Some *q*-exponential formulas involving the double lowering operator ψ for a tridiagonal pair

Sarah Bockting-Conrad

DePaul University

May 16, 2017

Let V denote a finite-dimensional vector space over a field \mathbb{K} .

Definition

By a **tridiagonal pair** (or TD pair) on V we mean an ordered pair of linear transformations $A: V \to V$ and $A^*: V \to V$ satisfying:

- 1. Each of A, A^* is diagonalizable.
- 2. There exists an ordering $\{V_i\}_{i=0}^d$ of the eigenspaces of A such that

$$A^*V_i \subseteq V_{i-1} + V_i + V_{i+1} \qquad (0 \le i \le d),$$

where $V_{-1} = 0$ and $V_{d+1} = 0$.

3. There exists an ordering $\{V_i^*\}_{i=0}^{\delta}$ of the eigenspaces of A^* such that

$$AV_i^* \subseteq V_{i-1}^* + V_i^* + V_{i+1}^* \qquad (0 \le i \le \delta),$$

where $V_{-1}^* = 0$ and $V_{\delta+1}^* = 0$.

4. There does not exist a subspace W of V such that $AW \subseteq W$, $A^*W \subseteq W$, $W \neq 0$, $W \neq V$.

- Let $\Gamma = \Gamma(X, E)$ denote a *Q*-polynomial distance-regular graph.
- Let A denote the adjacency matrix of Γ .
- Fix x ∈ X. Let A^{*} = A^{*}(x) denote the dual adjacency matrix of Γ with respect to x.
- Let W denote an irreducible (A, A^*) -submodule of $\mathbb{C}^{|X|}$.
- Then A, A^* form a TD pair on W.

By a **tridiagonal system** (or TD system) on V, we mean a sequence

$$\Phi = (A; \{V_i\}_{i=0}^d; A^*; \{V_i^*\}_{i=0}^d)$$

that satisfies (1)-(3) below.

- 1. A, A^* is a tridiagonal pair on V.
- 2. $\{V_i\}_{i=0}^d$ is an ordering of the eigenspaces of A such that

$$A^*V_i \subseteq V_{i-1} + V_i + V_{i+1} \qquad (0 \le i \le d).$$

3. $\{V_i^*\}_{i=0}^d$ is an ordering of the eigenspaces of A^* such that

$$AV_i^* \subseteq V_{i-1}^* + V_i^* + V_{i+1}^*$$
 $(0 \le i \le d).$

A given TD system can be modified in a number of ways to get a new TD system.

$$\begin{array}{ll} (A; \{V_i\}_{i=0}^d; A^*; \{V_i^*\}_{i=0}^d) & (A^*; \{V_i^*\}_{i=0}^d; A; \{V_i\}_{i=0}^d) \\ (A; \{V_{d-i}\}_{i=0}^d; A^*; \{V_i^*\}_{i=0}^d) & (A^*; \{V_{d-i}^*\}_{i=0}^d; A; \{V_i\}_{i=0}^d) \\ (A; \{V_i\}_{i=0}^d; A^*; \{V_{d-i}^*\}_{i=0}^d) & (A^*; \{V_i^*\}_{i=0}^d; A; \{V_{d-i}\}_{i=0}^d) \\ (A; \{V_{d-i}\}_{i=0}^d; A^*; \{V_{d-i}^*\}_{i=0}^d) & (A^*; \{V_{d-i}^*\}_{i=0}^d; A; \{V_{d-i}\}_{i=0}^d) \\ \end{array}$$

These eight TD systems are said to be **relatives** of one another.

A given TD system can be modified in a number of ways to get a new TD system.

$$\begin{array}{ll} (A; \{V_i\}_{i=0}^d; A^*; \{V_i^*\}_{i=0}^d) & (A^*; \{V_i^*\}_{i=0}^d; A; \{V_i\}_{i=0}^d) \\ (A; \{V_{d-i}\}_{i=0}^d; A^*; \{V_i^*\}_{i=0}^d) & (A^*; \{V_{d-i}^*\}_{i=0}^d; A; \{V_i\}_{i=0}^d) \\ (A; \{V_i\}_{i=0}^d; A^*; \{V_{d-i}^*\}_{i=0}^d) & (A^*; \{V_i^*\}_{i=0}^d; A; \{V_{d-i}\}_{i=0}^d) \\ (A; \{V_{d-i}\}_{i=0}^d; A^*; \{V_{d-i}^*\}_{i=0}^d) & (A^*; \{V_{d-i}^*\}_{i=0}^d; A; \{V_{d-i}\}_{i=0}^d) \\ \end{array}$$

These eight TD systems are said to be **relatives** of one another.

Big Goal: Better understand the relationship between these relatives!

A given TD system can be modified in a number of ways to get a new TD system.

$$\longrightarrow (A; \{V_i\}_{i=0}^d; A^*; \{V_i^*\}_{i=0}^d) \qquad (A^*; \{V_i^*\}_{i=0}^d; A; \{V_i\}_{i=0}^d) \longrightarrow (A; \{V_{d-i}\}_{i=0}^d; A^*; \{V_i^*\}_{i=0}^d) \qquad (A^*; \{V_{d-i}\}_{i=0}^d; A; \{V_i\}_{i=0}^d) (A; \{V_i\}_{i=0}^d; A^*; \{V_{d-i}^*\}_{i=0}^d) \qquad (A^*; \{V_i^*\}_{i=0}^d; A; \{V_{d-i}\}_{i=0}^d) (A; \{V_{d-i}\}_{i=0}^d; A^*; \{V_{d-i}^*\}_{i=0}^d) \qquad (A^*; \{V_{d-i}\}_{i=0}^d; A; \{V_{d-i}\}_{i=0}^d)$$

These eight TD systems are said to be **relatives** of one another.

Big Goal: Better understand the relationship between these relatives!

Smaller Goal: Better understand the relationship between these 2 relatives.

- Fix a TD system Φ = (A; {V_i}^d_{i=0}; A*; {V^{*}_i}^d_{i=0}) on V. Let Φ[↓] = (A; {V_{d-i}}^d_{i=0}; A*; {V^{*}_i}^d_{i=0}) denote the second inversion of Φ.
- For 0 ≤ i ≤ d, we let θ_i (resp. θ^{*}_i) denote the eigenvalue of A (resp. A^{*}) corresponding to the eigenspace V_i (resp. V^{*}_i).

Definition

We say that the TD system Φ has q-**Racah type** whenever there exist nonzero scalars $q, a, b \in \overline{\mathbb{K}}$ such that $q^4 \neq 1$ and

$$heta_i = aq^{d-2i} + a^{-1}q^{2i-d}, \ heta_i^* = bq^{d-2i} + b^{-1}q^{2i-d},$$

for $0 \leq i \leq d$.

Assumption

Throughout this talk, we assume that Φ has *q*-Racah type. For simplicity, we also assume that \mathbb{K} is algebraically closed.

Definition

For $0 \leq i \leq d$, define

$$U_i = (V_0^* + V_1^* + \dots + V_i^*) \cap (V_i + V_{i+1} + \dots + V_d),$$
$$U_i^{\downarrow} = (V_0^* + V_1^* + \dots + V_i^*) \cap (V_0 + V_1 + \dots + V_{d-i}).$$

We refer to $\{U_i\}_{i=0}^d$ as the **first split decomposition** of *V*.

We refer to $\{U_i^{\downarrow}\}_{i=0}^d$ as the second split decomposition of V.

The maps K, B

Definition

Let $K : V \to V$ denote the linear transformation such that for $0 \le i \le d$, U_i is an eigenspace of K with eigenvalue q^{d-2i} . That is,

$$(K-q^{d-2i}I)U_i=0$$

for $0 \leq i \leq d$.

Definition

Let $B: V \to V$ denote the linear transformation such that for $0 \le i \le d$, U_i^{\downarrow} is an eigenspace of B with eigenvalue q^{d-2i} . That is,

$$(B-q^{d-2i}I)U_i^{\Downarrow}=0$$

for $0 \leq i \leq d$.

The linear transformation ψ

There is a linear transformation $\psi: V \to V$ associated with the TD system Φ . The exact definition is somewhat technical. One key feature of Ψ is given below.

Lemma (B. 2012) For $0 \le i \le d$, both

> $\psi U_i \subseteq U_{i-1},$ $\psi U_i^{\Downarrow} \subseteq U_{i-1}^{\Downarrow}.$

Moreover, $\psi^{d+1} = 0$.

In light of the above result, we refer to ψ as the **double lowering operator**.

We see that both $K\psi = q^2\psi K$ and $B\psi = q^2\psi B$.

We now introduce a linear transformation $\Delta: V \to V$ which sends the first split decomposition to the second split decomposition.

Lemma (B. 2012)

There exists a unique linear transformation $\Delta: V \to V$ which satisfies

$$\Delta(U_i) \subseteq U_i^{\Downarrow},$$

 $(\Delta - I)U_i \subseteq U_0 + U_1 + \dots + U_{i-1},$

for $0 \leq i \leq d$.

Theorem (B. 2014)

Both

$$\begin{split} \Delta &= \sum_{i=0}^d \left(\prod_{j=1}^i \frac{aq^{j-1} - a^{-1}q^{1-j}}{q^j - q^{-j}} \right) \psi^i, \\ \Delta^{-1} &= \sum_{i=0}^d \left(\prod_{j=1}^i \frac{a^{-1}q^{j-1} - aq^{1-j}}{q^j - q^{-j}} \right) \psi^i. \end{split}$$

Theorem (B. 2014)

Both

$$\begin{split} \Delta &= \sum_{i=0}^d \left(\prod_{j=1}^i \frac{aq^{j-1} - a^{-1}q^{1-j}}{q^j - q^{-j}} \right) \psi^i, \\ \Delta^{-1} &= \sum_{i=0}^d \left(\prod_{j=1}^i \frac{a^{-1}q^{j-1} - aq^{1-j}}{q^j - q^{-j}} \right) \psi^i. \end{split}$$

Question

Does this polynomial factor nicely? If it does, what does that factorization mean?

Definition

Define a linear transformation $\mathcal{M}: \mathit{V} \to \mathit{V}$ by

$$\mathcal{M} = \frac{aK - a^{-1}B}{a - a^{-1}}.$$

We will use this map \mathcal{M} to find a factorization of Δ .

The *q*-exponential function

We now recall the q-exponential function. For nilpotent $T \in End(V)$,

$$exp_q(T) = \sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}}}{[n]_q^!} T^n.$$

Here

$$[n]_q^! = [n]_q [n-1]_q \cdots [1]_q$$

and

$$[n]_q = \frac{q^n - q^{-n}}{q - q^{-1}}.$$

Recall that the map $\exp_a(T)$ is invertible and its inverse is given by

$$\exp_{q^{-1}}(-T) = \sum_{n=0}^{\infty} \frac{(-1)^n q^{-\binom{n}{2}}}{[n]_q^!} T^n.$$

Both

$$\begin{split} & \operatorname{K} \exp_q \left(\frac{a^{-1}}{q - q^{-1}} \psi \right) = \exp_q \left(\frac{a^{-1}}{q - q^{-1}} \psi \right) \mathcal{M}, \\ & B \exp_q \left(\frac{a}{q - q^{-1}} \psi \right) = \exp_q \left(\frac{a}{q - q^{-1}} \psi \right) \mathcal{M}. \end{split}$$

These results turns out to be the key to being able to factor the polynomial in ψ for $\Delta.$

Theorem

Both

$$\begin{split} \Delta &= \exp_q \left(\frac{a}{q-q^{-1}} \psi \right) \exp_{q^{-1}} \left(-\frac{a^{-1}}{q-q^{-1}} \psi \right), \\ \Delta^{-1} &= \exp_q \left(\frac{a^{-1}}{q-q^{-1}} \psi \right) \exp_{q^{-1}} \left(-\frac{a}{q-q^{-1}} \psi \right). \end{split}$$

If we multiply out the right-hand side of the above product and use the q-binomial theorem to simplify the coefficients, we will obtain the polynomial for Δ given earlier in the talk.

We view Δ as a transition matrix from the first split decomposition of V to the second. Consequently, we view

$$\exp_{q^{-1}}\left(-\frac{a^{-1}}{q-q^{-1}}\psi\right)$$

as a transition matrix from the first split decomposition to a decomposition of V which we interpret as a kind of half-way point.

We will describe this new decomposition of V using the linear transformation \mathcal{M} .

The map \mathcal{M} is diagonalizable with eigenvalues $q^d, q^{d-2}, q^{d-4}, \dots, q^{-d}$.

Definition

For $0 \le i \le d$ let W_i denote the eigenspace of \mathcal{M} corresponding to the eigenvalue q^{d-2i} . Note that $\{W_i\}_{i=0}^d$ is a decomposition of V.

For $0 \leq i \leq d$,

$$U_{i} = \exp_{q} \left(\frac{a^{-1}}{q - q^{-1}} \psi \right) W_{i},$$
$$U_{i}^{\downarrow} = \exp_{q} \left(\frac{a}{q - q^{-1}} \psi \right) W_{i},$$

$$W_{i} = \exp_{q^{-1}} \left(-\frac{a^{-1}}{q-q^{-1}}\psi \right) U_{i},$$
$$W_{i} = \exp_{q^{-1}} \left(-\frac{a}{q-q^{-1}}\psi \right) U_{i}^{\downarrow}.$$

For $0 \leq i \leq d$,

$$U_{i} = \exp_{q} \left(\frac{a^{-1}}{q - q^{-1}} \psi \right) W_{i}, \qquad \qquad W_{i} = \exp_{q^{-1}} \left(-\frac{a^{-1}}{q - q^{-1}} \psi \right) U_{i}, \\ U_{i}^{\Downarrow} = \exp_{q} \left(\frac{a}{q - q^{-1}} \psi \right) W_{i}, \qquad \qquad W_{i} = \exp_{q^{-1}} \left(-\frac{a}{q - q^{-1}} \psi \right) U_{i}^{\Downarrow}.$$

We see that W_i is the image of U_i under our q^{-1} -exponential in ψ !

We now know that the decomposition that we have regarded as a half-way point between the two split decompositions is the eigenspace decomposition for \mathcal{M} .

Now that we know how to describe this half-way point, we can investigate the actions of our other linear transformations on this decomposition.

For $0 \leq i \leq d$,

 $\psi W_i \subseteq W_{i-1}.$

Lemma

For $0 \leq i \leq d$,

$$(K - q^{d-2i}I)W_i \subseteq W_{i-1},$$

 $(B - q^{d-2i}I)W_i \subseteq W_{i-1}.$

For $0 \leq i \leq d$,

$$(\Delta - I)W_i \subseteq W_0 + W_1 + \dots + W_{i-1},$$

 $(\Delta^{-1} - I)W_i \subseteq W_0 + W_1 + \dots + W_{i-1}.$

Thank you for your attention!