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A Motivating Problem

Definition

A smooth curve P defined by y3 = f (x) where deg(f )=4 is called a Picard
curve.

Picard curves have genus 3.

Simplest non-hyperelliptic curves.

Definition

A smooth, irreducible curve C defined over Q is said to have good
reduction at a prime p if there exists a model of C such that the defining
equations reduced modulo p define a smooth, irreducible curve Cp.

Malmskog-Rasmussen goal: Find all Picard curves defined over Q with
good reduction at all primes except p = 3.

Bőrner-Bouw-Wewers: All Picard curves over Q have bad reduction at
p = 3.
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Bőrner-Bouw-Wewers: All Picard curves over Q have bad reduction at
p = 3.

Malmskog Solving S-unit equations in Sage and Applications to Algebraic CurvesJuly 4, 2017 2 / 21



A Motivating Problem

Definition

A smooth curve P defined by y3 = f (x) where deg(f )=4 is called a Picard
curve.

Picard curves have genus 3.

Simplest non-hyperelliptic curves.

Definition

A smooth, irreducible curve C defined over Q is said to have good
reduction at a prime p if there exists a model of C such that the defining
equations reduced modulo p define a smooth, irreducible curve Cp.

Malmskog-Rasmussen goal: Find all Picard curves defined over Q with
good reduction at all primes except p = 3.
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Reduction Properties–Why Care?

Ihara’s question

Every quotient curve of the modular curve X0(N) has good reduction
except at primes dividing N.
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Our Roadmap

1996 Smart–Found all genus 2 curves over Q with good reduction at all
primes except p = 2.

We generalize methods, equivalence of binary forms to Picard curves.

Key step: Enumeration of all solutions to the equation

x + y = 1

where x , y ∈ O×S , and S is a set of primes in K/Q.
New Goal: Create self-contained functions to solve S-unit equation.
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S-units

K ZK S = {p1, . . . , pt1 ,∞1, . . . ,∞t2} OS = ZK [1/p1, . . . , 1/pt1 ] O∗
S

Q Z SQ = {p1, . . . , ps ,∞} OSQ = Z[1/p1, . . . , 1/ps ] O×
SQ

SQ = {3,∞},

O×SQ =

{
. . . ,±1

9
,±1

3
,±1,±3,±9, . . .

}
=
{

(−1)a13a2 : (a1, a2) ∈ Z2
}
.

Let K = Q(ξ), where ξ6 + 3 = 0, so (3) = (ξ)6.

S = {(ξ),∞1, . . . ,∞4}.

O×S =

{
ζa16 ξ

a2(
1

2
ξ5 − 1

2
ξ2 − ξ − 1)a3(

1

2
ξ4 − 1

2
ξ3 + ξ2 − 1

2
ξ +

1

2
)a4 : (a1, a2, a3, a4) ∈ Z4

}
.
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Solving the S-Unit Equation

1939 Dirichlet–S-unit group is finitely generated (rank r + s).

1909-1921-1955 Thue, Siegel, Roth–There are finitely many rational numbers of
bounded height within a given distance of an irrational algebraic number.

1966 Baker–Lower bound on linear combination of logarithms of algebraic αi based
on heights of coefficients and αi s.

1972-1979 Győry–Explicit bound, using Baker’s method.

1987-1992 de Weger, Tzanakis-de Weger–Use LLL to greatly reduce bounds

1989 Yu–Linear forms in p-adic logarithms

1996-1999 Wildanger, Smart–Efficient enumeration of solutions
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Big Picture

Let OS = 〈ρ0, . . . , ρt〉, where ρ0 is a root of unity. To solve

x + y = 1,

where x =
∏
ρ
ai,x
i , y =

∏
ρ
ai,y
i , need to bound exponents and search over

finite space. Three main steps:

1 Find a ridiculously large bound

2 Use LLL to greatly reduce bound

3 Somehow find all solutions in smaller search space. For us, this means
sieving.

Caveat: Need to consider prime associated to minimum absolute value of term with

maximum exponent...
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Step 1: A Closer Look at Baker’s Theorem

Theorem (Baker-Wüstholz, 1993)

Let L be a linear form in t + 1 variables, and let ρ0, . . . , ρt ∈ Q− {0, 1}
with linearly independent logs. Let B be the subfield of Q generated by
the ρi . If

Λ = L(log ρ0, log ρ1, . . . , log ρt) 6= 0,

then

log |Λ| > −C (t, nB)h′(L)
t∏

j=0

h′(ρj),

where the constant C (t, nB) is defined by

C (t, nB) = 18(t + 2)!(t + 1)(t+2)(32nB)(t+3) log (2(t + 1)nB) .
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A Simpler Look at Baker and S-Unit Solutions

Assume that
Baker-Wüstholz: If L is a linear form, Λ = L(log ρ0, log ρ1, . . . , log ρt) 6= 0,
then

log |Λ| > −C1h
′(L)

t∏
j=0

h′(ρj).

Rewrite our S-unit equation:

x + y = 1 ⇒ x
y = 1

y − 1 6= 1, so

t∏
i=0

ρaii =
1

y
− y 6= 1.

t∑
i=0

ai log(ρi ) = Λ 6= 0,

where αi are S-units generators, ai are exponents. We want to bound ai .
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A Large Bound

Fix ψ : K ↪→ C. Let H = max{|ai | : 0 ≤ i ≤ t}

Ignoring all details:

h′(L) > C2 log(H) and C3 =
t∏

i=0

h′(αi ).

Baker-Wustholz:
log |Λ| > −C1C2 log(H)C3

|Λ| > e−C4 log(H)

Geometric argument: |Λ| < C5e
−C6H

e−C4 log(H) < |Λ| < C5e
−C6H ,

C4 log(H) > − log(C5) + C6H.

Pethö-de Weger ⇒ H < K0.

Problem: For one of our fields, K0 = 2.137374× 1019.
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Step 2: LLL

LLL: lattice basis reduction algorithm devised in 1982 by Henrik Lenstra,
Arjen Lenstra, and Laslo Lovász.

Applying LLL reduction to a particular lattice yields a bound K1 ≈ log(K0).
Can be repeated with new bound until there is no further improvement.
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LLL in Action: Picard Curves

Need all K/Q with degree ≤ 4 and Disc(K ) ∈ O×S with S = {3,∞}.

Field Degree Minimal Polynomial K0 K1

M0 1 x − 1 4.916825× 109 3
M1 2 x2 + x + 1 8.018712× 109 5
M2 3 x3 − 3x + 1 2.067269× 1019 217
M3 3 x3 − 3 1.957261× 1015 49
M ′3 3
M ′′3 3
L3 6 x6 + 3 2.137374× 1019 243

All fields have class number 1.

(3) is totally ramified in all (non-trivial) extensions.
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Step 3: Sieving for Solutions

A sieve:

Recall O×S = 〈ρ0, . . . , ρt〉, where ρ0 is a root of unity. Say that

x + y = 1,

where

x =
∏

ρ
ai,x
i = ρax , y =

∏
ρ
ai,y
i = ρay .

Let q be a prime of Q which splits completely in K , so

qOK = q0 . . . qn−1.

We now consider the image of the equation x + y = 1 modulo qj for each
j , 0 ≤ j ≤ n − 1, where α denotes the reduction modulo qj . Let

ρ = (ρ0, . . . , ρt) ∈
(
F×q
)t+1

.

Then we have
ρax + ρay = 1

for all j , which gives a set of conditions on ax and ay modulo q − 1.
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Sieve continued

Choosing a list of split primes q1, q2, . . . qN so that

lcm(q1, q2, . . . qN) > 2K1,

can use Chinese remainder-type argument to find searchable space of
potential exponent vectors in Zt+1.

Finally, check whether each exponent vector yields an actual S-unit
solution.

Note: This is not the same method introduced by Wildanger and improved
by Smart.
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Results and Beyond

Picard curves: Implementing the above routines in Sage, we solved the
S-unit equation in the above-listed fields, yielding 63 Q-isomorphism
classes of Picard curves with good reduction away from p = 3.

Note: Proved a result that eliminated p-adic case for our problem, so
implementation included a special case of LLL but general sieve.

2015/2016: Angelos Koutsianas: all elliptic curves with good reduction
outside S defined over a general number field.

Note: Koutsianas also implemented S-unit solving in Sage, including both
cases of LLL but avoiding sieve.
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General Sage Implementation

Collaborate@ICERM January 2017

Team: Alejandra Alvarado, Angelos Koutsianas, M., Chris Rasmussen, Christelle
Vincent, Mckenzie West (with moral support from Bjorn Poonen)

Implemented function to solve x + y = 1 for general number field K and set S .

SageTrac Ticket #22148
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Computational Comparison

Smart, 1997 (paraphrased)

The algorithm was implemented on a network of 20 SUN
workstations, written in C++. Issues with load balancing and
computer failure had to be navigated.

The program took around 27 MIPS-years, or in real life, about 18
days.

M.-Rasmussen, 2015

Under 2000 lines of Sage code.

Ran in approximately 1 day on 1 desktop machine.

Alvarado-Koutsianas-M.-Rasmussen-Vincent-West, 2017

General solver is approximately 3000 lines of Sage code.

Some problems run in seconds, others in minutes, others...
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Next

Improving Sage implementation:

Incorporate bound improvements from literature
More general linear equations
Improve bound reduction using de Weger
Implement Wildanger/Smart
Make code better!

What can we do with this function?

Genus 2 curves good away from 3: Andrew Sutherland, Borys Kadets,
James Rowan with 2, 3 ∈ S
p = 5 Chris Rasmussen and Ryan Karpisz
p = 7, 11 . . .
...
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p = 5 Chris Rasmussen and Ryan Karpisz
p = 7, 11 . . .

...
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Extra: More on LLL and Reducing S-Unit Exponent Bound

For ψh : K ↪→ C

Λ =
t∑

j=0

aj log(ρj) =
t∑

j=0

ajκj , (1)

where ρj are the generators of O×S , ρ0 ∈ µw .

Choose C ≈ 2t/2. Define

Φ0 :=
t∑

j=1

aj [C <κj ],

Φ1 :=
t∑

j=1

aj [C =κj ] + a0[C · 2πw ].

so

|Φ0 +
√
−1Φi | ≤ C |Λ|+ 1√

2
(2t + 1)K0

since ai ≤ K0 for all i .
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Lattice

B :=



1 0 · · · 0 0 0
0 1 · · · 0 0 0
...

...
...

...
...

0 0 · · · 1 0 0
[C <κ1] [C <κ2] · · · [C <κt−1] [C <κt ] 0
[C =κ1] [C =κ2] · · · [C =κt−1] [C =κt ] [C · 2πw ]


.

Let L = L(BT ). Then a = (a1, a2, . . . , at−1,Φ0,Φ1) ∈ L.
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Reduction

a = (a1, a2, . . . , at−1,Φ0,Φ1) ∈ L
The Euclidean length of any nonzero lattice element in L is bounded below by
B := 2−t/2‖b1‖, where b1 is the shortest vector in the LLL-reduced basis for L.

B2 ≤ |a|2 =
t−1∑
i=1

a2i + Φ2
0 + Φ2

1 ≤ C 2|Λ|2 +
1

2
(2t + 1)2K 2

0

Smart: |Λ| < C0e
−C1H , by a geometric argument. *holds for some embedding–have to calculate

constants for all and take worst constant

B2 ≤ C 2(C0e
−C1H)2 +

1

2
(2t + 1)2K 2

0

Define

SL :=
(
B2 − (t − 1)K 2

0

)1/2
, TL :=

1

2

(
w + 2 +

√
2
)
tK0.

If B2 > T 2
L + (t − 1)K 2

0 , then every solution to the S-unit equation satisfies

H ≤ K1 := C6

(
log(CC4)− log(SL − TL)

)
.

K1 ∼ log(K0)
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