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CHROMATIC SYMMETRIC FUNCTION

Given G with vertices vq, v, ..., vy the chromatic symmetric
function is

Xe = ZXH(Vl)XH(Vz) T Xie(v)

where the sum over all proper colourings x.

-
One colour: . . . . . .
2 2 2

Xi %) X3

Two colours: . . . .

X1X2 X2X1

\_

G=0 O has XG:X12+X22+X32+---
2x1Xp + 2x0x3 + 2x1x3 + - - -
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SYMMETRIC FUNCTIONS

A partition A\1 > Ao > -+ > Ag > 0 of N is a list of positive
integers whose sum is N: 3221 F 8.
The i-th elementary symmetric function, e;

&= D, X%
J1<jp <<
and

EN =€)\ .- €N

[921=(X1X2+X1X3+X2X3+"-)(X1+X2+X3+---)

Let A be the algebra of symmetric functions
AN=NaoAN e cQx,x...]
AN = spang{ex | A= N}.
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e-POSITIVITY
G is e-positive if X¢ is a positive linear combination of e).

4 )
O—0—0O has Xg = ex1 +3e3 ¥V

% has X = e211 — 2e00 + 5e31 +4e X

This is the claw, the smallest which is not e-positive graph.

\_

When is X¢ a positive linear combination of e\? ...or not?

Stanley 1995:

We don’t know of a graph which is not contractible to Ki3 (even
regarding multiple edges of a contraction as a single edge) which is
not e-positive.
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...WITH CHROMATIC SYMMETRIC FUNCTION
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Q0 P 0 &

2e300 — 6933 + 26e4 + 28651 + 10266
2e31 — be3 + 24ep + 40e51 4+ 12064
26222 — 12633 + 30642 + 24651 -+ 18666
2e3391 — 06e33  + 20e4 + 32e51 + 228eg

Smallest counterexamples to Stanley’s statement.



INFINITE FAMILY: SALTIRE GRAPHS

The saltire graph SA, , for n > 3 is given by

Vo V1 Vo V1
// \\
/ \
v3 Ve left n-path right n-path
\ /
\ /
va > Va+1 Va+2

with 5Az 3 on the left.



INFINITE FAMILY: SALTIRE GRAPHS

THEOREM (D-FOLEY-VAN WILLIGENBURG 2017)

SAn n for n > 3 is claw-contractible-free and

lenn] Xs4,, = —n(n —1)(n — 2).

CCF:
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AND CLAW-FREE: TRIANGULAR TOWER GRAPHS

The triangular tower graph 77T, ,, for n > 3 is given by

with TT333 on the left.




AND CLAW-FREE: TRIANGULAR TOWER GRAPHS

THEOREM (D-FOLEY-VAN WILLIGENBURG 2017)

TThnn for n > 3 is claw-contractible-free, claw-free and

[ennn]XTTn,n,n = _n(n - 1)2(n - 2)

CCF+CF:
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CONJECTURES

© Bloated K3 3:

with 3n vertices has

—(3 % 2")esn.

@ No G exists that is connected, claw-contractible-free,
claw-free and not e-positive with 10, 11 vertices.



SCARCITY

N = 6: 4 of 112 connected graphs ccf and not e-positive.

N = 7: 7 of 853 connected graphs ccf and not e-positive.

N = 8: 27 of 11117 connected graphs ccf and not e-positive.
Of 293 terms in TT777 only —ve at e777.

Of 564 terms in TTggg only —ves at eggg and —1944e444444.

Of 1042 terms in TTg 9 only —ves at eggg and
—768€333333333-
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Thank you very much!




