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Chromatic symmetric functions

Given G with vertex set V a proper colouring κ of G is

κ : V → {1, 2, 3, . . .}

so if v1, v2 ∈ V are joined by an edge then

κ(v1) 6= κ(v2).
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Chromatic symmetric functions

Given a proper colouring κ of vertices v1, . . . , vN associate a
monomial in commuting variables x1, x2, x3, . . .

xκ(v1)xκ(v2) · · · xκ(vN).

1 2 1 gives x1x2x1 = x21x2

3 1 3 gives x3x1x3 = x1x
2
3

1 2 3 gives x1x2x3
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Chromatic symmetric function
Given G with vertices v1, v2, . . . , vN the chromatic symmetric
function is

XG =
∑
κ

xκ(v1)xκ(v2) · · · xκ(vN)

where the sum over all proper colourings κ.

One colour: 1 1 2 2 3 3 · · ·
x21 x22 x23

Two colours: 1 2 2 1 · · ·
x1x2 x2x1

G = has XG = x21 + x22 + x23 + · · ·
2x1x2 + 2x2x3 + 2x1x3 + · · ·
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Symmetric functions
A partition λ1 ≥ λ2 ≥ · · · ≥ λk > 0 of N is a list of positive
integers whose sum is N: 3221 ` 8.

The i -th elementary symmetric function, ei

ei =
∑

j1<j2<···<ji

xj1 . . . xji

and
eλ = eλ1 . . . eλk .

e21 = (x1x2 + x1x3 + x2x3 + · · · )(x1 + x2 + x3 + · · · )

Let Λ be the algebra of symmetric functions

Λ = Λ0 ⊕ Λ1 ⊕ · · · ⊂ Q[[x1, x2, . . . ]]

ΛN = spanQ{eλ | λ ` N}.
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e-positivity

G is e-positive if XG is a positive linear combination of eλ.

has XG = e21 + 3e3 4

has XG = e211 − 2e22 + 5e31 + 4e4 8

This is the claw, the smallest which is not e-positive graph.

When is XG a positive linear combination of eλ?

...or not?

Stanley 1995:

We don’t know of a graph which is not contractible to K13 (even
regarding multiple edges of a contraction as a single edge) which is

not e-positive.
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Claw-contractible-free

Contracts to the claw: shrinking edges + identifying vertices +
removing multiple edges = claw.

Proposition (Brouwer-Veldman 1987)

G is claw-contractible-free if and only if deleting all sets of 3
non-adjacent vertices gives disconnection.
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...with chromatic symmetric function

2e222 − 6e33 + 26e42 + 28e51 + 102e6
2e321 − 6e33 + 24e42 + 40e51 + 120e6
2e222 − 12e33 + 30e42 + 24e51 + 186e6
2e321 − 6e33 + 20e42 + 32e51 + 228e6

Smallest counterexamples to Stanley’s statement.
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Infinite family: saltire graphs

The saltire graph SAn,n for n ≥ 3 is given by

left n-path right n-path

v2 v1

va+2va+1

v3

v2 v1

v6

v5v4

with SA3,3 on the left.



Infinite family: saltire graphs

Theorem (D-Foley-van Willigenburg 2017)

SAn,n for n ≥ 3 is claw-contractible-free and

[enn]XSAn,n = −n(n − 1)(n − 2).

CCF:



And claw-free: triangular tower graphs

Claw-free: does not contain the claw as an induced subgraph.
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And claw-free: triangular tower graphs

The triangular tower graph TTn,n,n for n ≥ 3 is given by

left n mid n right n

with TT3,3,3 on the left.



And claw-free: triangular tower graphs

Theorem (D-Foley-van Willigenburg 2017)

TTn,n,n for n ≥ 3 is claw-contractible-free, claw-free and

[ennn]XTTn,n,n = −n(n − 1)2(n − 2).

CCF+CF:



Conjectures

1 Bloated K3,3:

with 3n vertices has

−(3× 2n)e3n .

2 No G exists that is connected, claw-contractible-free,
claw-free and not e-positive with 10, 11 vertices.



Scarcity

N = 6: 4 of 112 connected graphs ccf and not e-positive.

N = 7: 7 of 853 connected graphs ccf and not e-positive.

N = 8: 27 of 11117 connected graphs ccf and not e-positive.

Of 293 terms in TT7,7,7 only −ve at e777.

Of 564 terms in TT8,8,8 only −ves at e888 and −1944e444444.

Of 1042 terms in TT9,9,9 only −ves at e999 and
−768e333333333.
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Thank you very much!


