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Physical Experiments: Bad Boys

High dimensionality of factors

Nonlinear relationships (factors with
many levels)

High-order interaction effects

Substantial random variation
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Physical Experiments: Good Guys (Statisticians)

e Effect sparsity (Box and Meyer, 1985).
e Only some factors are active
o Only some (low-order) effects are
important

DavidMCEddy at en.wikipedia
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Physical Experiments: Good Guys (Statisticians)

e Effect sparsity (Box and Meyer, 1985).
e Only some factors are active
o Only some (low-order) effects are
important

DavidMCEddy at en.wikipedia

o Effect heredity:
significant interaction = at least one of
its factors has a significant main effects

(Yates, 1937; Hamada and Wu, 1992)

o Effect hierarchy: lower-order effects
tend to be more significant than
higher-order effects (Yates, 1937; Wu
and Hamada, 2009)
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Physical Experiments: Tools

Many, many other contributors . ..

Main effects plans

Resolution IV and V designs give up up on estimation of 3-factor and
higher-order interaction effects

@ etc., etc.
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Physical Experiments: Tools

Many, many other contributors . ..

Main effects plans

Resolution IV and V designs give up up on estimation of 3-factor and
higher-order interaction effects

etc., etc.

@ What is the point here for computer experiments?
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Computer Experiments: Bad Boys

High dimensionality of inputs
Nonlinear relationships
High-order interaction effects
WHATCHA GONNA DO?
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Computer Experiments: Bad Boys

@ High dimensionality of inputs
@ Nonlinear relationships

@ High-order interaction effects
o WHATCHA GONNA DOQO?
e You can cope with 2 bad boys but
not 3
e Standard GP approaches try to deal
with all 3 simultaneously
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Computer Model

e Inputs x = (x1,...,Xq)
e Output y = y(x)

Inputs

X1 Output(s)

y(x1, ..., xq)
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Gaussian Process (GP) Model

@ Model y(x) as a realization of
Y(x) =+ 2(x)

@ 4 is a constant mean; regression model rarely helpful (Chen et al.,
2016)
e Z(x) is a multivariate normal random function with

e Marginal distribution N (0, 0?)
o Covariance Cov(Z(x), Z(x")) = o?R(x,x’) at two input vectors x and x’
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Gaussian Process (GP) Model

@ Model y(x) as a realization of
Y(x) =+ 2(x)

@ 4 is a constant mean; regression model rarely helpful (Chen et al.,
2016)
e Z(x) is a multivariate normal random function with

e Marginal distribution N (0, 0?)
o Covariance Cov(Z(x), Z(x")) = o?R(x,x’) at two input vectors x and x’
o Correlation function R(x,x’) is critical
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Correlation Function

@ Two sets of inputs x and x’

e Standard (Std) correlation structure has a product form in
1-dimensional functions

d
R%(x,x') =[] R(k) €[0,1],
=1

a function of the distance h; = |x; — X[ for input j

@ We will use the squared-exponential (Gaussian) function
R(hj) = exp(—0;h7),
where 6; > 0 controls the sensitivity (nonlinearity) of input j.

@ Following arguments apply to correlation functions other than sgya red,
exponential %
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@ 41, 02, and the correlation parameters (61, ..., 04) estimated by MLE
or Bayes
@ For the results shown later, 01,..., 04 optimized numerically via the

mlegp package (Dancik, 2013)
e All standard stuff

o (mlegp is adapted for the new correlation structures introduced later)
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@ Predict y(x*) at some new input vector x*

@ More standard stuff . ..
@ The best linear unbiased predictor or posterior mean (given the
correlation parameters) is of the form

Yx) = i+ aTr(x")
o the vector a does not depend on x*

o r(x*) = (R(x*,xM), ..., R(x*,x(")) T is a vector of correlations
between Y(x*) and Y(x(7) at the training design points x(!), ...,

x(n)
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@ Predict y(x*) at some new input vector x*
@ More standard stuff ...

@ The best linear unbiased predictor or posterior mean (given the
correlation parameters) is of the form

Yx') = i+ a"r(x")

o the vector a does not depend on x*

r(x*) = (R(x*, x), ... R(x*, x("))) Tis a vector of correlations
between Y(x*) and Y(x(7) at the training design points x(!) ... x("
The predictor has the same form for any legal correlation function
The predictor is a linear combination of basis functions R(x*, x())
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Prediction Accuracy

@ Measured by root mean squared error (RMSE) over a new test set

@ Normalized version compares with the RMSE of the trivial predictor y,
the sample mean of the training data:

. _ RMSE of §
N-RMSE ™ RMSE of

@ en.rmse = 0 says perfect accuracy

@ en.rMse = 1 says ¥ no better than y
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Additive Correlation Structures

@ Recall

RS (x H exp(— (where h; = x; — x)

@ Instead, additive correlation structure with equal weights (A-EW)
RAEW(x Zexp

e Or additive correlation structure with unequal weights (A-UW)
RA-UW(x, x zwj exp( GJhJ)
j=1

o weights w1, ..., wy have to be estimated too, subject to w; > 0 [@ g ol
g prrrrd TERE R TR AT SR T = Ve
Zj:l wj=1
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Michalewicz Test Function (Ba and Joseph, 2012)

@ Michalewicz function in d dimensions:
d 52\ 12
Yu(x) = — Zsin(xj) {sin <7T’)] where x; € [0, 7).
j=1

e Has d! local minima (highly nonlinear)
o Weighted form:

d

}/w(x)——jz_;jsin(@-){sin <J7XTJ2)]2O where x; € [0,7].

o Complexity and more importance of x; increases with j
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Michalewicz Test Function

< ‘ I I"77""" *'

(a) Unweighted (b) Weighted
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Weighted Michalewicz Function (en.rmse for 20 Repeat

Training Experiments)

12-

en-RMSE
en-RMSE

0.0~
' ' ' ' ' ' ' '
100 200 400 800 100 200 400 800

Approach: =& Std =% A-EW == A-UW
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Franke's Function (Franke, 1979; Haaland and Qian, 2011)

@ Most functions are not perfectly additive

@ Franke's function in 2 dimensions:

yr(x1,x2) = 0.75 exp [_ (9X1 — 2)2 . (9X2 — 2)2]

4 4
(9% + 1)2 9% +1
+ 0.75exp [ 29 10
2 _a)2
+ 0.5exp [— (9X14 ) - (9X24 3) }

— 0.2 exp[—(9x1 — 4)? — (9x2 — 7)?]
where  x1,x € [0,1].

@ Nonlinear with interaction

Alexi Rodriguez and Will Welch (UBC) Complex Computer Models BIRS, August 7, 2017 18 / 31



Franke's Function in 2 Dimensions
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New Franke's Function in 8 Dimensions

o yrs(x) = yr(x1,x2) + yr(x3,xa) + yr(xs, X6) + yr(x7, xg)
@ Nonlinear with moderate interaction (x; with x2, x3 with xa, etc.)
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Oracle

@ Just for a best possible baseline; cannot be done in practice
@ Knows the structure of yrg(x) and fits 4 separate GPs

° Training data for X1, X2, _yF(XlaXZ) gives _/)\/F,IZ(XI;XZ)
° .-
o Training data for x7, xg, yr(x7,xs) gives yr 73(x7, Xg)

A(Orade)(x ) = Ira2(X, x5) + -+ + Ir7s(X5, X5)
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Franke's Function in 8 Dimensions: Additive (Main

Effects) Model

Main Effects Main Effects

07- 0-

EeN-RMSE
Average of log(ey-ruse)

' ' '
80 160 320 640
n

Approach: =& Oracle =#=Std =— A-EW =& A-UW

Normalized RMSE versus n and log-log plot to show rate of convec%VA
) 9
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Composite Correlation Structures (Additive and All 2-Input

Interactions)

o Composite, equal weights

d d
B 11 a2 1 2 02 —0, R
RC EW(X,X,) _ .= e Gjhj 4. e Gthe sar
2 dz,_1 2 dd—1) JZ_l j’Z:jJrl

o Composite, unequal weights

d d
RE=UW(x,x) dZe 6h2+)\2 R d2 1 Z Z =0 &0 1
(d— )1:11/:j+1

(A1 and A, estimated subject to A1 + Ap = 1)
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Franke's Function: Composite Correlation Structures

(Additive and All 2-Input Interactions)

Full Composite Full Composite

EeN-RMSE
Average of log(ey-ruse)

' ' ' '
1.90 2.20 2.51 2.81
log(n)

Approach: =& Oracle == Std =-—C-EW =+~ C-UW

Normalized RMSE versus n and log-log plot to show rate of convec%VA
) 9
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Composite Correlation Structures (Additive and

2-Input Interactions)

@ Composite with select 2-input interactions, equal weights

[y

d

1 a2

RO V() = L 23 e L S e e
j {ij}teB

N

@ Composite with select 2-input interactions, unequal weights

2 2 —0,h>
RCS UW( X, X dze 9/7 _'_)\2 Z e ejhje 7Ny
UJ}GB
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Choosing the 2-Input Interactions: FANOVA (Schonlau

and Welch, 2006)

Choose the interaction effects for the 8-dimensional Franke's function
data adaptively

e Functional ANOVA (FANOVA) based on a training set with n = 640
@ Percent contributions to total variance of the function

Effect % | Effect % | Effect %

X1 8.1 X2 15.8 X1 X X2 2.4

X3 7.5 | x4 13.5 X3 X Xa 2.3

X5 79 | xp 151 | x5 x x5 2.4

X7 7.4 Xg 145 X7 X Xg 2.3

These effects account for 99.2% of the variation (others negligible)

B={{1,2},{3,4},{5,6},{7,8}}.
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Franke's Function: Select Composite (Main Effects and

Select 2-Input Interaction Effects)

Selective Composite Selective Composite
0.7- 0-

EeN-RMSE
Average of log(ey-ruse)

' ' ' '
80 160 320 640

log(n)

Approach: =& Oracle == Std =— CS-EW =& CS-UW

Normalized RMSE versus n and log-log plot to show rate of convec%VA
) 9
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Bad Boys: The Math

@ High dimensionality: d > 1 inputs are active, say xi, ..., Xq
o Nonlinearity: their 6; are large
@ What does the product correlation function do?

d
1
RSt (x Ilmh II{WDZI11—®@+Euw®2+~d
j=1

=1—61h3 + E(th%)z + similar terms for xo, etc.

+ Olhgeghg + similar terms for x3, x4, etc.

d
+o =[]0
j=1

hj ~ 0 (huge sample size)
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Conclusions

o With high dimensionality and nonlinearity, the product correlation
function automatically introduces high-order interactions, needed or
not

Alexi Rodriguez and Will Welch (UBC) Complex Computer Models BIRS, August 7, 2017 29 /31



Conclusions

o With high dimensionality and nonlinearity, the product correlation

function automatically introduces high-order interactions, needed or
not

@ Proof of concept

o Effect sparsity, hierarchy and heredity applied to computer
experiments
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Conclusions

o With high dimensionality and nonlinearity, the product correlation
function automatically introduces high-order interactions, needed or
not

@ Proof of concept

o Effect sparsity, hierarchy and heredity applied to computer
experiments

@ Michalewicz test function: highly nonlinear, moderate dimension

o Useful accuracy with a main-effects model
@ New Franke function: nonlinear, moderate dimension
o More accuracy with limited, 2-input interactions
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Conclusions

With high dimensionality and nonlinearity, the product correlation
function automatically introduces high-order interactions, needed or
not
Proof of concept
Effect sparsity, hierarchy and heredity applied to computer
experiments
Michalewicz test function: highly nonlinear, moderate dimension

o Useful accuracy with a main-effects model
New Franke function: nonlinear, moderate dimension

o More accuracy with limited, 2-input interactions
Work by Alexi Rodriguez to extend these ideas to real applications is
also taking account of the science (Dennis Lin's paper in JQT)
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