A Remmel-Whitney style rule for quasisymmetric Schur functions

Elizabeth Niese Marshall University niese@marshall.edu

Algebraic Combinatorixx2 May 16, 2017

<ロト <部ト <注入 <注下 = 正

Schur functions

- are symmetric
- are a basis for the ring of symmetric functions
- A have a nice combinatorial definition
- appear in many other areas, including representation theory, algebraic geometry

Quasisymmetric Schur functions

- are quasisymmetric
- are a basis for the ring of quasisymmetric functions
- A have a nice combinatorial definition
- refine the (symmetric) Schur functions

Let λ be an integer partition. A semi-standard Young tableau of shape λ is a filling of the diagram of λ with positive integers so that columns strictly increase from bottom to top and rows weakly increase from left to right.

$$T = \frac{5 \ 5}{3 \ 4 \ 4} \\ 1 \ 2 \ 3 \ 3 \ 4$$

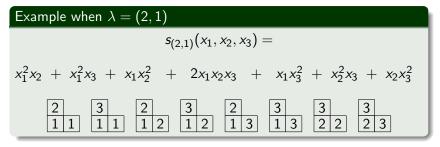
The content monomial of T is $x^T = \prod_i x_i^{\# \text{ of } i\text{'s in } T}$.

$$x^{T} = x_1 x_2 x_3^3 x_4^3 x_5^2$$

Given an integer partition λ , the Schur function indexed by λ is

$$s_{\lambda} = \sum_{T} x^{T}$$

where the sum is over all semi-standard Young tableaux of shape λ .



Littlewood-Richardson Rule

Theorem

For partitions λ and μ ,

$$s_\lambda s_\mu = \sum_
u c^
u_{\lambda\mu} s_
u$$

where the sum is over all partitions ν such that $|\nu| = |\lambda| + |\mu|$ and $\mu \subseteq \nu$. The coefficients, $c_{\lambda\mu}^{\nu}$, are the number of Littlewood-Richardson tableaux of shape ν/μ and content λ .

Theorem (Remmel, Whitney 1984)

There exists a set $\mathcal{O}(\lambda, \mu, \nu)$ of standard tableaux such that

•
$$|\mathcal{O}(\lambda,\mu,
u)|=\mathsf{c}_{\lambda\mu}^{
u}$$
, and

• the elements of $\mathcal{O}(\lambda, \mu, \nu)$ can be generated algorithmically as leaves of a certain tree.

伺下 イヨト イヨト

Quasisymmetric polynomials

A polynomial p is quasisymmetric if

$$\operatorname{coeff.}\left(x_1^{a_1} x_2^{a_2} \cdots x_k^{a_k}\right) = \operatorname{coeff.}\left(x_{i_1}^{a_1} x_{i_2}^{a_2} \cdots x_{i_k}^{a_k}\right)$$

for all $i_1 < i_2 < \cdots < i_k$.

Example.

$$x_1^2 x_2^4 + x_1^2 x_3^4 + x_2^2 x_3^4$$
 and $x_1^4 x_2^2 + x_1^4 x_3^2 + x_2^4 x_3^2$

- 4 ∃ >

Composition tableaux

Given a composition $\alpha,$ a composition tableau is a filling, F, of the cells of the diagram of α such that

- The leftmost column entries strictly increase from bottom to top.
- The row entries weakly increase from L to R.
- The entries satisfy the triple rule:
 - if $a \ge b$, then a > c

$$F = \begin{bmatrix} 3 & 3 & 4 \\ 2 & 2 \\ 1 & 1 & 5 \end{bmatrix}$$

$$x^F = x_1^2 x_2^2 x_3^2 x_4 x_5$$

h C

а

Quasisymmetric Schur Functions

Composition tableaux

Given a composition $\alpha,$ a composition tableau is a filling, F, of the cells of the diagram of α such that

- The leftmost column entries strictly increase from bottom to top.
- The row entries weakly increase from L to R.
- The entries satisfy the triple rule:

if
$$a \geq b$$
, then $a > c$

The quasisymmetric Schur function indexed by α is

$$C_{\alpha} = \sum_{F} x^{F}$$

where the sum is over all composition tableaux of shape α .

bc

а

- The \mathcal{C}_{α} are quasisymmetric.
- They refine the Schur functions:

$$s_{\lambda} = \sum_{\widetilde{lpha} = \lambda} \mathcal{C}_{lpha}$$

- They form a basis for the quasisymmetric functions.
- Behave similarly to Schur functions.

Theorem (Haglund et al.)

Let μ be a partition and α a composition. Then

$$\mathcal{C}_{lpha} \pmb{s}_{\mu} = \sum_{eta} \pmb{A}^{eta}_{lpha,\mu} \mathcal{C}_{eta}$$

where $|\beta/\alpha| = \mu$ and $A^{\beta}_{\alpha,\mu}$ is the number of Littlewood-Richardson composition tableaux of shape β/α and content μ .

Definition

A Littlewood Richardson composition tableau is a skew composition tableau of shape β/α with the properties:

- rows weakly increase from left to right,
- the column reading word (down columns starting with rightmost) is a lattice word, and
- two triple conditions are satisfied.

Remmel-Whitney Rule

Definition

Let α be a composition and λ be a partition. Then

$$\alpha * \lambda := (\lambda_1 + \alpha_1, \lambda_1 + \alpha_2, \dots, \lambda_1 + \alpha_k, \lambda_1, \lambda_2, \dots, \lambda_m)/(\lambda_1)^k$$

and define $S_{\alpha*\lambda}$ to be the filling of $\alpha*\lambda$ obtained by placing the labels $1, 2, \ldots, |\alpha| + |\lambda|$ into the diagram of $\alpha*\lambda$ in reverse reading order.

Example.

Let $\alpha = (1, 2, 1)$ and $\lambda = (1, 1)$. Then

$$S_{\alpha*\lambda} = \underbrace{\begin{bmatrix} 6\\5\\4\\3\\2\\1\end{bmatrix}}_{1}$$

Remmel-Whitney Rule

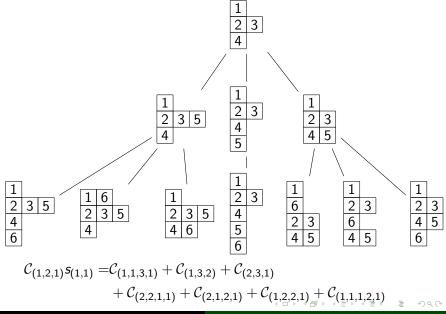
Create a set $\mathcal{QO}(\alpha * \lambda)$ in the following way:

- place the entries 1,..., |α| into the diagram of α in reading order (left to right, starting with the top row),
- for each *i*, $|\alpha| + 1 ≤ |\alpha| + |\lambda|$, once *i* − 1 has been placed, follow the rules for the placement of *i* into the tableau:
 - If i 1 and i are in the same row of $S_{\alpha * \lambda}$, i must be placed in a column strictly right of i 1 such that once i is placed at the end of a row, there is no row of the same length below it.
 - If *i* is in the same column as *y*, y < i, in $S_{\alpha*\lambda}$, then *i* must be placed in a column weakly left of *y* such that once *i* is placed at the end of a row, there is no row of the same length below it.
- Keep track of each possible placement of i by using a tree.
- If no placement of *i* is possible, mark as a dead end and disregard.
- The elements of $\mathcal{QO}(\alpha * \lambda)$ are the leaves of the tree which are not dead ends.

Theorem (N.)

Given α , λ , and β , the number of tableaux in $QO(\alpha * \lambda)$ of shape β is the number of Littlewood-Richardson composition tableaux of shape β/α with content λ .

The tree generating elements of $\mathcal{QO}((1, \overline{2, 1}) * (1, 1))$



Elizabeth Niese

A Remmel-Whitney style rule for quasisymmetric Schur functions

• There is a row-strict version \mathcal{R}_{α} of the quasisymmetric Schur functions. These also refine the Schur functions:

$$s_{\lambda'} = \sum_{\widetilde{lpha} = \lambda} \mathcal{R}_{lpha}.$$

- There is another version of the Remmel-Whitney rule that applies to the \mathcal{R}_{α} . It is not the same as the rule for \mathcal{C}_{α} .
- The main differences between the rule for quasisymmetric Schur functions and Schur functions are
 - the manner in which new rows are created,
 - adherence to triple rules, and
 - the possibility of a "dead end" or leaf that must be disregarded.

- Adapt for skew quasisymmetric Schur functions.
- Adapt for C_αC_β. This will be a particular challenge since C_αC_β does not necessarily expand positively in the quasisymmetric Schur basis. An appropriate adaptation will require both incorporating signs and having a rule that may remove/rearrange boxes.
- Look at products like $C_{\alpha} \mathcal{R}_{\beta}$.