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Definition of a tridiagonal pair

Let V denote a finite-dimensional vector space over a field K.

Definition

By a tridiagonal pair (or TD pair) on V we mean an ordered pair of linear

transformations A : V → V and A∗ : V → V satisfying:

1. Each of A,A∗ is diagonalizable.

2. There exists an ordering {Vi}di=0 of the eigenspaces of A such that

A∗Vi ⊆ Vi−1 + Vi + Vi+1 (0 ≤ i ≤ d),

where V−1 = 0 and Vd+1 = 0.

3. There exists an ordering {V ∗
i }δi=0 of the eigenspaces of A∗ such that

AV ∗
i ⊆ V ∗

i−1 + V ∗
i + V ∗

i+1 (0 ≤ i ≤ δ),

where V ∗
−1 = 0 and V ∗

δ+1 = 0.

4. There does not exist a subspace W of V such that AW ⊆W ,

A∗W ⊆W , W 6= 0, W 6= V .
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Example: Q-polynomial distance-regular graph

• Let Γ = Γ(X ,E ) denote a Q-polynomial distance-regular graph.

• Let A denote the adjacency matrix of Γ.

• Fix x ∈ X . Let A∗ = A∗(x) denote the dual adjacency matrix of Γ

with respect to x .

• Let W denote an irreducible (A,A∗)-submodule of C|X |.

• Then A,A∗ form a TD pair on W .
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Tridiagonal system

By a tridiagonal system (or TD system) on V , we mean a sequence

Φ = (A; {Vi}di=0;A∗; {V ∗i }di=0)

that satisfies (1)–(3) below.

1. A,A∗ is a tridiagonal pair on V .

2. {Vi}di=0 is an ordering of the eigenspaces of A such that

A∗Vi ⊆ Vi−1 + Vi + Vi+1 (0 ≤ i ≤ d).

3. {V ∗i }di=0 is an ordering of the eigenspaces of A∗ such that

AV ∗i ⊆ V ∗i−1 + V ∗i + V ∗i+1 (0 ≤ i ≤ d).
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Relatives of a TD system

A given TD system can be modified in a number of ways to get a new

TD system.

−→

(A; {Vi}di=0;A∗; {V ∗i }di=0) (A∗; {V ∗i }di=0;A; {Vi}di=0)

−→

(A; {Vd−i}di=0;A∗; {V ∗i }di=0) (A∗; {V ∗d−i}di=0;A; {Vi}di=0)

(A; {Vi}di=0;A∗; {V ∗d−i}di=0) (A∗; {V ∗i }di=0;A; {Vd−i}di=0)

(A; {Vd−i}di=0;A∗; {V ∗d−i}di=0) (A∗; {V ∗d−i}di=0;A; {Vd−i}di=0)

These eight TD systems are said to be relatives of one another.

Big Goal: Better understand the relationship between these relatives!

Smaller Goal: Better understand the relationship between these 2

relatives.
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Assumptions/Notation

• Fix a TD system Φ = (A; {Vi}di=0;A∗; {V ∗i }di=0) on V .

Let Φ⇓ = (A; {Vd−i}di=0;A∗; {V ∗i }di=0) denote the second inversion

of Φ.

• For 0 ≤ i ≤ d , we let θi (resp. θ∗i ) denote the eigenvalue of A (resp.

A∗) corresponding to the eigenspace Vi (resp. V ∗i ).
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q-Racah case

Definition

We say that the TD system Φ has q-Racah type whenever there exist

nonzero scalars q, a, b ∈ K such that q4 6= 1 and

θi = aqd−2i + a−1q2i−d ,

θ∗i = bqd−2i + b−1q2i−d

for 0 ≤ i ≤ d .

Assumption

Throughout this talk, we assume that Φ has q-Racah type. For

simplicity, we also assume that K is algebraically closed.
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The split decompositions of V

Definition

For 0 ≤ i ≤ d , define

Ui = (V ∗0 + V ∗1 + · · ·+ V ∗i ) ∩ (Vi + Vi+1 + · · ·+ Vd),

U⇓i = (V ∗0 + V ∗1 + · · ·+ V ∗i ) ∩ (V0 + V1 + · · ·+ Vd−i ).

We refer to {Ui}di=0 as the first split decomposition of V .

We refer to {U⇓i }di=0 as the second split decomposition of V .
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The maps K ,B

Definition

Let K : V → V denote the linear transformation such that for 0 ≤ i ≤ d ,

Ui is an eigenspace of K with eigenvalue qd−2i . That is,

(K − qd−2i I )Ui = 0

for 0 ≤ i ≤ d .

Definition

Let B : V → V denote the linear transformation such that for 0 ≤ i ≤ d ,

U⇓i is an eigenspace of B with eigenvalue qd−2i . That is,

(B − qd−2i I )U⇓i = 0

for 0 ≤ i ≤ d .
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The linear transformation ψ

There is a linear transformation ψ : V → V associated with the TD

system Φ. The exact definition is somewhat technical. One key feature

of Ψ is given below.

Lemma (B. 2012)

For 0 ≤ i ≤ d , both

ψUi ⊆ Ui−1,

ψU⇓i ⊆ U⇓i−1.

Moreover, ψd+1 = 0.

In light of the above result, we refer to ψ as the double lowering operator.

We see that both Kψ = q2ψK and Bψ = q2ψB.
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The linear transformation ∆

We now introduce a linear transformation ∆ : V → V which sends the

first split decomposition to the second split decomposition.

Lemma (B. 2012)

There exists a unique linear transformation ∆ : V → V which satisfies

∆(Ui ) ⊆ U⇓i ,

(∆− I )Ui ⊆ U0 + U1 + · · ·+ Ui−1,

for 0 ≤ i ≤ d .
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∆ as a polynomial in ψ

Theorem (B. 2014)

Both

∆ =
d∑

i=0

 i∏
j=1

aqj−1 − a−1q1−j

qj − q−j

ψi ,

∆−1 =
d∑

i=0

 i∏
j=1

a−1qj−1 − aq1−j

qj − q−j

ψi .

Question

Does this polynomial factor nicely?

If it does, what does that factorization mean?
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The linear transformation M

Definition

Define a linear transformation M : V → V by

M =
aK − a−1B

a− a−1
.

We will use this map M to find a factorization of ∆.
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The q-exponential function

We now recall the q-exponential function. For nilpotent T ∈ End(V ),

expq(T ) =
∞∑
n=0

q(n
2)

[n]!q
T n.

Here

[n]!q = [n]q[n − 1]q · · · [1]q

and

[n]q =
qn − q−n

q − q−1
.

Recall that the map expq(T ) is invertible and its inverse is given by

expq−1(−T ) =
∞∑
n=0

(−1)nq−(n
2)

[n]!q
T n.
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q-exponentials in ψ

Lemma

Both

K expq

(
a−1

q − q−1
ψ

)
= expq

(
a−1

q − q−1
ψ

)
M,

B expq

(
a

q − q−1
ψ

)
= expq

(
a

q − q−1
ψ

)
M.

These results turns out to be the key to being able to factor the

polynomial in ψ for ∆.
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∆ as a product of q-exponentials

Theorem

Both

∆ = expq

(
a

q−q−1ψ
)

expq−1

(
− a−1

q−q−1ψ
)
,

∆−1 = expq

(
a−1

q−q−1ψ
)

expq−1

(
− a

q−q−1ψ
)
.

If we multiply out the right-hand side of the above product and use the

q-binomial theorem to simplify the coefficients, we will obtain the

polynomial for ∆ given earlier in the talk.
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∆ as a transition matrix

We view ∆ as a transition matrix from the first split decomposition of V

to the second. Consequently, we view

expq−1

(
− a−1

q − q−1
ψ

)
as a transition matrix from the first split decomposition to a

decomposition of V which we interpret as a kind of half-way point.

We will describe this new decomposition of V using the linear

transformation M.
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The eigenspaces of M

Lemma

The map M is diagonalizable with eigenvalues qd , qd−2, qd−4, . . . , q−d .

Definition

For 0 ≤ i ≤ d let Wi denote the eigenspace of M corresponding to the

eigenvalue qd−2i . Note that {Wi}di=0 is a decomposition of V .
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The eigenspaces of M as a half-way point

Lemma

For 0 ≤ i ≤ d ,

Ui = expq

(
a−1

q − q−1
ψ

)
Wi , Wi = expq−1

(
− a−1

q − q−1
ψ

)
Ui ,

U⇓i = expq

(
a

q − q−1
ψ

)
Wi , Wi = expq−1

(
− a

q − q−1
ψ

)
U⇓i .

We see that Wi is the image of Ui under our q−1-exponential in ψ!

We now know that the decomposition that we have regarded as a

half-way point between the two split decompositions is the eigenspace

decomposition for M.
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The actions of various linear transformations on Wi

Now that we know how to describe this half-way point, we can investigate

the actions of our other linear transformations on this decomposition.
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The actions of ψ, K , and B

Lemma

For 0 ≤ i ≤ d ,

ψWi ⊆Wi−1.

Lemma

For 0 ≤ i ≤ d ,

(K − qd−2i I )Wi ⊆Wi−1,

(B − qd−2i I )Wi ⊆Wi−1.
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The action of ∆

Lemma

For 0 ≤ i ≤ d ,

(∆− I )Wi ⊆W0 + W1 + · · ·+ Wi−1,

(∆−1 − I )Wi ⊆W0 + W1 + · · ·+ Wi−1.
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The End

Thank you for your attention!


