Tutorial on the R package TDA

Jisu Kim
Brittany T. Fasy, Jisu Kim, Fabrizio Lecci, Clément Maria, Vincent Rouvreau

Abstract

This tutorial gives an introduction to the R package TDA, which provides some tools for Topological Data Analysis. The salient topological features of data can be quantified with persistent homology. The R package TDA provide an R interface for the efficient algorithms of the C++ libraries GUDHI, Dionysus, and PHAT. Specifically, The R package TDA includes functions for computing the persistent homology of the Rips complex, alpha complex, and alpha shape complex, and a function for the persistent homology of sublevel sets (or superlevel sets) of arbitrary functions evaluated over a grid of points. The R package TDA also provides a function for computing the confidence band that determines the significance of the features in the resulting persistence diagrams.

Keywords: Topological Data Analysis, Persistent Homology.

1. Introduction

$R($ http://cran.r-project.org/) is a programming language for statistical computing and graphics.
R has several good properties: R has many packages for statistical computing. Also, R is easy to make (interactive) plots. R is a script language, and it is easy to use. But, R is slow. C or $\mathrm{C}++$ stands on the opposite end: C or $\mathrm{C}++$ also has many packages(or libraries). But, C or $\mathrm{C}++$ is difficult to make plots. C or $\mathrm{C}++$ is a compiler language, and is difficult to use. But, C or $\mathrm{C}++$ is fast. In short, R has short development time but long execution time, and C or $\mathrm{C}++$ has long development time but short execution time.

Several libraries are developed for Topological Data Analysis: for example, GUDHI(https:// project.inria.fr/gudhi/software/), Dionysus(http://www.mrzv.org/software/dionysus/), and PHAT(https://code.google.com/p/phat/). They are all written in C++, since Topological Data Analysis is computationally heavy and R is not fast enough.

R package TDA(http://cran.r-project.org/web/packages/TDA/index.html) bridges between C++ libraries(GUDHI, Dionysus, PHAT) and R. TDA package provides an R interface for the efficient algorithms of the C++ libraries GUDHI, Dionysus and PHAT. So by using TDA package, short development time and short execution time can be both achieved.
R package TDA provides tools for Topological Data Analysis. You can compute several different things with TDA package: you can compute common distance functions and density estimators, the persistent homology of the Rips filtration, the persistent homology of sublevel sets of a function over a grid, the confidence band for the persistence diagram, and the cluster density trees for density clustering.

2. Installation

First, you should download R . R of version at least 3.1.0 is required:

```
http://cran.r-project.org/bin/windows/base/ (for Windows)
http://cran.r-project.org/bin/macosx/ (for (Mac) OS X)
```

R is part of many Linux distributions, so you should check with your Linux package management system.
You can use whatever IDE that you would like to use(Rstudio, Eclipse, Emacs, Vim...). R itself also provides basic GUI or CUI. I personally use Rstudio:
http://www.rstudio.com/products/rstudio/download/
For Windows and Mac, you can install R package TDA as in the following code (or pushing 'Install R packages' button if you use Rstudio).

```
#########################################################################
# installing R package TDA
#########################################################################
if (!require(package = "TDA")) {
    install.packages(pkgs = "TDA")
}
## Loading required package: TDA
```

If you are using Linux, you should install R package TDA from the source. To do this, you need to install two libraries in advance: gmp (https://gmplib.org/) and mpfr (http://www.mpfr. org/). Installation of these packages may differ by your Linux distributions. Once those libraries are installed, you need to install four R packages: parallel, FNN, igraph, and scales. parallel is included when you install R, so you need to install FNN, igraph, and scales by yourself. You can install them by following code (or pushing 'Install R packages' button if you use Rstudio).

```
#########################################################################
# installing required packages
#########################################################################
if (!require(package = "FNN")) {
    install.packages(pkgs = "FNN")
}
## Loading required package: FNN
if (!require(package = "igraph")) {
    install.packages(pkgs = "igraph")
}
## Loading required package: igraph
##
## Attaching package: 'igraph'
## The following object is masked from 'package:FNN':
##
## knn
## The following objects are masked from 'package:stats':
##
## decompose, spectrum
## The following object is masked from 'package:base':
##
## union
```

```
if (!require(package = "scales")) {
    install.packages(pkgs = "scales")
}
## Loading required package: scales
```

Then you can install the R package TDA as in Windows or Mac:

```
##########################################################################
# installing R package TDA
##########################################################################
if (!require(package = "TDA")) {
    install.packages(pkgs = "TDA")
}
```

Once installation is done, R package TDA should be loaded as in the following code, before using the package functions.

```
##########################################################################
# loading R package TDA
##########################################################################
library(package = "TDA")
```


3. Sample on manifolds, Distance Functions, and Density Estimators

3.1. Uniform Sample on manifolds

A set of n points $X=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$ has been sampled from some distribution P.

- n sample from the uniform distribution on the circle in \mathbb{R}^{2} with radius r.

```
##########################################################################
# uniform sample on the circle
##########################################################################
circleSample <- circleUnif(n = 20, r = 1)
plot(circleSample, xlab = "", ylab = "", pch = 20)
```


3.2. Distance Functions, and Density Estimators

We compute distance functions and density estimators over a grid of points. Suppose a set of points $X=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$ has been sampled from some distribution P. The following code generates a sample of 400 points from the unit circle and constructs a grid of points over which we will evaluate the functions.

```
##########################################################################
# uniform sample on the circle, and grid of points
#########################################################################
X <- circleUnif(n = 400, r = 1)
lim <- c(-1.7, 1.7)
by <- 0.05
margin <- seq(from = lim[1], to = lim[2], by = by)
Grid <- expand.grid(margin, margin)
```

- The distance function is defined for each $y \in \mathbb{R}^{d}$ as $\Delta(y)=\inf _{x \in X}\|x-y\|_{2}$.

```
#########################################################################
# distance function
#########################################################################
distance <- distFct(X = X, Grid = Grid)
par(mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
persp(x = margin, y = margin,
    z = matrix(distance, nrow = length(margin), ncol = length(margin)),
    xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,
    expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,
    main = "Distance Function")
```


Sample X

Distance Function

- The Gaussian Kernel Density Estimator (KDE), for each $y \in \mathbb{R}^{d}$, is defined as

$$
\hat{p}_{h}(y)=\frac{1}{n(\sqrt{2 \pi} h)^{d}} \sum_{i=1}^{n} \exp \left(\frac{-\left\|y-x_{i}\right\|_{2}^{2}}{2 h^{2}}\right) .
$$

where h is a smoothing parameter.
$\operatorname{par}(m f r o w=c(1,2))$
plot (X, xlab = "", ylab = "", main = "Sample X", pch = 20)
persp(x = margin, $y=$ margin,
$\mathrm{z}=$ matrix $(\mathrm{KDE}, \mathrm{nrow}=$ length(margin), ncol = length(margin)),
$\mathrm{xlab}=" 1, \mathrm{ylab}=\|", \mathrm{zlab}=\| "$, theta $=-20$, phi $=35$, scale $=$ FALSE,
expand $=3, \operatorname{col}=$ "red", border $=N A$, ltheta $=50$, shade $=0.5$,
main $=$ "KDE")

Sample X

KDE

4. Persistent Homology and Landscape

4.1. Persistent Homology Over a Grid

gridDiag function computes the persistent homology of sublevel (and superlevel) sets of the functions. The function gridDiag evaluates a given real valued function over a triangulated grid (in arbitrary dimension), constructs a filtration of simplices using the values of the function, and computes the persistent homology of the filtration. The user can choose to compute persistence diagrams using either the Dionysus library (library = "Dionysus") or the PHAT library (library = "PHAT").
The following code computes the persistent homology of the superlevel sets (sublevel $=$ FALSE) of the kernel density estimator (FUN $=\mathrm{kde}, \mathrm{h}=0.3$) using the point cloud stored in the matrix X from the previous example. The other inputs are the features of the grid over which the kde is evaluated (lim and by), and a logical variable that indicates whether a progress bar should be printed (printProgress).

```
##########################################################################
# persistent homology of a function over a grid
##########################################################################
Diag <- gridDiag(X = X, FUN = kde, lim = cbind(lim, lim), by = by,
    sublevel = FALSE, library = "Dionysus", printProgress = FALSE, h = 0.3)
```

The function plot plots persistence diagram for objects of the class "diagram".

```
##########################################################################
# plotting persistence diagram
##########################################################################
par(mfrow = c(1,3))
plot(X, main = "Sample X", pch = 20)
persp(x = margin, y = margin,
    z = matrix(KDE, nrow = length(margin), ncol = length(margin)),
```

```
    xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,
    expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.9,
    main = "KDE")
plot(x = Diag[["diagram"]], main = "KDE Diagram")
```


4.2. Landscape

The persistence landscape is a collection of continuous, piecewise linear functions $\lambda: \mathbb{Z}^{+} \times \mathbb{R} \rightarrow \mathbb{R}$ that summarizes a persistence diagram. Consider the set of functions created by tenting each point $p=(x, y)=\left(\frac{b+d}{2}, \frac{d-b}{2}\right)$ representing a birth-death pair (b, d) in the persistence diagram D as follows:

$$
\Lambda_{p}(t)=\left\{\begin{array}{ll}
t-x+y & t \in[x-y, x] \tag{1}\\
x+y-t & t \in(x, x+y] \\
0 & \text { otherwise }
\end{array}= \begin{cases}t-b & t \in\left[b, \frac{b+d}{2}\right] \\
d-t & t \in\left(\frac{b+d}{2}, d\right] \\
0 & \text { otherwise }\end{cases}\right.
$$

We obtain an arrangement of piecewise linear curves by overlaying the graphs of the functions $\left\{\Lambda_{p}\right\}_{p}$; see Figure 1 (left). The persistence landscape of D is the collection of functions

$$
\begin{equation*}
\lambda(k, t)=k \max _{p} \Lambda_{p}(t), \quad t \in[0, T], k \in \mathbb{N}, \tag{2}
\end{equation*}
$$

where k max is the k th largest value in the set. see Figure 1 (middle).

Triangles

1st Landscape

Figure 1: Left: we use the rotated axes to represent a persistence diagram D. A feature $(b, d) \in D$ is represented by the point $\left(\frac{b+d}{2}, \frac{d-b}{2}\right)$ (pink). Right: the blue curve is the landscape $\lambda(1, \cdot)$.
landscape evaluates the landscape function over a one-dimensional grid of points tseq. In the following code, we use the rips persistence diagram in previous example to construct the
corresponding landscape for one-dimensional features (dimension $=1$). The option $K K=1$ specifies that we are interested in the 1st landscape function. landscape return a real valued vector, which can be simply plotted with plot(tseq, Land, type = "l").

```
##########################################################################
# computing landscape
##########################################################################
tseq <- seq(from = 0, to = 0.2, length = 1000) #domain
Land <- landscape(Diag = Diag[["diagram"]], dimension = 1, KK = 1, tseq = tseq)
par(mfrow=c (1,2))
plot(x = Diag[["diagram"]], main = "KDE Diagram")
plot(tseq, Land, type = "l", xlab = "(Birth+Death)/2",
    ylab = "(Death-Birth)/2", asp = 1, axes = FALSE, main = "Landscape")
axis(1); axis(2)
```


KDE Diagram

Landscape

(Birth+Death)/2

5. Statistical Inference on Persistent Homology and Landscape

$(1-\alpha)$ confidence band can be computed for a function using the bootstrap algorithm, which we briefly describe using the kernel density estimator:

1. Given a sample $X=\left\{x_{1}, \ldots, x_{n}\right\}$, compute the kernel density estimator \hat{p}_{h};
2. Draw $X^{*}=\left\{x_{1}^{*}, \ldots, x_{n}^{*}\right\}$ from $X=\left\{x_{1}, \ldots, x_{n}\right\}$ (with replacement), and compute $\theta^{*}=$ $\sqrt{n}\left\|\hat{p}_{h}^{*}(x)-\hat{p}_{h}(x)\right\|_{\infty}$, where \hat{p}_{h}^{*} is the density estimator computed using X^{*};
3. Repeat the previous step B times to obtain $\theta_{1}^{*}, \ldots, \theta_{B}^{*}$;
4. Compute $q_{\alpha}=\inf \left\{q: \frac{1}{B} \sum_{j=1}^{B} I\left(\theta_{j}^{*} \geq q\right) \leq \alpha\right\}$;
5. The $(1-\alpha)$ confidence band for $\mathbb{E}\left[\hat{p}_{h}\right]$ is $\left[\hat{p}_{h}-\frac{q_{\alpha}}{\sqrt{n}}, \hat{p}_{h}+\frac{q_{\alpha}}{\sqrt{n}}\right]$.
bootstrapBand computes $(1-\alpha)$ bootstrap confidence band, with the option of parallelizing the algorithm (parallel=TRUE). The following code computes a 90% confidence band for $\mathbb{E}\left[\hat{p}_{h}\right]$.
```
##########################################################################
# bootstrap confidence band for kde function
##########################################################################
bandKDE <- bootstrapBand(X = X, FUN = kde, Grid = Grid, B = 100,
    parallel = FALSE, alpha = 0.1, h = h)
print(bandKDE[["width"]])
## 90%
## 0.06526216
```

Then such confidence band for $\mathbb{E}\left[\hat{p}_{h}\right]$ can be used as the confidence band for the persistent homology.

```
##########################################################################
# bootstrap confidence band for persistent homology over a grid
##########################################################################
par(mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
plot(x = Diag[["diagram"]], band = 2 * bandKDE[["width"]],
    main = "KDE Diagram")
```

Sample X

KDE Diagram

Such confidence band for $\mathbb{E}\left[\hat{p}_{h}\right]$ can also be used as the confidence band for the landscape.

```
##########################################################################
# bootstrap confidence band for persistent homology over a grid
#########################################################################
par(mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
plot(tseq, Land, type = "l", xlab = "(Birth+Death)/2",
    ylab = "(Death-Birth)/2", asp = 1, axes = FALSE, main = "200 samples")
axis(1); axis(2)
polygon(c(tseq, rev(tseq)), c(Land - bandKDE[["width"]],
        rev(Land + bandKDE[["width"]])), col = "pink", lwd = 1.5,
        border = NA)
lines(tseq, Land)
```


Affiliation:

Firstname Lastname
Affiliation
Address, Country
E-mail: name@address
URL: http://link/to/webpage/

