, a)} \cdot \frac{\phi\left(\bar{N}_{k}\right)}{\bar{N}_{k}} .
$$

Hence, if we could show $f(x)<1$ for infinitely many x, we would obtain our result.

The Function $\log f(x)$

Actually, we'll show that

$$
\log f(x)=\frac{\log \log \theta(x ; q, a)}{\phi(q)}+\sum_{\substack{p \leq x \\ p \equiv a(\bmod q)}} \log \left(1-\frac{1}{p}\right)-\log C(q, a)
$$

is less than 0 for infinitely many x.

An Upper Bound

We can show that

Proposition

For all x sufficiently large,

$$
\log f(x) \leq A(x)+J(x)
$$

where $A(x)$ is negative and

$$
J(x)=\int_{x}^{\infty} \frac{\left(\psi(t, q, a)-\frac{t}{\phi(q)}\right)(\log t+1)}{t^{2} \log ^{2} t} \mathrm{~d} t
$$

From here, one way to answer the analogue of the Rosser and Schoenfeld question would be to show that $J(x)$ changes sign infinitely often.

An Oscillation Theorem of Landau

Theorem (Landau, 1905)

Suppose $h(x)$ is of constant sign for all sufficiently large x. Then the real point $s=\sigma_{0}$ on the line of convergence of the integral

$$
G(s)=\int_{1}^{\infty} \frac{h(x)}{x^{s}} \mathrm{~d} x
$$

is a singularity of the function represented by the integral.

Hence, to show $J(x)$ changes sign infinitely often, we can show that

$$
G(s)=\int_{\bar{p}_{1}}^{\infty} \frac{J(x)}{x^{s}} \mathrm{~d} x
$$

(defined initially for $\Re(s)>1$) extends to a function with no singularities on the real line in the critical strip.

Conclusion

If we assume that $J(x)$ is of constant sign for all sufficiently large x, the oscillation theorem tells us that $G(s)$ must have an abscissa of convergence, σ_{0}, satisfying $\sigma_{0} \leq 0$, and therefore $G(s)$ extends to a holomorphic function for $\Re(s)>0$. The proof is completed by showing that $G(s)$ has a pole corresponding to a zero of a Dirichlet L-function inside the critical strip.

Conclusion

Hence, $J(x)$ has infinitely many sign changes, and therefore $\log f(x) \leq 0$ for infinitely many x, i.e., there are infinitely many $k \in \mathbb{N}$ for which

$$
\frac{\bar{N}_{k}}{\phi\left(\bar{N}_{k}\right)\left(\log \log \bar{N}_{k}\right)^{1 / \phi(q)}}>\frac{1}{C(q, a)} .
$$

Thank you!

