Surfaces, orbifolds, and dominance

Shira Viel
North Carolina State University

Algebraic CombinatoriXX 2
May 16, 2017

The normal fan to the n-cyclohedron (aka Type $B n$-associahedron) refines the normal fan to the n-associahedron (of Type A):

Centrally-symmetric triangulations of the $(2 n+2)$-gon

Triangulations of the $(n+3)$-gon

Exchange matrices and matrix dominance

An exchange matrix is a skew-symmetrizable integer matrix.

- Fundamental combinatorial datum specifying a cluster algebra
- Finite-type exchange matrices classified by (finite) Dynkin diagrams)

Definition

Given $n \times n$ exchange matrices $B=\left[b_{i j}\right]$ and $B^{\prime}=\left[b_{i j}^{\prime}\right]$, we say that B dominates B^{\prime} if for each i and j,

- the entries $b_{i j}$ and $b_{i j}^{\prime}$ weakly agree in sign, and
- $\left|b_{i j}\right| \geq\left|b_{i j}^{\prime}\right|$.

Example
$B=\left[\begin{array}{cc}0 & 1 \\ -2 & 0\end{array}\right]$ dominates $B^{\prime}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$.
(B skew-symmetrizable since $B D=\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]$ for $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right] \in \operatorname{diag}\left(\mathbb{Z}_{+}\right)$)

Suppose B, B^{\prime} are exchange matrices such that B dominates B^{\prime}. Reading has shown that in many cases,
(1) There exists an injective ring homomorphism from the cluster algebra $\mathcal{A}_{\bullet}\left(B^{\prime}\right)$ into $\mathcal{A}_{\bullet}(B)$ (which preserves g-vectors),
(2) The identity map from \mathbb{R}^{B} to $\mathbb{R}^{B^{\prime}}$ is mutation-linear,
(3) The scattering fan \mathcal{D}_{B} refines the scattering fan $\mathcal{D}_{B^{\prime}}$,
(9) The mutation fan \mathcal{F}_{B} refines the mutation fan $\mathcal{F}_{B^{\prime}}$.

The mutation fan

Broadly, the mutation fan for an $n \times n$ exchange matrix is a complete fan in \mathbb{R}^{n} which encodes the combinatorics of mutation.
$\left(\begin{array}{l}\bullet \text { generalization of } \mathrm{g} \text {-vector fan: for finite-type cluster algebras, they coincide } \\ \text { - can be used to construct bases/universal coefficients }\end{array}\right.$)
Suppose B, B^{\prime} are exchange matrices such that B dominates B^{\prime}. In many cases, the mutation fan \mathcal{F}_{B} refines the mutation fan $\mathcal{F}_{B^{\prime}}$.

Example

$$
\mathcal{F}_{\left[\begin{array}{cc}
0 & 1 \\
-2 & 0
\end{array}\right]}=
$$

Theorem

\mathcal{F}_{B} refines \mathcal{F}_{B}^{\prime} when B^{\prime} is obtained from B by orbifold-resection.

Marked surface: 2-dim'l compact oriented surface S, possibly with boundary, with designated marked points M.
Arcs: special class of curves in S that connect marked points. Considered up to isotopy relative to M.
Triangulations: maximal compatible collections T of arcs, always of the same cardinality n.
Signed adjacency matrix: $n \times n$ skew-symmetric integer matrix $B(T)$ encoding adjacencies of arcs in triangulation.

Example

Orbifold: topological space, locally looks like quotient space of ...

- (in general) ... \mathbb{R}^{n} under linear action of finite group
- (for me) ... marked surface under symmetry of surface
- (today) ... marked surface under central π-rotation

Fixed points under action are called orbifold points, denoted \times. (Think of the origin of the complex plane under the $z \mapsto z^{2}$ map)

Example

$$
\left.B(T)=\begin{array}{c}
\alpha \\
\beta_{1} \\
\beta_{1}
\end{array} \begin{array}{ccc}
\alpha & \beta_{1} & \beta_{2} \\
0 & 1 & 1 \\
-1 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right]
$$

$$
\left.B(\bar{T})=\begin{array}{c}
\alpha \\
\beta
\end{array} \begin{array}{cc}
\alpha & \beta \\
0 & 1 \\
-2 & 0
\end{array}\right]
$$

Marked orbifold: 2-dim'l compact oriented surface S, possibly with boundary, with designated marked points M, and orbifold points Q endowed with angle $\pi . M \cap Q=\emptyset$.
(Pending) arcs: special class of curves in S connecting marked points, or connecting a marked and orbifold point. Considered up to isotopy relative to $M \cup Q$.
Signed adjacency matrix: $n \times n$ skew-symmetrizable integer matrix $B(T)$ encoding adjacencies of arcs in triangulation.

Example

$$
\left.B(T)=\begin{array}{c}
\\
\alpha \\
\beta
\end{array} \begin{array}{cc}
\alpha & \beta \\
0 & 1 \\
-2 & 0
\end{array}\right]
$$

Note: If $Q=\emptyset$, then $(S, M, Q)=(S, M)$ is a marked surface.

Resection and orbifold-resection

Reading defines resection, an operation on marked surfaces that induces a dominance relation on signed adjacency matrices:

We introduce an analogous orbifold-resection operation which also induces dominance on signed adjacency matrices.

Once-orbifolded triangle $\xrightarrow{\text { o-resect }}$ pentagon

Example

$$
\left.B=\begin{array}{c}
\\
\alpha \\
\beta
\end{array} \begin{array}{cc}
\alpha & \beta \\
0 & 1 \\
-2 & 0
\end{array}\right]
$$

$\left.B\left(T^{\prime}\right)=\begin{array}{c}\alpha^{\prime} \\ \beta^{\prime}\end{array} \begin{array}{cc}\alpha^{\prime} & \beta^{\prime} \\ 0 & 1 \\ -1 & 0\end{array}\right]$

2-punctured, 2-orbifolded sphere $\xrightarrow{0 \text {-resect }}$ annulus

Example

Theorem

Let $\mathcal{O}=(S, M, Q), T$ be a triangulated orbifold and let $\mathcal{O}^{\prime}=\left(S^{\prime}, M^{\prime}, Q^{\prime}\right), T^{\prime}$ be the triangulated orbifold (or surface) induced by an orbifold-resection of \mathcal{O}. Then*, the mutation fan $\mathcal{F}_{B(T)}$ refines the mutation fan $\mathcal{F}_{B\left(T^{\prime}\right)}$.
*(modulo some hypotheses and passing from \mathbb{R}^{n} to \mathbb{Q}^{n})

Thank you!

E
Anna Felikson, Michael Shapiro, and Pavel Tumarkin, Cluster algebras and triangulated orbifolds. Adv. Math. 231 (2012), no. 5, 2953-3002.

围
Sergey Fomin, Michael Shapiro and Dylan Thurston, Cluster algebras and triangulated surfaces. Part I: Cluster complexes. Acta Math. 201 (2008), no. 1, 83-146.

囯 Nathan Reading, Universal geometric cluster algebras from surfaces. Trans. Amer. Math. Soc. 366 (2014), no. 12, 6647-6685.

Nathan Reading, The dominance relation on exchange matrices. In preparation.

Surface model ingredients, part II

Allowable curves: another special class of curves in S, again considered up to isotopy relative to M.
Rational quasi-laminations: collections L of pairwise-compatible allowable curves with positive rational weights. The underlying set of curves Λ is called the support of L. Shear coordinates: rational vector $\mathbf{b}(T, L)$ encoding the interaction between a quasi-lamination and a triangulation.

Example

$(S, M), T, \Lambda$
$\tilde{B}(T, L)$

$$
\begin{array}{ll}
\mathbf{b}(T, \lambda)=\left[\begin{array}{ll}
+1 & -1
\end{array}\right] & \alpha \\
\mathbf{b}(T, \nu)=\left[\begin{array}{ll}
0 & -1
\end{array}\right] & \frac{1}{2} \lambda \\
\frac{3}{2} \nu
\end{array}\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
1 / 2 & -1 / 2 \\
0 & -3 / 2
\end{array}\right]
$$

$$
\mathbf{b}(T, L)=\frac{1}{2} \mathbf{b}(T, \lambda)+\frac{3}{2} \mathbf{b}(T, \nu)=\left[\begin{array}{ll}
1 / 2 & -2
\end{array}\right]
$$

Computing shear coordinates on orbifolds

Given allowable (pending) curve λ in orbifold (S, M, Q) with triangulation T, the shear coordinate vector $\mathbf{b}(T, \lambda)$ is indexed by the tagged arcs of T and records intersections of λ with the arcs of T. Each intersection is assigned a value of $\pm 1,0$ or ± 2.

These values can be read off directly, and correspond to those of the preimage $\tilde{\lambda}$ in the "unfolded" $(\tilde{S}, \tilde{M}, \tilde{Q}), \tilde{T}$:

Example

$$
\begin{aligned}
& \mathbf{b}(T, \lambda)=\left[\begin{array}{ll}
1 & -2
\end{array}\right] \\
& \mathbf{b}(T, \nu)=\left[\begin{array}{ll}
0 & -1
\end{array}\right]
\end{aligned}
$$

Main result: o-resection \Longrightarrow mutation fan refinement

Theorem

Let $\mathcal{O}=(S, M, Q), T$ be a triangulated orbifold and let $\mathcal{O}^{\prime}=\left(S^{\prime}, M^{\prime}, Q^{\prime}\right), T^{\prime}$ be the triangulated orbifold (or surface) induced by an orbifold-resection of \mathcal{O}. Then* $\mathcal{F}_{B(T)}$ refines $\mathcal{F}_{B\left(T^{\prime}\right)}$.

* modulo some hypotheses and passing from \mathbb{R}^{n} to \mathbb{Q}^{n}
(1) Suffices to prove refinement relationship between the rational quasi-lamination fans $\mathcal{F}_{\mathbb{Q}}(T)$ and $\mathcal{F}_{\mathbb{Q}}\left(T^{\prime}\right)$, whose cones are the rational spans of shear coordinates of collections Λ of pairwise compatible allowable curves in \mathcal{O} and \mathcal{O}^{\prime}, respectively.
(2) Let $\left.C=\operatorname{Span}_{\mathbb{Q}_{\geq 0}}\{\mathbf{b}(T, \lambda): \lambda \in \Lambda\}\right)$ be a cone in $\mathcal{F}_{\mathbb{Q}}(T)$. We show there exists a cone C^{\prime} in $\mathcal{F}_{\mathbb{Q}}\left(T^{\prime}\right)$ such that $C \subseteq C^{\prime}$.
(3) Define a (bijective) map from rational quasi-laminations L in \mathcal{O} to quasi-laminations L^{\prime} in \mathcal{O}^{\prime} that preserves shear coordinates and respects support: that is, if $\Lambda_{1}=\operatorname{Supp}\left(L_{1}\right)=\operatorname{Supp}\left(L_{2}\right)=\Lambda_{2}$, then $\Lambda_{1}^{\prime}=\operatorname{Supp}\left(L_{1}^{\prime}\right)=\operatorname{Supp}\left(L_{2}^{\prime}\right)=\Lambda_{2}^{\prime}$.
(9) Set $C^{\prime}=\operatorname{Span}_{\mathbb{Q}_{\geq 0}}\left\{\mathbf{b}\left(T^{\prime}, \lambda^{\prime}\right): \lambda^{\prime} \in \Lambda^{\prime}\right\}$. Then $C \subseteq C^{\prime}$.

Illustration: the cyclohedron and associahedron

The normal fan to the n-cyclohedron (aka Type $B n$-associahedron) refines the normal fan to the n-associahedron (of Type A):

Rational quasi-lamination fan of the 1 -orb'd $(n+1)$-gon

Rational quasi-lamination fan of the $(n+3)$-gon

