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Background

Bayesian non-linear mixed effects models are widely used to analyze
longitudinal data.

Designs to estimate parameters in such models are often of interest
but challenging.

Such models are often employed to study HIV dynamics over time.
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Bayesian Non-linear Mixed Effects Models

A general set up of Non-linear Mixed Effects Model:

Yi (ξ) = η(ξ;βi ) + ε, ε ∼ N(0, σ2In)

where βi = β + bi and bi ∼ N(0,D). Then an n-run exact
experiment ξ takes observations at t1, ..., tn results in a Fisher
information for βi as

M(βi ; ξ) =
1

σ2

n∑
j

Oη(tj ;βi )Oη(tj ;βi )
T
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Bayesian Optimal Design

A Bayesian D-optimal design η maximizes the criterion function wrt a
prior parameter distribution π(βi ) as:

ξBayesD = argmax
ξ

∫
{log(det[M(ξ, βi )])}π(βi ) dβi︸ ︷︷ ︸

Integration︸ ︷︷ ︸
Optimization

where M(ξ, βi ) is the information matrix.

Numerical (multi-dimensional) integration results evaluated by
optimization process.
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Numerical Integration

Monte Carlo: ∼100,000 samples (Nyberg, Karlsson, Hooker, 2009).

MCMC: ∼10,000 iterations (Wakefield, 1996; Huang and Wu, 2008).

Adaptive Gaussian quadrature (Ueckert and Mentre, 2016);
Hamiltonian Monte Carlo (Riviere, Ueckert, and Mentre, 2016).

Sparse Grids (Smolyak, 1963): the computational costs to achieve a
negligible approximation error are considerably lower than with
simulation techniques like pseudo-random Monte Carlo and
quasi-random Monte Carlo (Heiss et. al., 2008). It has been used
various fields like engineering and econometrics, and also used in
computer experiment design (Plumlee, 2014).
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Sparse Grids Method

- Complexity: O(N(logN)D−1) instead of O(ND)
- Error bound: O(N−2(logN)D−1) instead of O(N−2).
- Deterministic.
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Brief Intro to Sparse Grids

Define the difference of the approximation when increasing the
accuracy level from i − 1 to i as

∆i [g ] = Vi [g ]− Vi−1[g ] ∀i ∈ N

with i = [i1, ..., iD ]. For any non negative integer q, define non empty
set

ND
q = {i ∈ ND :

D∑
d

id = D + q}

For instance, N2
2 = {[1, 3], [2, 2], [3, 1]}. Then the sparse grids

quadrature rule for D-dimensional integration at accuracy level k is
defined as

AD,k [g ] =
k−1∑
q=0

∑
i∈ND

q

(∆i1 ⊗ ...⊗∆iD )[g ]
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Optimization

Compare a small number of candidate designs (Huang and Wu, 2008).

Fedorov algorithm (Fedorov, 1972; Retout, Mentre, Bruno, 2002).

Coordinate exchange algorithm (Meyer and Nachtsheim, 1995;
Gotwalt, Jones, Steinberg, 2009).

Particle Swarm Optimization (Eberhart and Kennedy, 1995; Wong et
al., 2015; Chen et al., 2015; Phoa et al., 2016. Kim and Wong, 2017).
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SG-PSO for Finding Bayesian Optimal Designs

f (ti ) =
∫
β log(det[M(ξ, βi )])π(βi )dβi evaluated at SG samples. PSO

parameters: 1000 iter, 40 particles, inertia 1
2ln 2 , c1 = c2 = 0.5 + ln 2.
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Application in HIV Studies

HIV experiments often requires to get plasma samples from patients
to quantify viral load at specific time points. The longitudinal change
is important to study the pathological process involved in HIV
dynamics.

In this work we focus on deciding the best sampling schedule.

Y Shi, ZZ Zhang, WK Wong (UCLA) SGPSO for finding Optimal Designs Aug 9, 2017 11 / 29



Application in HIV Studies I

Model Structure (Hu and Ding, 1999): the log-transformation of the
total viral load for the i-th subject at j-th time point is modeled as

yij = log(V (tij , βi )) + eij = log(eθi−δi tj + eτi−λi tj ) + eij

assume isotropic errors across time and subjects eij |βi ∼ N(0, σ2),
βi = (θi , τi , δi , λi )

′ = (θ, τ, δ, λ)′ + (b1i + b2i + b3i + b4i )
′ = β + bi ;

bi ∼ N(0,D). θ, τ represent initial viral production rate and δ, λ
represent exponential decay rate of virus in compartments.

Prior Distribution: estimates from 46 patients’ data:
β̂ = (12.142, 7.624, 0.442, 0.032)′, σ̂2 = 0.2672,
D̂ = diag(1.3972, 1.5452, 0.1372, 0.0152).
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Application in HIV Studies I

Want to find an exact design ξ = (t1, ..., tn) that gives best parameter
estimations in response curve.

Design Space and Number of Support Points:

- Schedule 1 (9 points in [0, 168]); ACTG Protocol A5055: 0, 7, 14,
28, 56, 84, 112, 140, 168.

- Schedule 2 (8 points in [2, 84]); ACTG Protocol 315: 2, 7, 12, 13,
21, 27, 55, 84.

- Schedule 3 (6 points in [0, 168]); Standard sampling schedule
currently used in many AIDS clinical trials: 0, 28, 56, 84, 112, 168.

Y Shi, ZZ Zhang, WK Wong (UCLA) SGPSO for finding Optimal Designs Aug 9, 2017 13 / 29



Results from SGPSO

logdet
M(ξ)

SGPSO Design
logdet

M(ξSGPSO)
RE time1

1 14.83
0, 0, 4.7, 8.2, 15.0,
27.0, 45.5, 168, 168

15.80 78.5% 18.9

2 12.27
2, 2, 6.1, 10.9,

20.3, 34.7, 84, 84
12.73 88.9% 15.6

3 2.46 0, 4.7, 10.2, 21.6, 43.0, 168 14.01 5.6% 10.9

Relative Efficiency:

(
|M(ξ, βi )|

|M(ξSGPSO , βi )|
)1/4

1CPU time. Computer configuration: x86 64−win64 (64 bit) 3.6GHz, 16GB RAM,
Intel i7−4790 CPU on Windows 10 Enterprise OS. R version: 3.3.0.
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Application in HIV Studies I: Other criteria

Another criterion is to maximize the determinant of FIM whose (k , l) term
is denoted as (Riviere, Ueckert, Mentre, 2016)

M(β, ξ)k,l = Ey [
∂log(L(y |β))

∂βk

∂log(L(y |β))

∂βl
)]

= Ey [Eb|y (
∂log(p(y |b, β)p(b))

∂βk
)Eb|y (

∂log(p(y |b, β)p(b))

∂βl
)]

logdet
M(ξ)

SGPSO Design
logdet

M(ξSGPSO)
RE time

1 37.32
0, 8.6, 14.3, 18.9, 30.3,
157.9, 164.5, 167.8, 168

46.46 10.17% 1983

2 37.96
2, 2.3, 15.8, 16.2,

34.1, 37.7, 65.1, 83.0
40.84 48.6% 1847

3 36.67 0, 29.3, 29.4, 32.3, 168, 168 44.62 13.7% 1688
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Application in HIV Studies II: Approximate Design

An exponential model which describes the trajectory of plasma HIV
RNA level under antiviral treatment (Han and Chaloner, 2003)

Yj = log(P0 + P1e
−δtj ) + εj

where εj
iid∼ N(0, σ2), tj ∈ [0, 60], P0, P1 ∼ unif(0.5, 1.5).

δ ∼u(0.9, 1.1):

(
0 1.27 14

1/3 1/3 1/3

)
; δ ∼u(0, 0.2):

(
0 10.17 28.30 60

0.32 0.28 0.10 0.30

)
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(Preliminary) Conclusion

The proposed SGPSO algorithm is promising for finding Bayesian
optimal designs with mixed effects models.

Fast and convenient: softwares and packages widely available.

Flexible: deals with different priors, design space constrains, number
of support points with minimal adjustment; good for practical use.

Works for approximate designs, also seems to work for exact designs.

Deals with various criteria.

Y Shi, ZZ Zhang, WK Wong (UCLA) SGPSO for finding Optimal Designs Aug 9, 2017 17 / 29



Advanced Topics: Hybrid Algorithm

Advanced versions: Quantum PSO (Sun et. al, 2004), Competitive
Swarm Optimizer (Cheng and Jin, 2015), Galactic Swarm
Optimization (Muthiah-Nakarajan and Noel, 2016), etc.

Algorithm 1 Hybrid Swarm Optimization (Zhang et al., 2017+)

Lower Level Initialization: x, vL.
Upper Level Initialization: vU .
for EP in 1 to EPmax do

for subswarm 1 to M do
CSO m1 iterations by updating x, vL;
Pick k1 winner particles;

end for
do CSO among winners by updating x, vU ;

end for
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Advanced Topics: Hybrid Algorithm

The hybrid swarm optimization algorithm has been tested for finding
locally optimal design for a logistic model with 4 factors with all
pairwise interaction terms (80-dimensional). Ten different sets of
coefficients have been tested and the average efficiency lower bound
obtained from 20 experiments show as follows:

HSO CSO GSO PSO

Average ELB 81.2% 43.4% 14.56% 6.7%
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Advanced Topics: Application in Other Fields

Biomedical imaging study: using QPSO to maximize the lung cancer
status prediction.

Idiopathic Pulmonary Fibrosis (IPF) is a rare and ultimately fatal lung
disease of unknown cause with a median survival of 2∼5 years. The
disease natural history is unpredictable at the time of diagnosis; as a
result, some patients miss the best time to receive transplant. We
want to predict the progression status so that the timely treatment
can be delivered to increase patients’ survival.
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Advanced Topics: Application in Other Fields

LASSO: sensitivity 63.04%, specificity 75.18%, accuracy 73.04% (51
features). QPSO: 77.27% sensitivity, 85.15% specificity, 83.74%
accuracy (19 features).
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Remarks and Future Work

Sparse Grid rule usually works better for normal priors.

No free lunch theorem (Wolpert and Macready, 1997).

Future work:
- Explore advanced swarm algorithms; hybridized algorithms.
- Apply the SGPSO algorithm to other design criteria for non-linear
mixed effect models and some other models.
- ...etc.
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