On the inductive blockwise Alperin weight condition

Jiping Zhang

Peking University

Oct. 17, 2017, Banff

For a finite group G and a prime ℓ , an ℓ -weight means a pair (R, φ) , where R is an ℓ -subgroup of G and $\varphi \in \operatorname{Irr}(N_G(R))$ with $R \leq \operatorname{Ker} \varphi$ of defect zero viewed as a character of $N_G(R)/R$.

For a finite group G and a prime ℓ , an ℓ -weight means a pair (R, φ) , where R is an ℓ -subgroup of G and $\varphi \in \operatorname{Irr}(N_G(R))$ with $R \leq \operatorname{Ker} \varphi$ of defect zero viewed as a character of $N_G(R)/R$. When such a character φ exists, R is necessarily an ℓ -radical subgroup of G. For a finite group G and a prime ℓ , an ℓ -weight means a pair (R, φ) , where R is an ℓ -subgroup of G and $\varphi \in \operatorname{Irr}(N_G(R))$ with $R \leq \operatorname{Ker} \varphi$ of defect zero viewed as a character of $N_G(R)/R$. When such a character φ exists, R is necessarily an ℓ -radical subgroup of G. For an ℓ -block B of G, a weight (R, φ) is called a B-weight if $\operatorname{bl}_{N_G(R)}(\varphi)^G = B$, where $\operatorname{bl}_{N_G(R)}(\varphi)$ is the block of $N_G(R)$ containing φ . Denote the set of all G-conjugacy classes of B-weights by $\mathcal{W}(B)$. For a finite group G and a prime ℓ , an ℓ -weight means a pair (R, φ) , where R is an ℓ -subgroup of G and $\varphi \in \operatorname{Irr}(N_G(R))$ with $R \leq \operatorname{Ker} \varphi$ of defect zero viewed as a character of $N_G(R)/R$. When such a character φ exists, R is necessarily an ℓ -radical subgroup of G. For an ℓ -block B of G, a weight (R, φ) is called a B-weight if $\operatorname{bl}_{N_G(R)}(\varphi)^G = B$, where $\operatorname{bl}_{N_G(R)}(\varphi)$ is the block of $N_G(R)$ containing φ . Denote the set of all G-conjugacy classes of B-weights by $\mathcal{W}(B)$.

. Conjecture (L. Alperin, 1986) Let G be a finite group, ℓ a prime and B an ℓ -block of G, then $|W(B)| = |\operatorname{IBr}(B)|$.

The blockwise Alperin weight conjecture has been reduced to the simple groups.

The blockwise Alperin weight conjecture has been reduced to the simple groups.

Theorem (Späth, 2013)

Let G be a finite group and ℓ be a prime. Assume that every nonabelian simple group S involved in G satisfies the inductive BAW condition. Then the blockwise Alperin weight condition holds for every ℓ -block of G. • Cyclic blocks (Koshitani, Späth, 2016);

- Cyclic blocks (Koshitani, Späth, 2016);
- Some sporadic simple groups (Breuer, 2016);

- Cyclic blocks (Koshitani, Späth, 2016);
- Some sporadic simple groups (Breuer, 2016);
- Simple alternating groups (Malle, 2014);

- Cyclic blocks (Koshitani, Späth, 2016);
- Some sporadic simple groups (Breuer, 2016);
- Simple alternating groups (Malle, 2014);
- Simple groups of Lie type and defining characteristics (Späth, 2013);

- Cyclic blocks (Koshitani, Späth, 2016);
- Some sporadic simple groups (Breuer, 2016);
- Simple alternating groups (Malle, 2014);
- Simple groups of Lie type and defining characteristics (Späth, 2013);
- Suzuki groups and Ree groups (Malle, 2014);

- Cyclic blocks (Koshitani, Späth, 2016);
- Some sporadic simple groups (Breuer, 2016);
- Simple alternating groups (Malle, 2014);
- Simple groups of Lie type and defining characteristics (Späth, 2013);
- Suzuki groups and Ree groups (Malle, 2014);
- Simple groups of Lie type G_2 and 3D_4 (Cabanes, Späth, 2013, Schulte, 2016);

- Cyclic blocks (Koshitani, Späth, 2016);
- Some sporadic simple groups (Breuer, 2016);
- Simple alternating groups (Malle, 2014);
- Simple groups of Lie type and defining characteristics (Späth, 2013);
- Suzuki groups and Ree groups (Malle, 2014);
- Simple groups of Lie type G_2 and 3D_4 (Cabanes, Späth, 2013, Schulte, 2016);
- Some cases for $B_n(2^f)$ (Cabanes, Späth, 2013);

- Cyclic blocks (Koshitani, Späth, 2016);
- Some sporadic simple groups (Breuer, 2016);
- Simple alternating groups (Malle, 2014);
- Simple groups of Lie type and defining characteristics (Späth, 2013);
- Suzuki groups and Ree groups (Malle, 2014);
- Simple groups of Lie type G_2 and 3D_4 (Cabanes, Späth, 2013, Schulte, 2016);
- Some cases for $B_n(2^f)$ (Cabanes, Späth, 2013);
- PSL₃(q) (Schulte, 2015, Z. Feng, C. Li, Z. Li, 2017).

Results for type A with cyclic outer automorphism groups

Theorem (C. Li, Zhang)

Let p be a prime, $q = p^f$ and ℓ a prime different from p.

Results for type A with cyclic outer automorphism groups

Theorem (C. Li, Zhang)

Let p be a prime, $q = p^f$ and ℓ a prime different from p.

• If
$$n \ge 2$$
, $(n, q - 1) = 1$, $2 \nmid f$ and
 $(n, q) \notin \{(2, 2), (3, 2), (4, 2)\}$, then the inductive BAW
condition holds for every ℓ -block of $PSL_n(q)$.

Results for type A with cyclic outer automorphism groups

Theorem (C. Li, Zhang)

Let p be a prime, $q = p^f$ and ℓ a prime different from p.

- If $n \ge 2$, (n, q 1) = 1, $2 \nmid f$ and $(n, q) \notin \{(2, 2), (3, 2), (4, 2)\}$, then the inductive BAW condition holds for every ℓ -block of $PSL_n(q)$.
- If $n \ge 3$, (n, q + 1) = 1 and $(n, q) \notin \{(4, 2), (6, 2)\}$, then the inductive BAW condition holds for every ℓ -block of $PSU_n(q)$.

Let ℓ be a prime, S a finite non-abelian simple group and X the universal ℓ' -covering group of S.

Let ℓ be a prime, S a finite non-abelian simple group and X the universal ℓ' -covering group of S. Let B be an ℓ -block of X.

- (Partitions) There exist subsets $IBr(B|Q) \subseteq IBr(B)$ for every ℓ -radical subgroup Q of X with the following properties:
 - $\operatorname{IBr}(B|Q)^a = \operatorname{IBr}(B|Q^a)$ for every $Q \in \operatorname{Rad}_\ell(X)$ and $a \in \operatorname{Aut}(X)_B$,

•
$$\operatorname{IBr}(B) = \bigcup_{Q \in \operatorname{Rad}_{\ell}(X) / \sim X} \operatorname{IBr}(B|Q).$$

- (Partitions) There exist subsets $\operatorname{IBr}(B|Q) \subseteq \operatorname{IBr}(B)$ for every ℓ -radical subgroup Q of X with the following properties:
 - $\operatorname{IBr}(B|Q)^a = \operatorname{IBr}(B|Q^a)$ for every $Q \in \operatorname{Rad}_\ell(X)$ and $a \in \operatorname{Aut}(X)_B$,
 - $\operatorname{IBr}(B) = \bigcup_{Q \in \operatorname{Rad}_{\ell}(X) / \sim X} \operatorname{IBr}(B|Q).$
- (Bijections) For every $Q \in \operatorname{Rad}_{\ell}(X)$ there exists a bijection $\Omega_Q^X : \operatorname{IBr}(B|Q) \to \operatorname{dz}(N_X(Q)/Q, B)$ such that $\Omega_Q^X(\phi)^a = \Omega_{Q^a}^X(\phi^a)$ for every $\phi \in \operatorname{IBr}(B|Q)$ and $a \in \operatorname{Aut}(X)_B$.

- (Partitions) There exist subsets $\operatorname{IBr}(B|Q) \subseteq \operatorname{IBr}(B)$ for every ℓ -radical subgroup Q of X with the following properties:
 - $\operatorname{IBr}(B|Q)^a = \operatorname{IBr}(B|Q^a)$ for every $Q \in \operatorname{Rad}_\ell(X)$ and $a \in \operatorname{Aut}(X)_B$,
 - $\operatorname{IBr}(B) = \bigcup_{Q \in \operatorname{Rad}_{\ell}(X)/\sim X} \operatorname{IBr}(B|Q).$
- (Bijections) For every $Q \in \operatorname{Rad}_{\ell}(X)$ there exists a bijection $\Omega_Q^X : \operatorname{IBr}(B|Q) \to \operatorname{dz}(N_X(Q)/Q, B)$ such that $\Omega_Q^X(\phi)^a = \Omega_{Q^a}^X(\phi^a)$ for every $\phi \in \operatorname{IBr}(B|Q)$ and $a \in \operatorname{Aut}(X)_B$.
- (Normally Embedded Conditions).

- (Partitions) There exist subsets $\operatorname{IBr}(B|Q) \subseteq \operatorname{IBr}(B)$ for every ℓ -radical subgroup Q of X with the following properties:
 - $\operatorname{IBr}(B|Q)^a = \operatorname{IBr}(B|Q^a)$ for every $Q \in \operatorname{Rad}_\ell(X)$ and $a \in \operatorname{Aut}(X)_B$,

•
$$\operatorname{IBr}(B) = \bigcup_{Q \in \operatorname{Rad}_{\ell}(X)/\sim X} \operatorname{IBr}(B|Q).$$

- (Bijections) For every $Q \in \operatorname{Rad}_{\ell}(X)$ there exists a bijection $\Omega_Q^X : \operatorname{IBr}(B|Q) \to \operatorname{dz}(N_X(Q)/Q, B)$ such that $\Omega_Q^X(\phi)^a = \Omega_{Q^a}^X(\phi^a)$ for every $\phi \in \operatorname{IBr}(B|Q)$ and $a \in \operatorname{Aut}(X)_B$.
- (Normally Embedded Conditions).
- If B is of ℓ -defect zero, then $\Omega^X_{\{1\}}(\psi^\circ) = \psi$ for every $\psi \in \operatorname{Irr}(B)$, and $\tilde{\phi} = \tilde{\phi}'$ for every $\phi \in \operatorname{IBr}(B|\{1\})$.

Proof

Under our assumptions,

• The outer automorphism group of $X = \operatorname{SL}_n(\pm q) = \operatorname{PSL}_n(\pm q)$ is cyclic, then it suffices to prove the first two part of the inductive BAW condition, which means an $\operatorname{Aut}(X)$ -equivariant bijection between irreducible Brauer characters and weights.

Proof

Under our assumptions,

- The outer automorphism group of $X = \operatorname{SL}_n(\pm q) = \operatorname{PSL}_n(\pm q)$ is cyclic, then it suffices to prove the first two part of the inductive BAW condition, which means an $\operatorname{Aut}(X)$ -equivariant bijection between irreducible Brauer characters and weights.
- Since $\operatorname{GL}_n(\pm q) = \operatorname{SL}_n(\pm q) \times Z(\operatorname{GL}_n(\pm q))$, it suffices to consider the group $G = \operatorname{GL}_n(\pm q)$.

Under our assumptions,

• The outer automorphism group of

 $X = SL_n(\pm q) = PSL_n(\pm q)$ is cyclic, then it suffices to prove the first two part of the inductive BAW condition, which means an Aut(X)-equivariant bijection between irreducible Brauer characters and weights.

- Since $\operatorname{GL}_n(\pm q) = \operatorname{SL}_n(\pm q) \times Z(\operatorname{GL}_n(\pm q))$, it suffices to consider the group $G = \operatorname{GL}_n(\pm q)$.
- By the works of Alperin, Fong and An, we already have a bijection between irreducible Brauer characters and weights of GL_n(±q), then it suffices to consider the actions of automorphisms.

Jordan decomposition of characters: the irreducible characters of $\operatorname{GL}_n(\pm q)$ are in bijection with the $\operatorname{GL}_n(\pm q)$ -conjugacy classes of pairs (s, μ) , where s is a semisimple element of $\operatorname{GL}_n(\pm q)$ and $\mu = \prod_{\Gamma} \mu_{\Gamma}$ with $\mu_{\Gamma} \vdash m_{\Gamma}(s)$.

Jordan decomposition of characters: the irreducible characters of $\operatorname{GL}_n(\pm q)$ are in bijection with the $\operatorname{GL}_n(\pm q)$ -conjugacy classes of pairs (s, μ) , where s is a semisimple element of $\operatorname{GL}_n(\pm q)$ and $\mu = \prod_{\Gamma} \mu_{\Gamma}$ with $\mu_{\Gamma} \vdash m_{\Gamma}(s)$. The characters corresponding to $(1, \mu)$ are called unipotent characters.

Jordan decomposition of characters: the irreducible characters of $\operatorname{GL}_n(\pm q)$ are in bijection with the $\operatorname{GL}_n(\pm q)$ -conjugacy classes of pairs (s, μ) , where s is a semisimple element of $\operatorname{GL}_n(\pm q)$ and $\mu = \prod_{\Gamma} \mu_{\Gamma}$ with $\mu_{\Gamma} \vdash m_{\Gamma}(s)$. The characters corresponding to $(1, \mu)$ are called unipotent characters.

Lemma

The automorphisms of $GL_m(\pm q)$ act trivially on the unipotent characters of $GL_m(\pm q)$.

Jordan decomposition of characters: the irreducible characters of $\operatorname{GL}_n(\pm q)$ are in bijection with the $\operatorname{GL}_n(\pm q)$ -conjugacy classes of pairs (s, μ) , where s is a semisimple element of $\operatorname{GL}_n(\pm q)$ and $\mu = \prod_{\Gamma} \mu_{\Gamma}$ with $\mu_{\Gamma} \vdash m_{\Gamma}(s)$. The characters corresponding to $(1, \mu)$ are called unipotent characters.

Lemma

The automorphisms of $GL_m(\pm q)$ act trivially on the unipotent characters of $GL_m(\pm q)$.

Lemma

If χ is a character of $\operatorname{GL}_n(\pm q)$ corresponding to (s, μ) and σ is an automorphism of $\operatorname{GL}_n(\pm q)$, then χ^{σ} corresponds to $(\sigma(s), {}^{\sigma}\mu)$ where $({}^{\sigma}\mu)_{{}^{\sigma}\Gamma} = \mu_{\Gamma}$.

٠

• $\mathcal{E}(\operatorname{GL}_n(\pm q),\ell')$ is a basic set of $\operatorname{IBr}(G)$, where

$$\mathcal{E}(\mathrm{GL}_n(\pm q), \ell') = \bigcup_{s \in \mathbf{G}_{ss,\ell'}^F} \mathcal{E}(\mathrm{GL}_n(\pm q), s).$$

• $\mathcal{E}(\operatorname{GL}_n(\pm q),\ell')$ is a basic set of $\operatorname{IBr}(G)$, where

$$\mathcal{E}(\mathrm{GL}_n(\pm q), \ell') = \bigcup_{s \in \mathbf{G}_{ss,\ell'}^F} \mathcal{E}(\mathrm{GL}_n(\pm q), s).$$

• The above basic set is Aut(G)-stable.

.

• $\mathcal{E}(\operatorname{GL}_n(\pm q),\ell')$ is a basic set of $\operatorname{IBr}(G)$, where

$$\mathcal{E}(\mathrm{GL}_n(\pm q), \ell') = \bigcup_{s \in \mathbf{G}_{ss,\ell'}^F} \mathcal{E}(\mathrm{GL}_n(\pm q), s).$$

- The above basic set is Aut(G)-stable.
- Since the decomposition matrix corresponding to $\mathcal{E}(\operatorname{GL}_n(\pm q), \ell')$ is unitriangular, there is an $\operatorname{Aut}(G)$ -equivariant block-preserving bijection between $\mathcal{E}(\operatorname{GL}_n(\pm q), \ell')$ and $\operatorname{IBr}(G)$.

• $\mathcal{E}(\operatorname{GL}_n(\pm q),\ell')$ is a basic set of $\operatorname{IBr}(G)$, where

$$\mathcal{E}(\mathrm{GL}_n(\pm q), \ell') = \bigcup_{s \in \mathbf{G}_{ss,\ell'}^F} \mathcal{E}(\mathrm{GL}_n(\pm q), s).$$

- The above basic set is Aut(G)-stable.
- Since the decomposition matrix corresponding to $\mathcal{E}(\operatorname{GL}_n(\pm q), \ell')$ is unitriangular, there is an $\operatorname{Aut}(G)$ -equivariant block-preserving bijection between $\mathcal{E}(\operatorname{GL}_n(\pm q), \ell')$ and $\operatorname{IBr}(G)$.
- Then the actions of automorphisms on irreducible Brauer characters are just "permutations of elementary divisors".

• Let B be a block of $\operatorname{GL}_n(\pm q)$ with label (s, κ) (Fong, Srinivasan, Broué), then we can label all the B-weights by triples (s, κ, K) , where $K = \prod_{\Gamma} K_{\Gamma}$ with K_{Γ} a collection of ℓ -cores.

- Let B be a block of $\operatorname{GL}_n(\pm q)$ with label (s, κ) (Fong, Srinivasan, Broué), then we can label all the B-weights by triples (s, κ, K) , where $K = \prod_{\Gamma} K_{\Gamma}$ with K_{Γ} a collection of ℓ -cores.
- Again, the actions of automorphisms on irreducible characters are just "permutations of elementary divisors".

- Let B be a block of $\operatorname{GL}_n(\pm q)$ with label (s, κ) (Fong, Srinivasan, Broué), then we can label all the B-weights by triples (s, κ, K) , where $K = \prod_{\Gamma} K_{\Gamma}$ with K_{Γ} a collection of ℓ -cores.
- Again, the actions of automorphisms on irreducible characters are just "permutations of elementary divisors".
- Thus we can prove our theorem.

• Let (R, φ) be a weight, then $\varphi = \operatorname{Ind}_{N_G(R)_{\theta}}^{N_G(R)} \psi$, where $\theta \in \operatorname{Irr}(C_G(R)R)$ of defect zero as a character of $C_G(R)R/R$, $\psi \in \operatorname{Irr}(N_G(R)_{\theta}|\theta)$ of defect zero as a character of $N_G(R)_{\theta}/R$.

- Let (R, φ) be a weight, then $\varphi = \operatorname{Ind}_{N_G(R)_{\theta}}^{N_G(R)} \psi$, where $\theta \in \operatorname{Irr}(C_G(R)R)$ of defect zero as a character of $C_G(R)R/R$, $\psi \in \operatorname{Irr}(N_G(R)_{\theta}|\theta)$ of defect zero as a character of $N_G(R)_{\theta}/R$.
- $R = R_0 R_+$ and all constructions can be decomposed accordingly.

- Let (R, φ) be a weight, then $\varphi = \operatorname{Ind}_{N_G(R)_{\theta}}^{N_G(R)} \psi$, where $\theta \in \operatorname{Irr}(C_G(R)R)$ of defect zero as a character of $C_G(R)R/R$, $\psi \in \operatorname{Irr}(N_G(R)_{\theta}|\theta)$ of defect zero as a character of $N_G(R)_{\theta}/R$.
- $R = R_0 R_+$ and all constructions can be decomposed accordingly.

•
$$\theta_+ = \prod_{\Gamma,\delta,i} \theta_{\Gamma,\delta,i}^{t_{\Gamma,\delta,i}}, \quad R_+ = \prod_{\Gamma,\delta,i} R_{\Gamma,\delta,i}^{t_{\Gamma,\delta,i}}.$$

- Let (R, φ) be a weight, then $\varphi = \operatorname{Ind}_{N_G(R)_{\theta}}^{N_G(R)} \psi$, where $\theta \in \operatorname{Irr}(C_G(R)R)$ of defect zero as a character of $C_G(R)R/R$, $\psi \in \operatorname{Irr}(N_G(R)_{\theta}|\theta)$ of defect zero as a character of $N_G(R)_{\theta}/R$.
- $R = R_0 R_+$ and all constructions can be decomposed accordingly.
- $\theta_+ = \prod_{\Gamma,\delta,i} \theta_{\Gamma,\delta,i}^{t_{\Gamma,\delta,i}}, \quad R_+ = \prod_{\Gamma,\delta,i} R_{\Gamma,\delta,i}^{t_{\Gamma,\delta,i}}.$
- $N_+(\theta_+) = \prod_{\Gamma,\delta,i} N_{\Gamma,\delta,i}(\theta_{\Gamma,\delta,i}) \wr \mathfrak{S}(t_{\Gamma,\delta,i}), \quad \psi_+ = \prod_{\Gamma,\delta,i} \psi_{\Gamma,\delta,i},$ where

$$\psi_{\Gamma,\delta,i} = \operatorname{Ind}_{N_{\Gamma,\delta,i}(\theta_{\Gamma,\delta,i})\wr\prod_{j}\mathfrak{S}(t_{\Gamma,\delta,i,j})}^{N_{\Gamma,\delta,i}(\theta_{\Gamma,\delta,i})\wr\mathfrak{S}(t_{\Gamma,\delta,i,j})} \overline{\prod_{j}\psi_{\Gamma,\delta,i,j}^{t_{\Gamma,\delta,i,j}}} \cdot \prod_{j}\phi_{\kappa_{\Gamma,\delta,i,j}}$$

• Finally, $K_{\Gamma}: \quad \psi_{\Gamma,\delta,i,j} \mapsto \kappa_{\Gamma,\delta,i,j}.$

THANK YOU!

- ▲ 문 ▶ - ▲ 문 ▶

æ