A dynamical geography of the Gulf of Mexico

Philippe Miron¹, Francisco J. Beron-Vera¹, María J. Olascoaga², Paula Pérez-Brunius³, Julio Sheinbaum³ and Gary Froyland⁴ BIRS on Thursday, January 19

¹RSMAS/ATM University of Miami, Miami, USA

²RSMAS/OCE University of Miami, Miami, USA

³CICESE, Ensenada, Mexico

⁴University of New South Wales, Sydney, Australia

Using only drifters data (trajectories) in the Gulf of Mexico (GoM):

- Subdivide the GoM into regions with similar dynamics
- Predict transport of passive and possibly non-passive tracers

Introduction

Drifters database in the GoM (1994-2016)

Problematics: non uniform data (data per year, type of drifters, time resolution)

- Left: initial positions
- Right: all trajectories data points

3312 drifters from different sources (LASER & GLAD / CARTHE, GDP / NOAA, BOEM / SCULP, PEMEX / CICESE)

Biodegradable drifters (Novelli et al., 2017, University of Miami)

- 1000 drifters deployed during the LAgrangian Submesoscale ExpeRiment (LASER) in 2016
- Total height of 0.6 m
- GPS precision $\pm 10 \text{ m}$
- Quarter-hourly acquisition (\sim 3 months)

Transfer Operator theory

Approximation of an attractor (Dellnitz and Junge, 1997; Froyland, 2001a)

4

Transfer operator

- Domain X
- Map $T: X \circlearrowleft$ acts on a density $f: X \to \mathbb{R}$

Transfer operator

For all the points $\in X$, if the map T is area preserving, the end result can be obtained from the Perron-Frobenius operator (\mathcal{P}):

$$\mathcal{P}f(\mathbf{x}) = f \circ T^{-1}(\mathbf{x}).$$

- Probabilistic approach known as Ulam's method (Ulam, 1960)
- Subdivision of the domain in boxes (B_1, \cdots, B_n)
- From short-time trajectories, we approximate the probability to go from box *i* to box *j*:

$$\mathcal{P}_{ij} \approx rac{\#\{p: p \in B_i \text{ and } T(p) \in B_j\}}{\#\{p \in B_i\}}$$

by counting the number of particles (drifters) in B_i that are mapped into B_j .

- $\ensuremath{\mathcal{P}}$ defines a Markov Chain of the dynamics
- Using initial density $f_0 \rightarrow$ future distribution

$$f_1 = f_0 \mathcal{P}$$
$$f_N = f_0 \mathcal{P}^{\Lambda}$$

- left eigenvectors ($\lambda L = L \mathcal{P}$)
 - for $\lambda = 1$: invariant distribution
 - for $\lambda\approx1:$ almost invariant distribution
- right eigenvector highlights the basin of attraction

Example with a simple 5 states problem

Example with a simple 5 states problem

- L_1 : A, B are attractors
- L₂: E is another attractor
- R_1 : A, B, C basin of attr.
- R_2 : D, E basin of attr.

Algorithm on real data!

All drifters trajectory start at the same time (Autonomous system) and we construct the transition matrix by looking where drifters end up 2 days later (bins size, data).

- 1. Split the domain (GoM) into square boxes
- 2. For each trajectory segment:
 - find bins *i* where x₀ is located and store the segment *ID* in the vector *B_i*
 - identify bins j where x_f is located and store the segment ID in the vector B_j
- 3. Calculate the transition matrix \mathcal{P}_{ij} using vectors B_i and B_j
- 4. Calculate eigenvalues and eigenvectors of $\ensuremath{\mathcal{P}}$

Let's look at the results !

Strongly connected components (Tarjan algorithm)

The GoM is almost completely covered by a single CC.

- Left: communicating classes (CC) of the GoM
- Right: the closed communicating classes (*CCC*) in red with attractive closed communicating classes (*ACCC*)

Limiting distribution from a uniform density

Existence of a westward mean flow: similar to results presented by Sturges (2016)

Figure 1: (a) 0 d, (b) 100 d, (c) 200 d, (d) 500 d, (e) 1000 d, (f) 2000 d.

Top left eigenvectors

Top right eigenvectors

Dynamical geography

- left: the main separation of the GoM
- right: the five coastal basins of attraction

Oil rigs location

Distance of oil rigs from the coast is increasing in recent years..

Conclusion

- Identified **almost limiting distributions** and corresponding **basins of attraction** from the inspection of the eigenvectors
- Supported by independent observations of a westward mean flow (Sturges, 2016)
- Ability to push-forward a density to "predict" the dispersion (e.g. after an oil spill or to plan a drifters experiment)

Open questions:

- What is the influence of the drifters' type on the transition matrix ?
- Will it be possible to perform a seasonal (or maybe monthly) evaluation of the transition matrix ?
- How does it compare to high number of artificial drifters or simply density advection using a numerical velocity field?
- How to "easily" extract the different sets ?

Coming soon: Miron et al. (2017): A dynamical geography of the Gulf of Mexico

- M. Dellnitz and O. Junge. Almost invariant sets in chua's circuit. International Journal of Bifurcation and Chaos, 7(11):2475–2485, 1997.
- G. Froyland. Extracting dynamical behaviour via markov models. In A. Mees, editor, Nonlinear Dynamics and Statistics: Proceedings of the Newton Institute, Cambridge, 1998, pages 283–324. Birkhauser, 2001a.
- G. Froyland. Extracting dynamical behavior via markov models.
 In *Nonlinear dynamics and statistics*, pages 281–321. Springer, 2001b.

References II

- G. Froyland, R. M. Stuart, and E. van Sebille. How well-connected is the surface of the global ocean? *Chaos: An Interdisciplinary Journal of Nonlinear Science*, 24(3):033126, 2014.
- P. Miron, F. J. Beron-Vera, M. J. Olascoaga, P. Pérez-Brunius, J. Sheinbaum, and G. Froyland. A dynamical geography of the gulf of mexico. *Preprint*, 2017.
- G. Novelli, C. M. Guigand, C. Cousin, E. H. Ryan, N. J. M. Laxague, H. B. K. Dai, Hanjing, and T. M. Özgökmen. A biodegradable surface drifter for ocean sampling on a massive scale: Design, calibration and application. *Preprint*, 2017.
- W. Sturges. The mean upper-layer flow in the central gulf of mexico by a new method. *Journal of Physical Oceanography*, 46(10): 2915–2924, 2016.

S. M. Ulam. *A collection of mathematical problems*, volume 8. Interscience Publishers, 1960.