Solving S-unit equations in Sage and Applications to Algebraic Curves

Beth Malmskog

with Alejandra Alvarado, Angelos Koutsianas, Christopher Rasmussen, Christelle Vincent, and Mckenzie West

$$
\text { July 4, } 2017
$$

Diophantine Approximation and Algebraic Curves Conference at BIRS

A Motivating Problem

Definition

A smooth curve \mathcal{P} defined by $y^{3}=f(x)$ where $\operatorname{deg}(f)=4$ is called a Picard curve.

A Motivating Problem

Definition

A smooth curve \mathcal{P} defined by $y^{3}=f(x)$ where $\operatorname{deg}(f)=4$ is called a Picard curve.

Picard curves have genus 3 .
Simplest non-hyperelliptic curves.

A Motivating Problem

Definition

A smooth curve \mathcal{P} defined by $y^{3}=f(x)$ where $\operatorname{deg}(f)=4$ is called a Picard curve.

Picard curves have genus 3 .
Simplest non-hyperelliptic curves.

Definition

A smooth, irreducible curve \mathcal{C} defined over \mathbb{Q} is said to have good reduction at a prime p if there exists a model of \mathcal{C} such that the defining equations reduced modulo p define a smooth, irreducible curve \mathcal{C}_{p}.

A Motivating Problem

Definition

A smooth curve \mathcal{P} defined by $y^{3}=f(x)$ where $\operatorname{deg}(f)=4$ is called a Picard curve.

Picard curves have genus 3 .
Simplest non-hyperelliptic curves.

Definition

A smooth, irreducible curve \mathcal{C} defined over \mathbb{Q} is said to have good reduction at a prime p if there exists a model of \mathcal{C} such that the defining equations reduced modulo p define a smooth, irreducible curve \mathcal{C}_{p}.

Malmskog-Rasmussen goal: Find all Picard curves defined over \mathbb{Q} with good reduction at all primes except $p=3$.

Bőrner-Bouw-Wewers: All Picard curves over \mathbb{Q} have bad reduction at $p=3$.

Reduction Properties-Why Care?

- Ihara's question

Reduction Properties-Why Care?

- Ihara's question

- Every quotient curve of the modular curve $\mathcal{X}_{0}(N)$ has good reduction except at primes dividing N.

Our Roadmap

1996 Smart-Found all genus 2 curves over \mathbb{Q} with good reduction at all primes except $p=2$.

We generalize methods, equivalence of binary forms to Picard curves.

Our Roadmap

1996 Smart-Found all genus 2 curves over \mathbb{Q} with good reduction at all primes except $p=2$.

We generalize methods, equivalence of binary forms to Picard curves.
Key step: Enumeration of all solutions to the equation

$$
x+y=1
$$

where $x, y \in \mathcal{O}_{S}^{\times}$, and S is a set of primes in K / \mathbb{Q}.

Our Roadmap

1996 Smart-Found all genus 2 curves over \mathbb{Q} with good reduction at all primes except $p=2$.

We generalize methods, equivalence of binary forms to Picard curves.
Key step: Enumeration of all solutions to the equation

$$
x+y=1
$$

where $x, y \in \mathcal{O}_{S}^{\times}$, and S is a set of primes in K / \mathbb{Q}.
New Goal: Create self-contained functions to solve S-unit equation.

S-units

$$
\begin{array}{lclll}
K & \mathbb{Z}_{K} & S=\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t_{1}}, \infty_{1}, \ldots, \infty_{t_{2}}\right\} & \mathcal{O}_{S}=\mathbb{Z}_{K}\left[1 / \mathfrak{p}_{1}, \ldots, 1 / \mathfrak{p}_{t_{1}}\right] & \mathcal{O}_{S}^{*} \\
\mid & \mid & \mid & \mid \\
\mathbb{Q} & \mathbb{Z} & S_{\mathbb{Q}}=\left\{p_{1}, \ldots, p_{s}, \infty\right\} & \mathcal{O}_{S_{\mathbb{Q}}}=\mathbb{Z}\left[1 / p_{1}, \ldots, 1 / p_{s}\right] & \mathcal{O}_{S_{\mathbb{Q}}}^{\times}
\end{array}
$$

S-units

$$
\begin{array}{lclll}
K & \mathbb{Z}_{K} & S=\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t_{1}}, \infty_{1}, \ldots, \infty_{t_{2}}\right\} & \mathcal{O}_{S}=\mathbb{Z}_{K}\left[1 / \mathfrak{p}_{1}, \ldots, 1 / \mathfrak{p}_{t_{1}}\right] & \mathcal{O}_{S}^{*} \\
\mid & \mid & \mid & \mathcal{O}_{S_{\mathbb{Q}}}=\mathbb{Z}\left[1 / p_{1}, \ldots, 1 / p_{s}\right] & \mathcal{O}_{S_{\mathbb{Q}}}^{\times}
\end{array}
$$

$$
S_{\mathbb{Q}}=\{3, \infty\},
$$

$$
\begin{aligned}
\mathcal{O}_{S_{\mathbb{Q}}}^{\times} & =\left\{\ldots, \pm \frac{1}{9}, \pm \frac{1}{3}, \pm 1, \pm 3, \pm 9, \ldots\right\} \\
& =\left\{(-1)^{a_{1}} 3^{a_{2}}:\left(a_{1}, a_{2}\right) \in \mathbb{Z}^{2}\right\} .
\end{aligned}
$$

S-units

$$
S_{\mathbb{Q}}=\{3, \infty\}
$$

$$
\begin{aligned}
\mathcal{O}_{S_{\mathbb{Q}}}^{\times} & =\left\{\ldots, \pm \frac{1}{9}, \pm \frac{1}{3}, \pm 1, \pm 3, \pm 9, \ldots\right\} \\
& =\left\{(-1)^{a_{1}} 3^{a_{2}}:\left(a_{1}, a_{2}\right) \in \mathbb{Z}^{2}\right\} .
\end{aligned}
$$

Let $K=\mathbb{Q}(\xi)$, where $\xi^{6}+3=0$, so $(3)=(\xi)^{6}$.
$S=\left\{(\xi), \infty_{1}, \ldots, \infty_{4}\right\}$.
$\mathcal{O}_{S}^{\times}=\left\{\zeta_{6}^{a_{1}} \xi^{a_{2}}\left(\frac{1}{2} \xi^{5}-\frac{1}{2} \xi^{2}-\xi-1\right)^{a_{3}}\left(\frac{1}{2} \xi^{4}-\frac{1}{2} \xi^{3}+\xi^{2}-\frac{1}{2} \xi+\frac{1}{2}\right)^{a_{4}}:\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in \mathbb{Z}^{4}\right\}$.

Solving the S-Unit Equation

- 1939 Dirichlet-S-unit group is finitely generated (rank $r+s$).
- 1909-1921-1955 Thue, Siegel, Roth-There are finitely many rational numbers of bounded height within a given distance of an irrational algebraic number.
- 1966 Baker-Lower bound on linear combination of logarithms of algebraic α_{i} based on heights of coefficients and α_{i} s.
- 1972-1979 Győry-Explicit bound, using Baker's method.
- 1987-1992 de Weger, Tzanakis-de Weger-Use LLL to greatly reduce bounds
- 1989 Yu-Linear forms in p-adic logarithms
- 1996-1999 Wildanger, Smart-Efficient enumeration of solutions

Big Picture

Let $\mathcal{O}_{S}=\left\langle\rho_{0}, \ldots, \rho_{t}\right\rangle$, where ρ_{0} is a root of unity. To solve

$$
x+y=1
$$

where $x=\prod \rho_{i}^{a_{i, x}}, y=\prod \rho_{i}^{a_{i, y}}$, need to bound exponents and search over finite space. Three main steps:
(1) Find a ridiculously large bound
(2) Use LLL to greatly reduce bound
(3) Somehow find all solutions in smaller search space. For us, this means sieving.

Big Picture

Let $\mathcal{O}_{S}=\left\langle\rho_{0}, \ldots, \rho_{t}\right\rangle$, where ρ_{0} is a root of unity. To solve

$$
x+y=1
$$

where $x=\prod \rho_{i}^{a_{i, x}}, y=\prod \rho_{i}^{a_{i, y}}$, need to bound exponents and search over finite space. Three main steps:
(1) Find a ridiculously large bound
(2) Use LLL to greatly reduce bound
(3) Somehow find all solutions in smaller search space. For us, this means sieving.
Caveat: Need to consider prime associated to minimum absolute value of term with maximum exponent...

Step 1: A Closer Look at Baker's Theorem

Theorem (Baker-Wüstholz, 1993)

Let L be a linear form in $t+1$ variables, and let $\rho_{0}, \ldots, \rho_{t} \in \overline{\mathbb{Q}}-\{0,1\}$ with linearly independent logs. Let B be the subfield of $\overline{\mathbb{Q}}$ generated by the ρ_{i}. If

$$
\Lambda=L\left(\log \rho_{0}, \log \rho_{1}, \ldots, \log \rho_{t}\right) \neq 0
$$

then

$$
\log |\Lambda|>-C\left(t, n_{B}\right) h^{\prime}(L) \prod_{j=0}^{t} h^{\prime}\left(\rho_{j}\right)
$$

where the constant $C\left(t, n_{B}\right)$ is defined by

$$
C\left(t, n_{B}\right)=18(t+2)!(t+1)^{(t+2)}\left(32 n_{B}\right)^{(t+3)} \log \left(2(t+1) n_{B}\right) .
$$

A Simpler Look at Baker and S-Unit Solutions

Assume that
Baker-Wüstholz: If L is a linear form, $\Lambda=L\left(\log \rho_{0}, \log \rho_{1}, \ldots, \log \rho_{t}\right) \neq 0$, then

$$
\log |\Lambda|>-C_{1} h^{\prime}(L) \prod_{j=0}^{t} h^{\prime}\left(\rho_{j}\right)
$$

A Simpler Look at Baker and S-Unit Solutions

Assume that
Baker-Wüstholz: If L is a linear form, $\Lambda=L\left(\log \rho_{0}, \log \rho_{1}, \ldots, \log \rho_{t}\right) \neq 0$, then

$$
\log |\Lambda|>-C_{1} h^{\prime}(L) \prod_{j=0}^{t} h^{\prime}\left(\rho_{j}\right)
$$

Rewrite our S-unit equation:

$$
x+y=1 \Rightarrow \frac{x}{y}=\frac{1}{y}-1 \neq 1
$$

A Simpler Look at Baker and S-Unit Solutions

Assume that
Baker-Wüstholz: If L is a linear form, $\Lambda=L\left(\log \rho_{0}, \log \rho_{1}, \ldots, \log \rho_{t}\right) \neq 0$, then

$$
\log |\Lambda|>-C_{1} h^{\prime}(L) \prod_{j=0}^{t} h^{\prime}\left(\rho_{j}\right)
$$

Rewrite our S-unit equation:

$$
\begin{gathered}
x+y=1 \Rightarrow \frac{x}{y}=\frac{1}{y}-1 \neq 1, \text { so } \\
\prod_{i=0}^{t} \rho_{i}^{a_{i}}=\frac{1}{y}-y \neq 1 . \\
\sum_{i=0}^{t} a_{i} \log \left(\rho_{i}\right)=\Lambda \neq 0,
\end{gathered}
$$

where α_{i} are S-units generators, a_{i} are exponents. We want to bound a_{i}

A Large Bound

Fix $\psi: K \hookrightarrow \mathbb{C}$. Let $H=\max \left\{\left|a_{i}\right|: 0 \leq i \leq t\right\}$
Ignoring all details:

$$
h^{\prime}(L)>C_{2} \log (H) \text { and } C_{3}=\prod_{i=0}^{t} h^{\prime}\left(\alpha_{i}\right)
$$

Baker-Wustholz:

$$
\begin{gathered}
\log |\Lambda|>-C_{1} C_{2} \log (H) C_{3} \\
|\Lambda|>e^{-C_{4} \log (H)}
\end{gathered}
$$

A Large Bound

Fix $\psi: K \hookrightarrow \mathbb{C}$. Let $H=\max \left\{\left|a_{i}\right|: 0 \leq i \leq t\right\}$
Ignoring all details:

$$
h^{\prime}(L)>C_{2} \log (H) \text { and } C_{3}=\prod_{i=0}^{t} h^{\prime}\left(\alpha_{i}\right)
$$

Baker-Wustholz:

$$
\begin{gathered}
\log |\Lambda|>-C_{1} C_{2} \log (H) C_{3} \\
|\Lambda|>e^{-C_{4} \log (H)}
\end{gathered}
$$

Geometric argument: $|\Lambda|<C_{5} e^{-C_{6} H}$

$$
\begin{gathered}
e^{-C_{4} \log (H)}<|\Lambda|<C_{5} e^{-C_{6} H} \\
C_{4} \log (H)>-\log \left(C_{5}\right)+C_{6} H
\end{gathered}
$$

A Large Bound

Fix $\psi: K \hookrightarrow \mathbb{C}$. Let $H=\max \left\{\left|a_{i}\right|: 0 \leq i \leq t\right\}$
Ignoring all details:

$$
h^{\prime}(L)>C_{2} \log (H) \text { and } C_{3}=\prod_{i=0}^{t} h^{\prime}\left(\alpha_{i}\right)
$$

Baker-Wustholz:

$$
\begin{gathered}
\log |\Lambda|>-C_{1} C_{2} \log (H) C_{3} \\
|\Lambda|>e^{-C_{4} \log (H)}
\end{gathered}
$$

Geometric argument: $|\Lambda|<C_{5} e^{-C_{6} H}$

$$
\begin{gathered}
e^{-C_{4} \log (H)}<|\Lambda|<C_{5} e^{-C_{6} H} \\
C_{4} \log (H)>-\log \left(C_{5}\right)+C_{6} H
\end{gathered}
$$

Pethö-de Weger $\Rightarrow H<K_{0}$.

A Large Bound

Fix $\psi: K \hookrightarrow \mathbb{C}$. Let $H=\max \left\{\left|a_{i}\right|: 0 \leq i \leq t\right\}$
Ignoring all details:

$$
h^{\prime}(L)>C_{2} \log (H) \text { and } C_{3}=\prod_{i=0}^{t} h^{\prime}\left(\alpha_{i}\right)
$$

Baker-Wustholz:

$$
\begin{gathered}
\log |\Lambda|>-C_{1} C_{2} \log (H) C_{3} \\
|\Lambda|>e^{-C_{4} \log (H)}
\end{gathered}
$$

Geometric argument: $|\Lambda|<C_{5} e^{-C_{6} H}$

$$
\begin{aligned}
& e^{-C_{4} \log (H)}<|\Lambda|<C_{5} e^{-C_{6} H} \\
& C_{4} \log (H)>-\log \left(C_{5}\right)+C_{6} H
\end{aligned}
$$

Pethö-de Weger $\Rightarrow H<K_{0}$.
Problem: For one of our fields, $K_{0}=2.137374 \times 10^{19}$.

Step 2: LLL

LLL: lattice basis reduction algorithm devised in 1982 by Henrik Lenstra, Arjen Lenstra, and Laslo Lovász.

Applying LLL reduction to a particular lattice yields a bound $K_{1} \approx \log \left(K_{0}\right)$. Can be repeated with new bound until there is no further improvement.

LLL in Action: Picard Curves

Need all K / \mathbb{Q} with degree ≤ 4 and $\operatorname{Disc}(K) \in \mathcal{O}_{S}^{\times}$with $S=\{3, \infty\}$.

Field	Degree	Minimal Polynomial	K_{0}	K_{1}
M_{0}	1	$x-1$	4.916825×10^{9}	3
M_{1}	2	$x^{2}+x+1$	8.018712×10^{9}	5
M_{2}	3	$x^{3}-3 x+1$	2.067269×10^{19}	217
M_{3}	3	$x^{3}-3$	1.957261×10^{15}	49
M_{3}^{\prime}	3			
$M_{3}^{\prime \prime}$	3			
L_{3}	6	$x^{6}+3$	2.137374×10^{19}	243

All fields have class number 1.
(3) is totally ramified in all (non-trivial) extensions.

Step 3: Sieving for Solutions

A sieve:
Recall $\mathcal{O}_{S}^{\times}=\left\langle\rho_{0}, \ldots, \rho_{t}\right\rangle$, where ρ_{0} is a root of unity. Say that

$$
x+y=1
$$

where

$$
x=\prod \rho_{i}^{a_{i, x}}=\rho^{\mathbf{a}_{\mathbf{x}}}, \quad y=\prod \rho_{i}^{a_{i, y}}=\rho^{\mathbf{a}_{\mathbf{y}}}
$$

Step 3: Sieving for Solutions

A sieve:
Recall $\mathcal{O}_{S}^{\times}=\left\langle\rho_{0}, \ldots, \rho_{t}\right\rangle$, where ρ_{0} is a root of unity. Say that

$$
x+y=1
$$

where

$$
x=\prod \rho_{i}^{a_{i, x}}=\rho^{\mathbf{a}_{\mathbf{x}}}, \quad y=\prod \rho_{i}^{a_{i, y}}=\rho^{\mathbf{a}_{\mathbf{y}}}
$$

Let q be a prime of \mathbb{Q} which splits completely in K, so

$$
q \mathcal{O}_{K}=\mathfrak{q}_{0} \ldots \mathfrak{q}_{n-1}
$$

We now consider the image of the equation $x+y=1$ modulo \mathfrak{q}_{j} for each $j, 0 \leq j \leq n-1$, where $\bar{\alpha}$ denotes the reduction modulo \mathfrak{q}_{j}. Let

$$
\bar{\rho}=\left(\overline{\rho_{0}}, \ldots, \overline{\rho_{t}}\right) \in\left(\mathbb{F}_{q}^{\times}\right)^{t+1}
$$

Step 3: Sieving for Solutions

A sieve:
Recall $\mathcal{O}_{S}^{\times}=\left\langle\rho_{0}, \ldots, \rho_{t}\right\rangle$, where ρ_{0} is a root of unity. Say that

$$
x+y=1
$$

where

$$
x=\prod \rho_{i}^{a_{i, x}}=\rho^{\mathbf{a}_{\mathbf{x}}}, \quad y=\prod \rho_{i}^{a_{i, y}}=\rho^{\mathbf{a}_{\mathbf{y}}}
$$

Let q be a prime of \mathbb{Q} which splits completely in K, so

$$
\mathfrak{q} \mathcal{O}_{K}=\mathfrak{q}_{0} \ldots \mathfrak{q}_{n-1}
$$

We now consider the image of the equation $x+y=1$ modulo \mathfrak{q}_{j} for each $j, 0 \leq j \leq n-1$, where $\bar{\alpha}$ denotes the reduction modulo \mathfrak{q}_{j}. Let

$$
\bar{\rho}=\left(\overline{\rho_{0}}, \ldots, \overline{\rho_{t}}\right) \in\left(\mathbb{F}_{q}^{\times}\right)^{t+1}
$$

Then we have

$$
\bar{\rho}^{\mathbf{a}_{\mathrm{x}}}+\bar{\rho}^{\mathbf{a}_{\mathbf{y}}}=\mathbf{1}
$$

for all j, which gives a set of conditions on $\mathbf{a}_{\mathbf{x}}$ and $\mathbf{a}_{\mathbf{y}}$ modulo $q=1$.

Sieve continued

Choosing a list of split primes $q_{1}, q_{2}, \ldots q_{N}$ so that

$$
\operatorname{lcm}\left(q_{1}, q_{2}, \ldots q_{N}\right)>2 K_{1}
$$

can use Chinese remainder-type argument to find searchable space of potential exponent vectors in \mathbb{Z}^{t+1}.

Sieve continued

Choosing a list of split primes $q_{1}, q_{2}, \ldots q_{N}$ so that

$$
\operatorname{lcm}\left(q_{1}, q_{2}, \ldots q_{N}\right)>2 K_{1}
$$

can use Chinese remainder-type argument to find searchable space of potential exponent vectors in \mathbb{Z}^{t+1}.

Finally, check whether each exponent vector yields an actual S-unit solution.

Note: This is not the same method introduced by Wildanger and improved by Smart.

Results and Beyond

Picard curves: Implementing the above routines in Sage, we solved the S-unit equation in the above-listed fields, yielding $63 \mathbb{Q}$-isomorphism classes of Picard curves with good reduction away from $p=3$.

Results and Beyond

Picard curves: Implementing the above routines in Sage, we solved the S-unit equation in the above-listed fields, yielding $63 \mathbb{Q}$-isomorphism classes of Picard curves with good reduction away from $p=3$.

Note: Proved a result that eliminated p-adic case for our problem, so implementation included a special case of LLL but general sieve.

Results and Beyond

Picard curves: Implementing the above routines in Sage, we solved the S-unit equation in the above-listed fields, yielding $63 \mathbb{Q}$-isomorphism classes of Picard curves with good reduction away from $p=3$.

Note: Proved a result that eliminated p-adic case for our problem, so implementation included a special case of LLL but general sieve.

2015/2016: Angelos Koutsianas: all elliptic curves with good reduction outside S defined over a general number field.

Note: Koutsianas also implemented S-unit solving in Sage, including both cases of LLL but avoiding sieve.

General Sage Implementation

Collaborate@ICERM January 2017

Team: Alejandra Alvarado, Angelos Koutsianas, M., Chris Rasmussen, Christelle Vincent, Mckenzie West (with moral support from Bjorn Poonen)

Implemented function to solve $x+y=1$ for general number field K and set S.
SageTrac Ticket \#22148

Computational Comparison

Smart, 1997 (paraphrased)

- The algorithm was implemented on a network of 20 SUN workstations, written in $\mathrm{C}++$. Issues with load balancing and computer failure had to be navigated.
- The program took around 27 MIPS-years, or in real life, about 18 days.

Computational Comparison

Smart, 1997 (paraphrased)

- The algorithm was implemented on a network of 20 SUN workstations, written in $\mathrm{C}++$. Issues with load balancing and computer failure had to be navigated.
- The program took around 27 MIPS-years, or in real life, about 18 days.

M.-Rasmussen, 2015

- Under 2000 lines of Sage code.
- Ran in approximately 1 day on 1 desktop machine.

Computational Comparison

Smart, 1997 (paraphrased)

- The algorithm was implemented on a network of 20 SUN workstations, written in C ++ . Issues with load balancing and computer failure had to be navigated.
- The program took around 27 MIPS-years, or in real life, about 18 days.

M.-Rasmussen, 2015

- Under 2000 lines of Sage code.
- Ran in approximately 1 day on 1 desktop machine.

Alvarado-Koutsianas-M.-Rasmussen-Vincent-West, 2017

- General solver is approximately 3000 lines of Sage code.
- Some problems run in seconds, others in minutes, others...

Next

- Improving Sage implementation:
- Incorporate bound improvements from literature
- More general linear equations
- Improve bound reduction using de Weger
- Implement Wildanger/Smart
- Make code better!

Next

- Improving Sage implementation:
- Incorporate bound improvements from literature
- More general linear equations
- Improve bound reduction using de Weger
- Implement Wildanger/Smart
- Make code better!
- What can we do with this function?
- Genus 2 curves good away from 3: Andrew Sutherland, Borys Kadets, James Rowan with $2,3 \in S$

Next

- Improving Sage implementation:
- Incorporate bound improvements from literature
- More general linear equations
- Improve bound reduction using de Weger
- Implement Wildanger/Smart
- Make code better!
- What can we do with this function?
- Genus 2 curves good away from 3: Andrew Sutherland, Borys Kadets, James Rowan with 2, $3 \in S$
- $p=5$ Chris Rasmussen and Ryan Karpisz
- $p=7,11 \ldots$

Next

- Improving Sage implementation:
- Incorporate bound improvements from literature
- More general linear equations
- Improve bound reduction using de Weger
- Implement Wildanger/Smart
- Make code better!
- What can we do with this function?
- Genus 2 curves good away from 3: Andrew Sutherland, Borys Kadets, James Rowan with 2, $3 \in S$
- $p=5$ Chris Rasmussen and Ryan Karpisz
- $p=7,11 \ldots$
- ...

Extra: More on LLL and Reducing S-Unit Exponent Bound

For $\psi_{h}: K \hookrightarrow \mathbb{C}$

$$
\begin{equation*}
\Lambda=\sum_{j=0}^{t} a_{j} \log \left(\rho_{j}\right)=\sum_{j=0}^{t} a_{j} \kappa_{j} \tag{1}
\end{equation*}
$$

where ρ_{j} are the generators of $\mathcal{O}_{S}^{\times}, \rho_{0} \in \mu_{w}$.

Extra: More on LLL and Reducing S-Unit Exponent Bound

For $\psi_{h}: K \hookrightarrow \mathbb{C}$

$$
\begin{equation*}
\Lambda=\sum_{j=0}^{t} a_{j} \log \left(\rho_{j}\right)=\sum_{j=0}^{t} a_{j} \kappa_{j} \tag{1}
\end{equation*}
$$

where ρ_{j} are the generators of $\mathcal{O}_{S}^{\times}, \rho_{0} \in \mu_{w}$.
Choose $C \approx 2^{t / 2}$. Define

$$
\begin{aligned}
& \Phi_{0}:=\sum_{j=1}^{t} a_{j}\left[C \Re \kappa_{j}\right] \\
& \Phi_{1}:=\sum_{j=1}^{t} a_{j}\left[C \Im \kappa_{j}\right]+a_{0}\left[C \cdot \frac{2 \pi}{w}\right] .
\end{aligned}
$$

so

$$
\left|\Phi_{0}+\sqrt{-1} \Phi_{i}\right| \leq C|\Lambda|+\frac{1}{\sqrt{2}}(2 t+1) K_{0}
$$

since $a_{i} \leq K_{0}$ for all i.

Lattice

$$
\mathcal{B}:=\left(\begin{array}{cccccc}
1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 & 0 \\
{\left[C \Re \kappa_{1}\right]} & {\left[C \Re \kappa_{2}\right]} & \cdots & {\left[C \Re \kappa_{t-1}\right]} & {\left[C \Re \kappa_{t}\right]} & 0 \\
{\left[C \Im \kappa_{1}\right]} & {\left[C \Im \kappa_{2}\right]} & \cdots & {\left[C \Im \kappa_{t-1}\right]} & {\left[C \Im \kappa_{t}\right]} & {\left[C \cdot \frac{2 \pi}{w}\right]}
\end{array}\right) .
$$

Let $\mathcal{L}=L\left(\mathcal{B}^{T}\right)$. Then $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{t-1}, \Phi_{0}, \Phi_{1}\right) \in \mathcal{L}$.

Reduction

$$
\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{t-1}, \Phi_{0}, \Phi_{1}\right) \in \mathcal{L}
$$

The Euclidean length of any nonzero lattice element in \mathcal{L} is bounded below by $B:=2^{-t / 2}\left\|\mathbf{b}_{1}\right\|$, where \mathbf{b}_{1} is the shortest vector in the LLL-reduced basis for \mathcal{L}.

$$
B^{2} \leq|\mathbf{a}|^{2}=\sum_{i=1}^{t-1} a_{i}^{2}+\Phi_{0}^{2}+\Phi_{1}^{2} \leq C^{2}|\Lambda|^{2}+\frac{1}{2}(2 t+1)^{2} K_{0}^{2}
$$

Smart: $|\Lambda|<C_{0} e^{-C_{1} H}$, by a geometric argument. *holds for some embedding-have to calculate constants for all and take worst constant

$$
B^{2} \leq C^{2}\left(C_{0} e^{-C_{1} H}\right)^{2}+\frac{1}{2}(2 t+1)^{2} K_{0}^{2}
$$

Define

$$
S_{\mathcal{L}}:=\left(B^{2}-(t-1) K_{0}^{2}\right)^{1 / 2}, \quad T_{\mathcal{L}}:=\frac{1}{2}(w+2+\sqrt{2}) t K_{0}
$$

If $B^{2}>T_{\mathcal{L}}^{2}+(t-1) K_{0}^{2}$, then every solution to the S-unit equation satisfies

$$
\begin{gathered}
H \leq K_{1}:=C_{6}\left(\log \left(C C_{4}\right)-\log \left(S_{\mathcal{L}}-T_{\mathcal{L}}\right)\right) \\
K_{1} \sim \log \left(K_{0}\right)
\end{gathered}
$$

