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The blockwise Alperin weight conjecture

For a finite group G and a prime `, an `-weight means a pair
(R,'), where R is an `-subgroup of G and ' 2 Irr(NG(R)) with
R 6 Ker' of defect zero viewed as a character of NG(R)/R.

When such a character ' exists, R is necessarily an `-radical
subgroup of G. For an `-block B of G, a weight (R,') is called a
B-weight if blNG(R)(')

G = B, where blNG(R)(') is the block of
NG(R) containing '. Denote the set of all G-conjugacy classes of
B-weights by W(B).

. Conjecture ( L. Alperin, 1986) Let G be a finite group, ` a
prime and B an `-block of G, then |W(B)| = | IBr(B)|.
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The inductive BAW condition

The blockwise Alperin weight conjecture has been reduced to the
simple groups.

Theorem (Späth, 2013)

Let G be a finite group and ` be a prime. Assume that every

nonabelian simple group S involved in G satisfies the inductive

BAW condition. Then the blockwise Alperin weight condition holds

for every `-block of G.

IBAWC



The inductive BAW condition

The blockwise Alperin weight conjecture has been reduced to the
simple groups.

Theorem (Späth, 2013)
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IBAWC: checked cases

Cyclic blocks (Koshitani, Späth, 2016);

Some sporadic simple groups (Breuer, 2016);

Simple alternating groups (Malle, 2014);

Simple groups of Lie type and defining characteristics (Späth,
2013);

Suzuki groups and Ree groups (Malle, 2014);

Simple groups of Lie type G2 and 3D4 (Cabanes, Späth, 2013,
Schulte, 2016);

Some cases for Bn(2f ) (Cabanes, Späth, 2013);

PSL3(q) (Schulte, 2015, Z. Feng, C. Li, Z. Li, 2017).
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Schulte, 2016);

Some cases for Bn(2f ) (Cabanes, Späth, 2013);
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Some sporadic simple groups (Breuer, 2016);

Simple alternating groups (Malle, 2014);

Simple groups of Lie type and defining characteristics (Späth,
2013);

Suzuki groups and Ree groups (Malle, 2014);

Simple groups of Lie type G2 and 3D4 (Cabanes, Späth, 2013,
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PSL3(q) (Schulte, 2015, Z. Feng, C. Li, Z. Li, 2017).

IBAWC



IBAWC: checked cases

Cyclic blocks (Koshitani, Späth, 2016);
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Results for type A with
cyclic outer automorphism groups

Theorem (C. Li, Zhang)

Let p be a prime, q = pf and ` a prime di↵erent from p.

If n > 2, (n, q � 1) = 1, 2 - f and

(n, q) /2 {(2, 2), (3, 2), (4, 2)}, then the inductive BAW

condition holds for every `-block of PSLn(q).

If n > 3, (n, q + 1) = 1 and (n, q) /2 {(4, 2), (6, 2)}, then the

inductive BAW condition holds for every `-block of PSUn(q).
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Inductive BAW condition

Let ` be a prime, S a finite non-abelian simple group and X the
universal `0-covering group of S.

Let B be an `-block of X. We
say the inductive BAW condition holds for B if the following
statements hold:

(Partitions) There exist subsets IBr(B|Q) ✓ IBr(B) for every
`-radical subgroup Q of X with the following properties:

IBr(B|Q)a = IBr(B|Qa) for every Q 2 Rad`(X) and
a 2 Aut(X)B ,

IBr(B) =
Ṡ

Q2Rad`(X)/sX IBr(B|Q).

(Bijections) For every Q 2 Rad`(X) there exists a bijection
⌦X
Q : IBr(B|Q) ! dz(NX(Q)/Q,B) such that

⌦X
Q (�)a = ⌦X

Qa(�a) for every � 2 IBr(B|Q) and
a 2 Aut(X)B.

(Normally Embedded Conditions).

If B is of `-defect zero, then ⌦X
{1}( 

�) =  for every

 2 Irr(B), and �̃ = �̃0 for every � 2 IBr(B|{1}).
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Proof

Under our assumptions,

The outer automorphism group of
X = SLn(±q) = PSLn(±q) is cyclic, then it su�ces to prove
the first two part of the inductive BAW condition, which
means an Aut(X)-equivariant bijection between irreducible
Brauer characters and weights.

Since GLn(±q) = SLn(±q)⇥ Z(GLn(±q)), it su�ces to
consider the group G = GLn(±q).

By the works of Alperin, Fong and An, we already have a
bijection between irreducible Brauer characters and weights of
GLn(±q), then it su�ces to consider the actions of
automorphisms.

IBAWC



Proof

Under our assumptions,

The outer automorphism group of
X = SLn(±q) = PSLn(±q) is cyclic, then it su�ces to prove
the first two part of the inductive BAW condition, which
means an Aut(X)-equivariant bijection between irreducible
Brauer characters and weights.

Since GLn(±q) = SLn(±q)⇥ Z(GLn(±q)), it su�ces to
consider the group G = GLn(±q).

By the works of Alperin, Fong and An, we already have a
bijection between irreducible Brauer characters and weights of
GLn(±q), then it su�ces to consider the actions of
automorphisms.

IBAWC



Proof

Under our assumptions,

The outer automorphism group of
X = SLn(±q) = PSLn(±q) is cyclic, then it su�ces to prove
the first two part of the inductive BAW condition, which
means an Aut(X)-equivariant bijection between irreducible
Brauer characters and weights.

Since GLn(±q) = SLn(±q)⇥ Z(GLn(±q)), it su�ces to
consider the group G = GLn(±q).

By the works of Alperin, Fong and An, we already have a
bijection between irreducible Brauer characters and weights of
GLn(±q), then it su�ces to consider the actions of
automorphisms.

IBAWC



Proof: actions on ordinary characters

Jordan decomposition of characters: the irreducible characters
of GLn(±q) are in bijection with the GLn(±q)-conjugacy classes
of pairs (s, µ), where s is a semisimple element of GLn(±q) and
µ =

Q
� µ� with µ� ` m�(s).

The characters corresponding to
(1, µ) are called unipotent characters.

Lemma

The automorphisms of GLm(±q) act trivially on the unipotent

characters of GLm(±q).

Lemma

If � is a character of GLn(±q) corresponding to (s, µ) and � is an

automorphism of GLn(±q), then ��
corresponds to (�(s), �µ)

where (�µ)�� = µ�.

IBAWC



Proof: actions on ordinary characters

Jordan decomposition of characters: the irreducible characters
of GLn(±q) are in bijection with the GLn(±q)-conjugacy classes
of pairs (s, µ), where s is a semisimple element of GLn(±q) and
µ =

Q
� µ� with µ� ` m�(s). The characters corresponding to

(1, µ) are called unipotent characters.

Lemma

The automorphisms of GLm(±q) act trivially on the unipotent

characters of GLm(±q).

Lemma

If � is a character of GLn(±q) corresponding to (s, µ) and � is an

automorphism of GLn(±q), then ��
corresponds to (�(s), �µ)

where (�µ)�� = µ�.

IBAWC



Proof: actions on ordinary characters

Jordan decomposition of characters: the irreducible characters
of GLn(±q) are in bijection with the GLn(±q)-conjugacy classes
of pairs (s, µ), where s is a semisimple element of GLn(±q) and
µ =

Q
� µ� with µ� ` m�(s). The characters corresponding to

(1, µ) are called unipotent characters.

Lemma

The automorphisms of GLm(±q) act trivially on the unipotent

characters of GLm(±q).

Lemma

If � is a character of GLn(±q) corresponding to (s, µ) and � is an

automorphism of GLn(±q), then ��
corresponds to (�(s), �µ)

where (�µ)�� = µ�.

IBAWC



Proof: actions on ordinary characters

Jordan decomposition of characters: the irreducible characters
of GLn(±q) are in bijection with the GLn(±q)-conjugacy classes
of pairs (s, µ), where s is a semisimple element of GLn(±q) and
µ =

Q
� µ� with µ� ` m�(s). The characters corresponding to

(1, µ) are called unipotent characters.

Lemma

The automorphisms of GLm(±q) act trivially on the unipotent

characters of GLm(±q).

Lemma

If � is a character of GLn(±q) corresponding to (s, µ) and � is an

automorphism of GLn(±q), then ��
corresponds to (�(s), �µ)

where (�µ)�� = µ�.

IBAWC



Proof: actions on Brauer characters

E(GLn(±q), `0) is a basic set of IBr(G), where

E(GLn(±q), `0) =
[

s2GF
ss,`0

E(GLn(±q), s).

.

The above basic set is Aut(G)-stable.

Since the decomposition matrix corresponding to
E(GLn(±q), `0) is unitriangular, there is an
Aut(G)-equivariant block-preserving bijection between
E(GLn(±q), `0) and IBr(G).

Then the actions of automorphisms on irreducible Brauer
characters are just “permutations of elementary divisors”.
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Proof: actions on weights

Let B be a block of GLn(±q) with label (s,) (Fong,
Srinivasan, Broué), then we can label all the B-weights by
triples (s,,K), where K =

Q
�K� with K� a collection of

`-cores.

Again, the actions of automorphisms on irreducible characters
are just “permutations of elementary divisors”.

Thus we can prove our theorem.
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Definition of K

Let (R,') be a weight, then ' = IndNG(R)
NG(R)✓

 , where

✓ 2 Irr(CG(R)R) of defect zero as a character of
CG(R)R/R,  2 Irr(NG(R)✓|✓) of defect zero as a character
of NG(R)✓/R.

R = R0R+ and all constructions can be decomposed
accordingly.

✓+ =
Q

�,�,i ✓
t�,�,i

�,�,i , R+ =
Q

�,�,iR
t�,�,i

�,�,i .

N+(✓+) =
Q

�,�,iN�,�,i(✓�,�,i) oS(t�,�,i),  + =
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