# Surfaces, orbifolds, and dominance

Shira Viel

North Carolina State University

Algebraic CombinatoriXX 2 May 16, 2017

# Motivation: the cyclohedron and associahedron

The **normal fan** to the *n*-**cyclohedron** (aka Type *B n*-associahedron) **refines** the normal fan to the *n*-**associahedron** (of Type *A*):





Centrally-symmetric triangulations of the (2n + 2)-gon

Triangulations of the (n+3)-gon

# Exchange matrices and matrix dominance

### An exchange matrix is a skew-symmetrizable integer matrix.

- Fundamental combinatorial datum specifying a cluster algebra
- Finite-type exchange matrices classified by (finite) Dynkin diagrams

### Definition

Given  $n \times n$  exchange matrices  $B = [b_{ij}]$  and  $B' = [b'_{ij}]$ , we say that B **dominates** B' if for each i and j,

• the entries  $b_{ij}$  and  $b'_{ij}$  weakly agree in sign, and

• 
$$|b_{ij}| \geq |b'_{ij}|.$$

### Example

$$B = \begin{bmatrix} 0 & 1 \\ -2 & 0 \end{bmatrix} \text{ dominates } B' = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

 $\left(B \text{ skew-symmetrizable since } BD = \left[ \begin{smallmatrix} 0 & 2 \\ -2 & 0 \end{smallmatrix} 
ight] \text{ for } D = \left[ \begin{smallmatrix} 1 & 0 \\ 0 & 2 \end{smallmatrix} 
ight] \in \mathsf{diag}(\mathbb{Z}_+) 
ight)$ 

Suppose B, B' are exchange matrices such that B dominates B'. Reading has shown that in many cases,

- There exists an injective ring homomorphism from the cluster algebra A<sub>•</sub>(B') into A<sub>•</sub>(B) (which preserves g-vectors),
- **②** The identity map from  $\mathbb{R}^B$  to  $\mathbb{R}^{B'}$  is **mutation-linear**,
- **③** The scattering fan  $\mathcal{D}_B$  refines the scattering fan  $\mathcal{D}_{B'}$ ,
- **O** The **mutation fan**  $\mathcal{F}_B$  refines the mutation fan  $\mathcal{F}_{B'}$ .

# The mutation fan

Broadly, the **mutation fan** for an  $n \times n$  exchange matrix is a complete fan in  $\mathbb{R}^n$  which encodes the combinatorics of mutation.

- ${\ensuremath{\bullet}}$  generalization of  ${\ensuremath{\mathbf{g}}\xspace}\xspace$  to  ${\ensuremath{\mathsf{g}}\xspace}\xspace$  to a suremath{\ensuremath{\mathsf{g}}\xspace}\xspace to a suremath{\ensuremath{\mathsf{g}}\xspace to a suremath{\ensuremath{\mathsf{g}}\xspace}\xspace to a suremath{\ensuremath{\mathsf{g}}\xspace}\xspace to a suremath{\ensuremath{\mathsf{g}}\xspace}\xspace to a suremath{\ensuremath{\mathsf{g}}\xspace}\xspace to a suremath{\ensuremath{\mathsf{g}
- can be used to construct bases/universal coefficients

Suppose B, B' are exchange matrices such that B dominates B'. In many cases, the mutation fan  $\mathcal{F}_B$  refines the mutation fan  $\mathcal{F}_{B'}$ .



### Theorem

 $\mathcal{F}_B$  refines  $\mathcal{F}'_B$  when B' is obtained from B by orbifold-resection.

# Surface model ingredients

Marked surface: 2-dim'l compact oriented surface *S*, possibly with boundary, with designated marked points *M*.

Arcs: special class of curves in S that connect marked points. Considered up to isotopy relative to M.

Triangulations: maximal compatible collections T of arcs, always of the same cardinality n.

Signed adjacency matrix:  $n \times n$  skew-symmetric integer matrix B(T) encoding adjacencies of arcs in triangulation.



# Folding

Orbifold: topological space, locally looks like quotient space of ...

- (in general) ...  $\mathbb{R}^n$  under linear action of finite group
- (for me) . . . marked surface under symmetry of surface
- (today) . . . marked surface under central  $\pi$ -rotation

Fixed points under action are called **orbifold points**, denoted  $\times$ . (Think of the origin of the complex plane under the  $z \mapsto z^2$  map)



# Extending the model to orbifolds: additional ingredients

Marked orbifold: 2-dim'l compact oriented surface S, possibly with boundary, with designated marked points M, and orbifold points Q endowed with angle  $\pi$ .  $M \cap Q = \emptyset$ .

(Pending) arcs: special class of curves in S connecting marked points, or connecting a marked and orbifold point. Considered up to isotopy relative to  $M \cup Q$ .

Signed adjacency matrix:  $n \times n$  skew-symmetrizable integer matrix B(T) encoding adjacencies of arcs in triangulation.



**Note:** If  $Q = \emptyset$ , then (S, M, Q) = (S, M) is a marked surface.

# Resection and orbifold-resection

Reading defines **resection**, an operation on marked surfaces that induces a dominance relation on signed adjacency matrices:



We introduce an analogous **orbifold-resection** operation which also induces dominance on signed adjacency matrices.



# Once-orbifolded triangle $\xrightarrow{o-resect}$ pentagon



# 2-punctured, 2-orbifolded sphere $\xrightarrow{o-resect}$ annulus



# Main result: o-resection $\implies$ mutation fan refinement

#### Theorem

Let  $\mathcal{O} = (S, M, Q)$ , T be a triangulated orbifold and let  $\mathcal{O}' = (S', M', Q')$ , T' be the triangulated orbifold (or surface) induced by an orbifold-resection of  $\mathcal{O}$ . Then<sup>\*</sup>, the mutation fan  $\mathcal{F}_{B(T)}$  refines the mutation fan  $\mathcal{F}_{B(T')}$ .

\*(modulo some hypotheses and passing from  $\mathbb{R}^n$  to  $\mathbb{Q}^n$ )



### Thank you!

- Anna Felikson, Michael Shapiro, and Pavel Tumarkin, *Cluster algebras and triangulated orbifolds.* Adv. Math. **231** (2012), no. 5, 2953-3002.
- Sergey Fomin, Michael Shapiro and Dylan Thurston, *Cluster algebras and triangulated surfaces. Part I: Cluster complexes.* Acta Math. **201** (2008), no. 1, 83–146.
- Nathan Reading, *Universal geometric cluster algebras from surfaces.* Trans. Amer. Math. Soc. **366** (2014), no. 12, 6647–6685.
- Nathan Reading, *The dominance relation on exchange matrices*. In preparation.

# Surface model ingredients, part II

Allowable curves: another special class of curves in S, again considered up to isotopy relative to M. Rational quasi-laminations: collections L of pairwise-compatible allowable curves with positive rational weights. The underlying set of curves  $\Lambda$  is called the **support** of L. Shear coordinates: rational vector  $\mathbf{b}(T, L)$  encoding the interaction between a quasi-lamination and a triangulation.



# Computing shear coordinates on orbifolds

Given allowable (pending) curve  $\lambda$  in orbifold (S, M, Q) with triangulation T, the **shear coordinate vector b** $(T, \lambda)$  is indexed by the tagged arcs of T and records intersections of  $\lambda$  with the arcs of T. Each intersection is assigned a value of  $\pm 1, 0$  or  $\pm 2$ .

These values can be read off directly, and correspond to those of the preimage  $\tilde{\lambda}$  in the "unfolded"  $(\tilde{S}, \tilde{M}, \tilde{Q}), \tilde{T}$ :



# Main result: o-resection $\implies$ mutation fan refinement

#### Theorem

Let  $\mathcal{O} = (S, M, Q)$ , T be a triangulated orbifold and let  $\mathcal{O}' = (S', M', Q')$ , T' be the triangulated orbifold (or surface) induced by an orbifold-resection of  $\mathcal{O}$ . Then<sup>\*</sup>  $\mathcal{F}_{B(T)}$  refines  $\mathcal{F}_{B(T')}$ .

 $^{*}$  modulo some hypotheses and passing from  $\mathbb{R}^{n}$  to  $\mathbb{Q}^{n}$ 

- Suffices to prove refinement relationship between the rational quasi-lamination fans F<sub>Q</sub>(T) and F<sub>Q</sub>(T'), whose cones are the rational spans of shear coordinates of collections Λ of pairwise compatible allowable curves in O and O', respectively.
- ② Let  $C = \text{Span}_{\mathbb{Q}_{\geq 0}} \{ \mathbf{b}(T, \lambda) : \lambda \in \Lambda \} )$  be a cone in  $\mathcal{F}_{\mathbb{Q}}(T)$ . We show there exists a cone C' in  $\mathcal{F}_{\mathbb{Q}}(T')$  such that  $C \subseteq C'$ .
- Define a (bijective) map from rational quasi-laminations L in O to quasi-laminations L' in O' that preserves shear coordinates and respects support: that is, if Λ<sub>1</sub> = Supp(L<sub>1</sub>) = Supp(L<sub>2</sub>) = Λ<sub>2</sub>, then Λ'<sub>1</sub> = Supp(L'<sub>1</sub>) = Supp(L'<sub>2</sub>) = Λ'<sub>2</sub>.

• Set 
$$C' = \operatorname{Span}_{\mathbb{Q}_{\geq 0}} \{ \mathbf{b}(T', \lambda') : \lambda' \in \Lambda' \}$$
. Then  $C \subseteq C'$ .

### Illustration: the cyclohedron and associahedron

The **normal fan** to the *n*-**cyclohedron** (aka Type *B n*-associahedron) **refines** the normal fan to the *n*-**associahedron** (of Type *A*):



Rational quasi-lamination fan of the 1-orb'd (n + 1)-gon

Rational quasi-lamination fan of the (n + 3)-gon