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Model for the Observed Data

Let t = (t1, ..., td)T , d ≥ 1, be a ‘location’ from a set
T = {t1, · · · , tN} ⊂ R

d.
Observations yn = (y(ts1), · · · , y(tsn))T will be obtained once
sample locations S = {ts1, · · · , tsn} ⊂ T are chosen.
A model used to describe the observed data is

Y(t) = µ(t) + ε(t)

µ(t) = η(t) + δ(t), η(t) is the deterministic mean perturbed by
stochastic errors δ(t), and ε(t) is uncorrelated, additive
measurement error.
{δ(t) : t ∈ T } and {ε(t) : t ∈ T } are independent.
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Threshold Probability

Consider the probability that the value of the µ process, at a
given location t, is above a fixed threshold u∗, i.e.

z(t) = P (µ(t) > u∗) .

The probability z(t) is called the ‘threshold probability’.
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A natural and optimal (Cressie 1993) estimator of z(t) is

ẑn(t) := E
[
1(µ(t) > u∗)|yn

]
.
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Further Assumptions

δ(t) and ε(t) are Gaussian processes.
{δ(t)|t ∈ T } has covariance matrix GN×N = (g(ti, t j))N

i, j=1 and
{ε(t)|t ∈ T } has uniformly bounded variance matrix
HN×N = diag(h(ti))N

i=1, with h(t) ∈ [h1, hN] for all t ∈ T and
0 < h1 ≤ hN < ∞.
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Lemma

(Santner, Williams and Notz 2003) Assume that E(µ(t)) = fT (t)θ for a
p−dimensional vector of functions f(t) = ( f1(t), · · · , fp(t))T , and that
θ ∼ URp , the improper uniform distribution over Rp. Define
Fn = (f(ts1), · · · , f(tsn))T . Then

µ(t)|yn ∼ GP(µ̂(t), σ2
nt(G)),

where the conditional (given data yn) mean of µ(t) is the best linear
unbiased predictor (BLUP)

µ̂(t) = aT
nt(G)yn.

The conditional variance is the mean squared prediction error of the
BLUP.
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Based on Lemma 1

ẑn(t) = Φ

(
µ̂(t) − u∗
σnt(G)

)
.
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The estimator ẑn(t) is derived under quite restrictive assumptions:

(U1) the covariance structure of δ(t) is known.
(U2) The mean E(µ(t)) is linear in these regressors f(t).
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The investigator may not address these challenges at the
estimation/prediction stage, but hopes to do so through the
design.
The estimate ẑn(t) is still computed based on a nominal
covariance matrix (U1) and the possibly incorrect response (U2).
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Our interest is to develop a design such that the estimate of z(t)
is robust against uncertainties (U1) and (U2).
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To address (U1) we assume that the covariance matrix GN×N

varies over a neighbourhood G

G =


Gd: Gd = Udiag(λied/

√
n)N

i=1UT ,
d is a bounded random variable with
mean 0 and standard deviation ω2

d ,
and −∞ < d1 ≤ d ≤ d2 < ∞

 .
Here λ1 ≤ ... ≤ λN are the eigenvalues of a nominal, positive
definite covariance matrix and U is the orthogonal matrix whose
columns are the corresponding eigenvectors.
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To address (U2) suppose that E(Y(t)) ≈ fT (t)θ.
Define ψ(t) as

E(Y(t)) = fT (t)θ +
ψ(t)
√

n
.

The parameter vector θ is defined as

θ = arg min
v

∑
t∈T

(
E(Y(t)) − fT (t)v

)2
.
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The orthogonality condition

FT
NΨN :=

∑
t∈T

f(t)ψ(t) = 0

where FN = (f(t1), · · · , f(tN))T and ΨN = (ψ1, · · · , ψN)T with
ψi = ψ(ti).
Let ΨN vary over a set quantifying the model uncertainty:

Ψ = {ΨN : FT
NΨN = 0, ||ΨN || ≤ τ

2 },

where ‖·‖ is the Euclidean norm.
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The loss Function

A nature loss function L0 is the relative conditional mean
squared prediction error (MSPE), averaged over locations in T\S
at which observations are not obtained:

L0
(
ξ|ΨN , θ,d

)
=

1
N − n

∑
t∈T\S

Eyn |d,ΨN ,θ (z(t) − ẑn(t))2

z2(t)

where ξ is the N × 1 ‘design’ vector, with elements ξi = I (ti ∈ S).
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A robust design ξ∗ optimizes the chosen loss function L0 in the
face of uncertainties.

This loss will be averaged, with respect to a ‘prior’ distribution on d,
as a means of relaxing (U1).
The ‘averaged’ loss is then maximized over Ψ to handle (U2).
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Upon taking an expectation with respect to d, the loss becomes

L0 (ξ|ΨN , θ) =
1

N − n

∑
t∈T\S

Ed|ΨN,θ

Eyn |d,ΨN ,θ (z(t) − ẑn(t))2

z2(t)

 .
It is difficult to maximize L0

(
ξ|ΨN , θ

)
with respect to ΨN .
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Expansion of loss Function

The increasing domain asymptotic framework is an asymptotic
framework that the domain is expanding as the number of
observations increases.
The loss function L0

(
ξ|ΨN , θ

)
is expanded up to and including

terms that are O(n−1) under the increasing domain asymptotic
framework.
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Expansion of loss Function

Theorem

Apart from terms which are o(n−1), the loss function under
consideration becomes

L0 (ξ|ΨN , θ) =
1

N − n

∑
t∈T\S

ΨT
NAtξθΨN

1
n

+ 2bT
tξθΨN

1
√

n
+

c1tξθ + c2tξθ
ω2

d

n

 ,
where

c1tξθ = Eyn |θ (1 − Ft(0,0))2 ,

c2tξθ = Eyn |θ

[(
D1

dFt(0,0)
)2
− D2

dFt(0,0) + Ft(0,0)D2
dFt(0,0)

]
,

bT
tξθ = Eyn |θ

[
(Ft(0,0) − 1) D1

ΨN
Ft(0,0)

]
,

Atξθ = Eyn |θ

 −D2
ΨN

Ft(0,0) +
(
D1

ΨN
Ft(0,0)

)T
D1

ΨN
Ft(0,0)

+
(
Ft(0,0)D2

ΨN
Ft(0,0)

)  .
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Maximization of the loss function over Ψ

Proposition

(Sorensen 1982) The solution v∗ξ,θ to the optimization problem is the
solution of

(λξ,θIN×N − Aξ,θ)v∗ξ,θ = bξ,θ,

and the maximum loss is

L0

(
ξ|v∗ξ,θ, θ

)
=

1
N − n

(
v∗Tξ,θAξ,θv∗ξ,θ + 2bT

ξ,θv
∗
ξ,θ + cξ,θ

)
, (1)

where λξ,θ is chosen such that λξ,θ(
∥∥∥∥v∗ξ,θ

∥∥∥∥ − τ) = 0 and λξ,θIN×N − Aξ,θ is
positive semi-definite.
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A problem is that this loss depends on the unknown parameters
θ. There are various methods of handling this problem.

constructing a ‘locally optimal’ design – one that is optimal only at a
particular value of the parameter.
To allow for uncertainty about the parameter values, one might first
maximize the loss function over a neighbourhood of a local
parameter and then minimize the maximized loss function over the
class of designs.
Bayesian methods are also applicable in eliminating the
parameters from the loss function.

These three methods allow for static, i.e. non-sequential, design
construction.
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A method is sequential design.
Estimates are computed using the available data and subsequent
observations are made at new design points minimizing the loss
function, evaluated at the current estimates.
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Sequential Robust Optimal Design

Sequential design:
Step 1: choose an initial design ξn0 .
For m = 0, 1, ... until an n-point design ξn is obtained carry out steps
2-5.
Step 2: make observation at the sampled locations of the current
design ξm = {ts1, ..., tsm}.
Step 3: the regression parameters that are required in the
evaluation of the loss are replaced by GLS estimation θ̂m.
Step 4: substitute θ̂m into the loss function and obtain Lmax(ξm |̂θm) by
maximizing the loss function over the set Ψ.
Step 5: make the next observation at

tnew = arg min
t∈T
Lmax({ts1, ..., tsm, t} |θ̂).
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Robust design vs. maximin space-filling design

The true model for Y(t) is

y = µ(t) + ε(t)

where
µ(t) = 1 + t1 + t2 +

ψ(t)
7

+ δ(t),

the stochastic error δ(t) has correlation function

corr(t, t′) = exp{−0.5‖t − t′‖2},

Var[δ(t)] = 1 and Var[ε(t)] = 0.01.
The threshold probability of interest is P(µ(t) > 1).
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Robust design vs. maximin space-filling design

The fitted model is

y = f T (t)θ + δ(t) + ε(t)

with f T (t) = (1, t1, t2) and θ = (θ0, θ1, θ2)T . The nominal covariance
matrix is correct.
The design space T is a grid of N = 25 points spanning
[0, 1] × [0, 1].
A 3-point initial design was selected at the beginning such that
the design points are spread out across the whole grid.
The sequential procedure is applied to construct a 7-point
sequential robust design.
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Figure: With 3 initial design points (denoted by asterisks) a robust design
(denoted by filled circles) is obtained among the remaining 22 locations.
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Robust design vs. maximin space-filling design

A 7-point maximin space-filling design is selected.
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Figure: A 7-point maximin space-filling design is shown with design points
denoted by asterisks.
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Robust design vs. maximin space-filling design

To compare performance of the maximin space-filling design and
the robust design, the losses for the prediction of the threshold
probability were found and summarized in Table 1 when
τ2 = 0.25, 0.5, 0.8, 1.

τ2

Design 0.25 0.5 0.8 1
maximin space-filling 0.3984 0.4130 0.4262 0.4337

robust optimal 0.3607 0.3896 0.4157 0.4304

Table: Losses for maximin space-filling designs and robust designs.
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Conclusion

A method of constructing robust optimal designs for the
estimation of threshold probabilities of a stochastic process is
proposed.
Robust optimal designs perform better than the maximin
space-filling designs.
The method is applied for coal-ash data (Hu 2017).
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Thank you!
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