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Motivation: the cyclohedron and associahedron

The normal fan to the n-cyclohedron (aka Type B n-associahedron)
refines the normal fan to the n-associahedron (of Type A):

Centrally-symmetric triangulations Triangulations
of the (2n + 2)-gon of the (n + 3)-gon



Exchange matrices and matrix dominance

An exchange matrix is a skew-symmetrizable integer matrix.(
Fundamental combinatorial datum specifying a cluster algebra

Finite-type exchange matrices classified by (finite) Dynkin diagrams

)
Definition

Given n × n exchange matrices B = [bij ] and B ′ = [b′ij ], we say
that B dominates B ′ if for each i and j ,

the entries bij and b′ij weakly agree in sign, and

|bij | ≥ |b′ij |.

Example

B =

[
0 1

-2 0

]
dominates B ′ =

[
0 1

-1 0

]
.

(
B skew-symmetrizable since BD =

[
0 2
−2 0

]
for D = [ 1 0

0 2 ] ∈ diag(Z+)
)



Dominance phenomena

Suppose B,B ′ are exchange matrices such that B dominates B ′.
Reading has shown that in many cases,

1 There exists an injective ring homomorphism from the cluster
algebra A•(B ′) into A•(B) (which preserves g-vectors),

2 The identity map from RB to RB′ is mutation-linear,

3 The scattering fan DB refines the scattering fan DB′ ,

4 The mutation fan FB refines the mutation fan FB′ .



The mutation fan

Broadly, the mutation fan for an n × n exchange matrix is a
complete fan in Rn which encodes the combinatorics of mutation.(

generalization of g-vector fan: for finite-type cluster algebras, they coincide

can be used to construct bases/universal coefficients

)
Suppose B,B ′ are exchange matrices such that B dominates B ′.
In many cases, the mutation fan FB refines the mutation fan FB′ .

Example

F[
0 1
−2 0

] = refines
F[

0 1
−1 0

] =

Theorem

FB refines F ′B when B ′ is obtained from B by orbifold-resection.



Surface model ingredients

Marked surface: 2-dim’l compact oriented surface S , possibly with
boundary, with designated marked points M.

Arcs: special class of curves in S that connect marked
points. Considered up to isotopy relative to M.

Triangulations: maximal compatible collections T of arcs, always
of the same cardinality n.

Signed adjacency matrix: n × n skew-symmetric integer matrix
B(T ) encoding adjacencies of arcs in triangulation.

Example

β α(S ,M),T = B(T ) =

α β[ ]
α 0 1
β −1 0



Folding

Orbifold: topological space, locally looks like quotient space of . . .

(in general) . . .Rn under linear action of finite group

(for me) . . . marked surface under symmetry of surface

(today) . . . marked surface under central π-rotation

Fixed points under action are called orbifold points, denoted ×.
(Think of the origin of the complex plane under the z 7→ z2 map)

Example

	π FOLD
==========⇒
central π−rotation

×

B(T ) =

α β1 β2[ ]α 0 1 1
β1 −1 0 0
β1 −1 0 0

B(T̄ ) =

α β[ ]
α 0 1
β −2 0



Extending the model to orbifolds: additional ingredients

Marked orbifold: 2-dim’l compact oriented surface S , possibly with
boundary, with designated marked points M, and
orbifold points Q endowed with angle π. M ∩Q = ∅ .

(Pending) arcs: special class of curves in S connecting marked
points, or connecting a marked and orbifold point.
Considered up to isotopy relative to M ∪ Q.

Signed adjacency matrix: n × n skew-symmetrizable integer matrix
B(T ) encoding adjacencies of arcs in triangulation.

Example

×
(S ,M,Q),T = B(T ) =

α β[ ]
α 0 1
β −2 0

Note: If Q = ∅, then (S ,M,Q) = (S ,M) is a marked surface.



Resection and orbifold-resection

Reading defines resection, an operation on marked surfaces that
induces a dominance relation on signed adjacency matrices:

α

→
α

We introduce an analogous orbifold-resection operation which
also induces dominance on signed adjacency matrices.

×
α →

α



Once-orbifolded triangle
o−resect−−−−→ pentagon

Example

×
→ =

B =

α β[ ]
α 0 1
β −2 0

B(T ′) =

α′ β′[ ]
α′ 0 1
β′ −1 0



2-punctured, 2-orbifolded sphere
o−resect−−−−→ annulus

Example

×

×

→ =

B =

1
2
3
4


0 −2 −2 2
1 0 0 −1
1 0 0 −1
−2 2 2 0

 B ′ =

1′

2′

3′

4′


0 −1 −1 2
1 0 0 −1
1 0 0 −1
−2 1 1 0





Main result: o-resection =⇒ mutation fan refinement

Theorem

Let O = (S ,M,Q),T be a triangulated orbifold and let
O′ = (S ′,M ′,Q ′),T ′ be the triangulated orbifold (or surface)
induced by an orbifold-resection of O. Then∗, the mutation fan
FB(T ) refines the mutation fan FB(T ′).

∗(modulo some hypotheses and passing from Rn to Qn)

××

×

×
×

×
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Surface model ingredients, part II

Allowable curves: another special class of curves in S , again
considered up to isotopy relative to M.

Rational quasi-laminations: collections L of pairwise-compatible
allowable curves with positive rational weights. The
underlying set of curves Λ is called the support of L.

Shear coordinates: rational vector b(T , L) encoding the interaction
between a quasi-lamination and a triangulation.

Example

(S ,M),T ,Λ

−1

−1

0

+1

B̃(T , L)
α β


α 0 1
β −1 0
1
2λ 1/2 −1/2
3
2ν 0 −3/2

b(T , λ) =
[
+1 −1

]
b(T , ν) =

[
0 −1

]

b(T , L) = 1
2b(T , λ) + 3

2b(T , ν) =
[
1/2 −2

]



Computing shear coordinates on orbifolds

Given allowable (pending) curve λ in orbifold (S ,M,Q) with
triangulation T , the shear coordinate vector b(T , λ) is indexed
by the tagged arcs of T and records intersections of λ with the
arcs of T . Each intersection is assigned a value of ±1, 0 or ±2.

These values can be read off directly, and correspond to those of
the preimage λ̃ in the “unfolded” (S̃ , M̃, Q̃), T̃ :

Example

	−1
−1

−1

−1

+1

0

0

FOLD
===⇒ ×

+1

0

−2

−1

b(T , λ) =
[
1 −2

]
b(T , ν) =

[
0 −1

]



Main result: o-resection =⇒ mutation fan refinement

Theorem

Let O = (S ,M,Q),T be a triangulated orbifold and let
O′ = (S ′,M ′,Q ′),T ′ be the triangulated orbifold (or surface)
induced by an orbifold-resection of O. Then∗ FB(T ) refines FB(T ′).
∗ modulo some hypotheses and passing from Rn to Qn

1 Suffices to prove refinement relationship between the rational
quasi-lamination fans FQ(T ) and FQ(T ′), whose cones are the
rational spans of shear coordinates of collections Λ of pairwise
compatible allowable curves in O and O′, respectively.

2 Let C = SpanQ≥0
{b(T , λ) : λ ∈ Λ}) be a cone in FQ(T ). We show

there exists a cone C ′ in FQ(T ′) such that C ⊆ C ′.

3 Define a (bijective) map from rational quasi-laminations L in O to
quasi-laminations L′ in O′ that preserves shear coordinates and
respects support: that is, if Λ1 = Supp(L1) = Supp(L2) = Λ2, then
Λ′1 = Supp(L′1) = Supp(L′2) = Λ′2.

4 Set C ′ = SpanQ≥0
{b(T ′, λ′) : λ′ ∈ Λ′}. Then C ⊆ C ′.



Illustration: the cyclohedron and associahedron

The normal fan to the n-cyclohedron (aka Type B n-associahedron)
refines the normal fan to the n-associahedron (of Type A):

××

×

×
×

×

Rational quasi-lamination fan Rational quasi-lamination fan
of the 1-orb’d (n + 1)-gon of the (n + 3)-gon
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