Some q-exponential formulas involving the double lowering operator ψ for a tridiagonal pair

Sarah Bockting-Conrad
DePaul University
May 16, 2017

Definition of a tridiagonal pair

Let V denote a finite-dimensional vector space over a field \mathbb{K}.

Definition

By a tridiagonal pair (or TD pair) on V we mean an ordered pair of linear transformations $A: V \rightarrow V$ and $A^{*}: V \rightarrow V$ satisfying:

1. Each of A, A^{*} is diagonalizable.
2. There exists an ordering $\left\{V_{i}\right\}_{i=0}^{d}$ of the eigenspaces of A such that

$$
A^{*} V_{i} \subseteq V_{i-1}+V_{i}+V_{i+1} \quad(0 \leq i \leq d)
$$

where $V_{-1}=0$ and $V_{d+1}=0$.
3. There exists an ordering $\left\{V_{i}^{*}\right\}_{i=0}^{\delta}$ of the eigenspaces of A^{*} such that

$$
A V_{i}^{*} \subseteq V_{i-1}^{*}+V_{i}^{*}+V_{i+1}^{*} \quad(0 \leq i \leq \delta)
$$

where $V_{-1}^{*}=0$ and $V_{\delta+1}^{*}=0$.
4. There does not exist a subspace W of V such that $A W \subseteq W$,
$A^{*} W \subseteq W, W \neq 0, W \neq V$.

Example: Q-polynomial distance-regular graph

- Let $\Gamma=\Gamma(X, E)$ denote a Q-polynomial distance-regular graph.
- Let A denote the adjacency matrix of Γ.
- Fix $x \in X$. Let $A^{*}=A^{*}(x)$ denote the dual adjacency matrix of Γ with respect to x.
- Let W denote an irreducible $\left(A, A^{*}\right)$-submodule of $\mathbb{C}^{|X|}$.
- Then A, A^{*} form a TD pair on W.

Tridiagonal system

By a tridiagonal system (or TD system) on V, we mean a sequence

$$
\Phi=\left(A ;\left\{V_{i}\right\}_{i=0}^{d} ; A^{*} ;\left\{V_{i}^{*}\right\}_{i=0}^{d}\right)
$$

that satisfies (1)-(3) below.

1. A, A^{*} is a tridiagonal pair on V.
2. $\left\{V_{i}\right\}_{i=0}^{d}$ is an ordering of the eigenspaces of A such that

$$
A^{*} V_{i} \subseteq V_{i-1}+V_{i}+V_{i+1} \quad(0 \leq i \leq d)
$$

3. $\left\{V_{i}^{*}\right\}_{i=0}^{d}$ is an ordering of the eigenspaces of A^{*} such that

$$
A V_{i}^{*} \subseteq V_{i-1}^{*}+V_{i}^{*}+V_{i+1}^{*} \quad(0 \leq i \leq d)
$$

Relatives of a TD system

A given TD system can be modified in a number of ways to get a new TD system.

$$
\begin{array}{ll}
\left(A ;\left\{V_{i}\right\}_{i=0}^{d} ; A^{*} ;\left\{V_{i}^{*}\right\}_{i=0}^{d}\right) & \left(A^{*} ;\left\{V_{i}^{*}\right\}_{i=0}^{d} ; A ;\left\{V_{i}\right\}_{i=0}^{d}\right) \\
\left(A ;\left\{V_{d-i}\right\}_{i=0}^{d} ; A^{*} ;\left\{V_{i}^{*}\right\}_{i=0}^{d}\right) & \left(A^{*} ;\left\{V_{d-i}^{*}\right\}_{i=0}^{d} ; A ;\left\{V_{i}\right\}_{i=0}^{d}\right) \\
\left(A ;\left\{V_{i}\right\}_{i=0}^{d} ; A^{*} ;\left\{V_{d-i}^{*}\right\}_{i=0}^{d}\right) & \left(A^{*} ;\left\{V_{i}^{*}\right\}_{i=0}^{d} ; A ;\left\{V_{d-i}\right\}_{i=0}^{d}\right) \\
\left(A ;\left\{V_{d-i}\right\}_{i=0}^{d} ; A^{*} ;\left\{V_{d-i}^{*}\right\}_{i=0}^{d}\right) & \left(A^{*} ;\left\{V_{d-i}^{*}\right\}_{i=0}^{d} ; A ;\left\{V_{d-i}\right\}_{i=0}^{d}\right)
\end{array}
$$

These eight TD systems are said to be relatives of one another.

Relatives of a TD system

A given TD system can be modified in a number of ways to get a new TD system.

$$
\begin{array}{ll}
\left(A ;\left\{V_{i}\right\}_{i=0}^{d} ; A^{*} ;\left\{V_{i}^{*}\right\}_{i=0}^{d}\right) & \left(A^{*} ;\left\{V_{i}^{*}\right\}_{i=0}^{d} ; A ;\left\{V_{i}\right\}_{i=0}^{d}\right) \\
\left(A ;\left\{V_{d-i}\right\}_{i=0}^{d} ; A^{*} ;\left\{V_{i}^{*}\right\}_{i=0}^{d}\right) & \left(A^{*} ;\left\{V_{d-i}^{*}\right\}_{i=0}^{d} ; A ;\left\{V_{i}\right\}_{i=0}^{d}\right) \\
\left(A ;\left\{V_{i}\right\}_{i=0}^{d} ; A^{*} ;\left\{V_{d-i}^{*}\right\}_{i=0}^{d}\right) & \left(A^{*} ;\left\{V_{i}^{*}\right\}_{i=0}^{d} ; A ;\left\{V_{d-i}\right\}_{i=0}^{d}\right) \\
\left(A ;\left\{V_{d-i}\right\}_{i=0}^{d} ; A^{*} ;\left\{V_{d-i}^{*}\right\}_{i=0}^{d}\right) & \left(A^{*} ;\left\{V_{d-i}^{*}\right\}_{i=0}^{d} ; A ;\left\{V_{d-i}\right\}_{i=0}^{d}\right)
\end{array}
$$

These eight TD systems are said to be relatives of one another.

Big Goal: Better understand the relationship between these relatives!

Relatives of a TD system

A given TD system can be modified in a number of ways to get a new TD system.

$$
\begin{array}{rlrl}
\longrightarrow & \left(A ;\left\{V_{i}\right\}_{i=0}^{d} ; A^{*} ;\left\{V_{i}^{*}\right\}_{i=0}^{d}\right) & & \left(A^{*} ;\left\{V_{i}^{*}\right\}_{i=0}^{d} ; A ;\left\{V_{i}\right\}_{i=0}^{d}\right) \\
\longrightarrow & \left(A ;\left\{V_{d-i}\right\}_{i=0}^{d} ; A^{*} ;\left\{V_{i}^{*}\right\}_{i=0}^{d}\right) & \left(A^{*} ;\left\{V_{d-i}^{*}\right\}_{i=0}^{d} ; A ;\left\{V_{i}\right\}_{i=0}^{d}\right) \\
& \left(A ;\left\{V_{i}\right\}_{i=0}^{d} ; A^{*} ;\left\{V_{d-i}^{*}\right\}_{i=0}^{d}\right) & \left(A^{*} ;\left\{V_{i}^{*}\right\}_{i=0}^{d} ; A ;\left\{V_{d-i}\right\}_{i=0}^{d}\right) \\
& \left(A ;\left\{V_{d-i}\right\}_{i=0}^{d} ; A^{*} ;\left\{V_{d-i}^{*}\right\}_{i=0}^{d}\right) & \left(A^{*} ;\left\{V_{d-i}^{*}\right\}_{i=0}^{d} ; A ;\left\{V_{d-i}\right\}_{i=0}^{d}\right)
\end{array}
$$

These eight TD systems are said to be relatives of one another.

Big Goal: Better understand the relationship between these relatives!

Smaller Goal: Better understand the relationship between these 2 relatives.

Assumptions/Notation

- Fix a TD system $\Phi=\left(A ;\left\{V_{i}\right\}_{i=0}^{d} ; A^{*} ;\left\{V_{i}^{*}\right\}_{i=0}^{d}\right)$ on V. Let $\Phi^{\Downarrow}=\left(A ;\left\{V_{d-i}\right\}_{i=0}^{d} ; A^{*} ;\left\{V_{i}^{*}\right\}_{i=0}^{d}\right)$ denote the second inversion of Φ.
- For $0 \leq i \leq d$, we let θ_{i} (resp. θ_{i}^{*}) denote the eigenvalue of A (resp. $\left.A^{*}\right)$ corresponding to the eigenspace V_{i} (resp. V_{i}^{*}).

q-Racah case

Definition

We say that the TD system Φ has q-Racah type whenever there exist nonzero scalars $q, a, b \in \overline{\mathbb{K}}$ such that $q^{4} \neq 1$ and

$$
\begin{aligned}
\theta_{i} & =a q^{d-2 i}+a^{-1} q^{2 i-d}, \\
\theta_{i}^{*} & =b q^{d-2 i}+b^{-1} q^{2 i-d}
\end{aligned}
$$

for $0 \leq i \leq d$.

Assumption

Throughout this talk, we assume that Φ has q-Racah type. For simplicity, we also assume that \mathbb{K} is algebraically closed.

The split decompositions of V

Definition

For $0 \leq i \leq d$, define

$$
\begin{aligned}
& U_{i}=\left(V_{0}^{*}+V_{1}^{*}+\cdots+V_{i}^{*}\right) \cap\left(V_{i}+V_{i+1}+\cdots+V_{d}\right), \\
& U_{i}^{\Downarrow}=\left(V_{0}^{*}+V_{1}^{*}+\cdots+V_{i}^{*}\right) \cap\left(V_{0}+V_{1}+\cdots+V_{d-i}\right) .
\end{aligned}
$$

We refer to $\left\{U_{i}\right\}_{i=0}^{d}$ as the first split decomposition of V.

We refer to $\left\{U_{i}^{\Downarrow}\right\}_{i=0}^{d}$ as the second split decomposition of V.

The maps K, B

Definition

Let $K: V \rightarrow V$ denote the linear transformation such that for $0 \leq i \leq d$, U_{i} is an eigenspace of K with eigenvalue $q^{d-2 i}$. That is,

$$
\left(K-q^{d-2 i} I\right) U_{i}=0
$$

for $0 \leq i \leq d$.

Definition

Let $B: V \rightarrow V$ denote the linear transformation such that for $0 \leq i \leq d$, U_{i}^{\Downarrow} is an eigenspace of B with eigenvalue $q^{d-2 i}$. That is,

$$
\left(B-q^{d-2 i} I\right) U_{i}^{\Downarrow}=0
$$

for $0 \leq i \leq d$.

The linear transformation ψ

There is a linear transformation $\psi: V \rightarrow V$ associated with the TD system Φ. The exact definition is somewhat technical. One key feature of Ψ is given below.

Lemma (B. 2012)
For $0 \leq i \leq d$, both

$$
\begin{aligned}
\psi U_{i} & \subseteq U_{i-1}, \\
\psi U_{i}^{\Downarrow} & \subseteq U_{i-1}^{\Downarrow} .
\end{aligned}
$$

Moreover, $\psi^{d+1}=0$.

In light of the above result, we refer to ψ as the double lowering operator.

We see that both $K \psi=q^{2} \psi K$ and $B \psi=q^{2} \psi B$.

The linear transformation Δ

We now introduce a linear transformation $\Delta: V \rightarrow V$ which sends the first split decomposition to the second split decomposition.

Lemma (B. 2012)
There exists a unique linear transformation $\Delta: V \rightarrow V$ which satisfies

$$
\begin{aligned}
& \Delta\left(U_{i}\right) \subseteq U_{i}^{\Downarrow} \\
& (\Delta-I) U_{i} \subseteq U_{0}+U_{1}+\cdots+U_{i-1}
\end{aligned}
$$

for $0 \leq i \leq d$.

\triangle as a polynomial in ψ

Theorem (B. 2014)
Both

$$
\begin{aligned}
\Delta & =\sum_{i=0}^{d}\left(\prod_{j=1}^{i} \frac{a q^{j-1}-a^{-1} q^{1-j}}{q^{j}-q^{-j}}\right) \psi^{i}, \\
\Delta^{-1} & =\sum_{i=0}^{d}\left(\prod_{j=1}^{i} \frac{a^{-1} q^{j-1}-a q^{1-j}}{q^{j}-q^{-j}}\right) \psi^{i} .
\end{aligned}
$$

Δ as a polynomial in ψ

Theorem (B. 2014)
Both

$$
\begin{aligned}
\Delta & =\sum_{i=0}^{d}\left(\prod_{j=1}^{i} \frac{a q^{j-1}-a^{-1} q^{1-j}}{q^{j}-q^{-j}}\right) \psi^{i}, \\
\Delta^{-1} & =\sum_{i=0}^{d}\left(\prod_{j=1}^{i} \frac{a^{-1} q^{j-1}-a q^{1-j}}{q^{j}-q^{-j}}\right) \psi^{i} .
\end{aligned}
$$

Question

Does this polynomial factor nicely?
If it does, what does that factorization mean?

The linear transformation \mathcal{M}

Definition

Define a linear transformation $\mathcal{M}: V \rightarrow V$ by

$$
\mathcal{M}=\frac{a K-a^{-1} B}{a-a^{-1}}
$$

We will use this map \mathcal{M} to find a factorization of Δ.

The q-exponential function

We now recall the q-exponential function. For nilpotent $T \in \operatorname{End}(V)$,

$$
\exp _{q}(T)=\sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}}}{[n]_{q}^{!}} T^{n} .
$$

Here

$$
[n]_{q}^{!}=[n]_{q}[n-1]_{q} \cdots[1]_{q}
$$

and

$$
[n]_{q}=\frac{q^{n}-q^{-n}}{q-q^{-1}} .
$$

Recall that the map $\exp _{q}(T)$ is invertible and its inverse is given by

$$
\exp _{q^{-1}}(-T)=\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{-\binom{n}{2}}}{[n]_{q}^{!}} T^{n}
$$

Lemma

Both

$$
\begin{aligned}
K \exp _{q}\left(\frac{a^{-1}}{q-q^{-1}} \psi\right) & =\exp _{q}\left(\frac{a^{-1}}{q-q^{-1}} \psi\right) \mathcal{M} \\
B \exp _{q}\left(\frac{a}{q-q^{-1}} \psi\right) & =\exp _{q}\left(\frac{a}{q-q^{-1}} \psi\right) \mathcal{M}
\end{aligned}
$$

These results turns out to be the key to being able to factor the polynomial in ψ for Δ.

Δ as a product of q-exponentials

Theorem

Both

$$
\begin{aligned}
\Delta & =\exp _{q}\left(\frac{a}{q-q^{-1}} \psi\right) \exp _{q^{-1}}\left(-\frac{a^{-1}}{q-q^{-1}} \psi\right), \\
\Delta^{-1} & =\exp _{q}\left(\frac{a^{-1}}{q-q^{-1}} \psi\right) \exp _{q^{-1}}\left(-\frac{a}{q-q^{-1}} \psi\right) .
\end{aligned}
$$

If we multiply out the right-hand side of the above product and use the q-binomial theorem to simplify the coefficients, we will obtain the polynomial for Δ given earlier in the talk.

Δ as a transition matrix

We view Δ as a transition matrix from the first split decomposition of V to the second. Consequently, we view

$$
\exp _{q^{-1}}\left(-\frac{a^{-1}}{q-q^{-1}} \psi\right)
$$

as a transition matrix from the first split decomposition to a decomposition of V which we interpret as a kind of half-way point.

We will describe this new decomposition of V using the linear transformation \mathcal{M}.

The eigenspaces of \mathcal{M}

Lemma

The map \mathcal{M} is diagonalizable with eigenvalues $q^{d}, q^{d-2}, q^{d-4}, \ldots, q^{-d}$.

Definition

For $0 \leq i \leq d$ let W_{i} denote the eigenspace of \mathcal{M} corresponding to the eigenvalue $q^{d-2 i}$. Note that $\left\{W_{i}\right\}_{i=0}^{d}$ is a decomposition of V.

The eigenspaces of \mathcal{M} as a half-way point

Lemma

For $0 \leq i \leq d$,

$$
\begin{array}{ll}
U_{i}=\exp _{q}\left(\frac{a^{-1}}{q-q^{-1}} \psi\right) W_{i}, & W_{i}=\exp _{q^{-1}}\left(-\frac{a^{-1}}{q-q^{-1}} \psi\right) U_{i}, \\
U_{i}^{\Downarrow}=\exp _{q}\left(\frac{a}{q-q^{-1}} \psi\right) W_{i}, & W_{i}=\exp _{q^{-1}}\left(-\frac{a}{q-q^{-1}} \psi\right) U_{i}^{\Downarrow .}
\end{array}
$$

The eigenspaces of \mathcal{M} as a half-way point

Lemma

For $0 \leq i \leq d$,

$$
\begin{array}{ll}
U_{i}=\exp _{q}\left(\frac{a^{-1}}{q-q^{-1}} \psi\right) W_{i}, & W_{i}=\exp _{q^{-1}}\left(-\frac{a^{-1}}{q-q^{-1}} \psi\right) U_{i}, \\
U_{i}^{\Downarrow}=\exp _{q}\left(\frac{a}{q-q^{-1}} \psi\right) W_{i}, & W_{i}=\exp _{q^{-1}}\left(-\frac{a}{q-q^{-1}} \psi\right) U_{i}^{\Downarrow .}
\end{array}
$$

We see that W_{i} is the image of U_{i} under our q^{-1}-exponential in ψ !
We now know that the decomposition that we have regarded as a half-way point between the two split decompositions is the eigenspace decomposition for \mathcal{M}.

The actions of various linear transformations on W_{i}

Now that we know how to describe this half-way point, we can investigate the actions of our other linear transformations on this decomposition.

The actions of ψ, K, and B

Lemma
For $0 \leq i \leq d$,

$$
\psi W_{i} \subseteq W_{i-1}
$$

Lemma
For $0 \leq i \leq d$,

$$
\begin{aligned}
& \left(K-q^{d-2 i} I\right) W_{i} \subseteq W_{i-1}, \\
& \left(B-q^{d-2 i} I\right) W_{i} \subseteq W_{i-1} .
\end{aligned}
$$

The action of Δ

Lemma
For $0 \leq i \leq d$,

$$
\begin{aligned}
(\Delta-I) W_{i} & \subseteq W_{0}+W_{1}+\cdots+W_{i-1}, \\
\left(\Delta^{-1}-I\right) W_{i} & \subseteq W_{0}+W_{1}+\cdots+W_{i-1} .
\end{aligned}
$$

Thank you for your attention!

