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Overview I

Liquid crystals are soft matter systems consisting of rigid, rod-like
molecules that tend to align themselves along preferred directions.
A main issue in their application is the ability to control
macroscopic size regions of uniform molecular alignment. In display
devices, control is achieved by means of electromagnetic fields.

Control in material processes is achieved by flow. The
Ericksen-Leslie equations are central to the study of nematic liquid
crystal flow. The analytic difficulties related with singularities and
constraints in the model prompted research on relaxed and
approximate forms, pioneered by Liu and Lin (1995). Since then,
relaxed models of variable length director have received a lot of
attention.
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Overview II

We examine some of the physical inconsistencies of the variable
director models and use additional information to resolve them.
Molecular theory and rheological data applied to the Leslie
coefficients provide the missing ingredients. Here, we point out the
crucial research role of the polymeric industry. This brings out the
multiscale nature of the system which allows us to establish a key
maximum principle. Another requirement is ensuring a consistency
between the free energy and the rate of energy dissipation near the
isotropic state. This also turns out to be a key ingredient in
predicting formation of defects in flow.
This information is used to ’reorganize terms’ in the rate of energy
dissipation function. From that point on, all results found in the
literature hold, with some modifications.
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Distortion energy of nematic

Figure: spaly, twist and bend distortions

The energy density WOF corresponds to the Oseen and Zocher
(1920’s) established by Frank (1958),

WOF =
1

2
K1(∇ · n)2 +

1

2
K2(n · ∇ × n)2 +

1

2
K3|n ×∇× n|2

+
1

2
(K2 + K4)[(n · ∇)n − (∇ · n)n)], |n| = 1.

Invariant under rotations with n-axis; invariant under inversion
n → −n.

U =

∫
Ω

WOF(n,∇n) dx, subject to |n| = 1
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The Leslie-Ericksen Equations for {v ,n, p}

Balance of Linear Momentum:

ρv̇ −∇ · (−pI + Tv + Te) = ρf

Balance of Angular Momentum:

−χn̈ + ge + gv + λn = ρg

Constraints: n · n = 1, ∇ · v = 0

I Te = −(∇n)T ∂WOF
∂∇n , elastic stress tensor;

I Tv, viscous stress tensor

I ge = −∇ · (∂WOF
∂∇n ) + ∂WOF

∂n , elastic molecular force

I gv, viscous molecular force

I λ, Lagrange multiplier

I ṅ = ∂n
∂t + v · ∇n, material time derivative.

Neglect rotational inertia, χ = 0.
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Viscous stress and molecular force

Invariant time rate quantities:

D(v) =
1

2
(∇v +∇vT ), W (v) =

1

2
(∇v −∇vT )

N = ṅ −W (v)n : Lie derivative

Experiments of Miesowicz (1936) and Zwetkoff (1939) suggested that Tv

and gv have linear dependence on D(v) and N:

Tij = Aij + Bijk(n)Nk + CijkpDkp(v)

Smith and Rivlin (1957) proved that these can be expressed explicitly.

Accounting for nematic symmetries, Leslie (1966) found

Tv = α1(n · D(v)n)n ⊗ n + α2N⊗ n + α3n ⊗N

α4D(v) + α5D(v)n ⊗ n + α6n ⊗ D(v)n

gv = γ2D(v)n + γ1N.

αi are viscosity coefficients measured in experiments.
γ1 = α3 − α2, γ2 = α6 − α5.
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Energy law and rate of dissipation

Suppose that {n, v , p} are smooth solutions of the governing
equations. Then, they satisfy energy law

d

dt

∫
V

(
1

2
ρ|v |2 +

1

2
χ|ṅ|2 +WOF

)
+

∫
V
REL =

∫
V
f · v + g · ṅ

+

∫
∂V

(t · v + l · ṅ)

for every subdomain V ⊆ Ω with the smooth boundary ∂V .
Rate of energy dissipation:

2REL = (Tv,∇v) + (gv, ṅ)

= α1(nTD(v)n)2 + γ1|N|2 + (α5 + α6)|D(v)n|2

+ (α3 + α2 + γ2)NTD(v)n + α4|D(v)|2

Assume that Parodi’s relation holds:

α6 − α5 = α2 + α3,
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Projection operator on planes perpendicular to n

Let us consider the projection operator (Ericksen, 1991),

P = I − n ⊗ n, |n| = 1.

Denoting A = D(v), which has the property trA = 0, we let

B =A +
1

2
n · AnI − n ⊗ PAn − PAn ⊗ n − 3

2
(n · An)n ⊗ n,

B =BT , Bn = 0, trB = 0,

trA2 = trB2 +
3

2
(n · An)2 + 2|PAn|2.

Hence,

2REL = η1 tr(B2) + η2(n · An)2 + η3|PAn|2 + γ1|N +
γ2

γ1
PAn|2.

Miesowitz viscosities:

η1 =α4,

η2 =α1 +
3

2
α4 + α5 + α6,

η3 =2α4 + α5 + α6 − γ2
2γ1
−1.
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Second Law of Thermodynamics and Leslie inequalities

Second Law of Thermodynamics requires

REL ≥ 0.

REL ≥ 0 (strictly) if and only if the following inequalities hold:

γ1 = α3 − α2 ≥ 0,

η1 := α4 ≥ 0,

η2 ≥ 0 ⇐⇒ 4γ1(2α4 + α5 + α6) ≥ (α2 + α3 + γ2)2,

η3 := 2α1 + 3α4 + 2α5 + 2α6 ≥ 0.

Parodi’s relation yields

Tv =
∂REL

∂(∇v)
and gv =

∂REL

∂ṅ
.
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Summary of the Ericksen-Leslie equations

ρv̇ =−∇p −∇ · (∂WOF

∂∇n
) +∇ · Tv + f

∇ · v = 0

γ1ṅ =∇ · (∂WOF

∂∇n
)− ∂WOF

∂n
− γ2D(v)n

+γ1W (v)n − λn + g

n · n = 1
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Well-posedness of Leslie Ericksen system: some references

Relaxation of constraint |n| = 1 by adding energy penalty

I Lin and Liu (1995, 1998), Liu and Walkington (2002) studied
well-posedness of reduced model and discretizations

I Walkington (2011), full LE-system and discretizations

I Wu, Zhang, Zhang (2013) well posedness of the approx Leslie
Ericksen system, plus stability and bifurcation results

I Du, Guo and Chen (2007). Spectral methods for LE-equations

I Emmrich and Lazerzick (2016).

With constraint |bn| = 1:

I Lin, Lin and Wang (2010), Lin and Wang (2010), Lin and
Wang (2015) study well-posedness of reduced model

I Wang, Zhang and Zhang (2012), well-posedness in R3 of a
family of approximate models.

Order tensor model: DeAnna and Zarnescu.
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Variable length director model and energy penalty

In this approach, the unit director n is replaced with a variable
length director d,

d = |d|n, |d| 6= 1.

An additional term in the energy, as in Ginzburg-Landau model,
penalizes departure from |d| = 1. New energy density:

W =WOF(d,∇d) +
1

ε2
(1− |d|2)2

ε > 0 arbitrarily small but fixed.
The rest of the model remains unchanged.

With the new director, the transition to d = 0 at defect locations
may occur continuously from |d| > 0, instead of the discontinuous,
singular, transition from unit n to n = 0.
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Questions on the consistency of the new model

I Addition of a new unknown field |d|
I Constitutive equations, W, αi , . . . , may now depend on |d|.
I Introduction of new scales in the model

The new stress tensor becomes

T̃v = α1|d|4(n · D(v)n)n ⊗ n + α2|d|2N⊗ n + α3|d|2n ⊗N

α4D(v) + α5|d|2D(v)n ⊗ n + α6|d|2n ⊗ D(v)n

Note the different scales of the terms α1 and α4
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Modified Leslie’s inequalities

γ1 = α3 − α2 ≥ 0, α4 ≥ 0,

2α4 + |d|2(α5 + α6) ≥ 0,

4γ1(2α4 + |d|2(α5 + α6)) ≥ |d|2(α2 + α3 + γ2)2,

2α1|d|4 + 3α4 + 2|d|2(α5 + α6) ≥ 0

Whereas these inequalities might be satisfied for special values of
|d|, they can break down for other values. Let us focus on last
inequality and rewrite it as

α1|d|4 + [2α4 + |d|2(α5 + α6)] ≥ α4

2

Note that it may break down for α1 < 0 (satisfied by standard
liquid crystals).
There is no sufficient information in the equations to control |d|.
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Restricted inequalites in contradiction with data

Sufficient conditions on αi giving R ≥ 0, in full viscosity models:

γ1 = α3 − α2 ≥ 0, α4 ≥ 0, α1 > 0,

α5 + α6 −
α6 − α5

α3 − α2
(α3 + α2) > 0,

4[(α5 + α6)(α3 − α2)− (α6 − α5)(α3 + α2)]

≥ (α3 + α2 − (α6 − α5))2.

Viscosities 5CB MBBA PBG

α1 -11 −18± 6 −3660

α2 -83 −109± 2 −6920

α3 -2 −1± 0.2 18

α4 75 83± 2 348

α5 102 80± 15 6610

α6 -27 −34± 2 -292

Kleman and Lavrentovich, Soft Matter Physics, 2003.Units 10−2 poise.
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Can we control |d| from the equations?

γ1ḋ =∇ · (∂WOF

∂∇d
) +

4

ε2
(1− |d|2)d− γ2D(v)d + γ1W (v)d

Perform inner product with d on both sides of eqn to obtain a
nonliner parabolic equation for |d|2:

γ1

2

D|d|2

Dt
= [∇ · (∂WOF

∂∇d
)] · d +

4

ε2
(1− |d|2)|d|2 − γ2D(v)d · d

It does not have a maximum principle
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Liquid crystals with variable degree of orientation, Ericksen
(1991)

The discovery and synthesis of the Kevlar fiber (Dupont, 1978)
prompted research on lyotropic polymeric liquid crystals towards
generating bulk samples. Processing flows are able to imprint
alignment in fibers and thin material layers used in coating
reinforcements. However, three dimensional samples present
multi-aligned domains leading to material failure.
Work by Kurt Wissbrun (polymer scientist, Celanese Labs;
1981-article) motivated Ericksen (1991) to construct a model able
to account for point as well as line and surface defects. It has
three main ingredients: Ericksen-Leslie, Landau-de Gennes and
Onsager theories. In a main contribution, Doi linked the
continuum E-L model with Onsager’s.
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Governing equations (Ericksen, 1991) {v ,n, s, p}

ρv̇ = −∇p +∇ · (Te + Tv)

β2(s)ṡ = ∇ · ( ∂W
∂∇s

)− ∂W
∂s
− β3(s)n · D(v)n

γ1(s)ṅ = ∇ · ( ∂W
∂∇n

)− ∂W
∂n

+ γ1(s)W (v)n − γ2(s)D(v)n + λn

∇ · v = 0, n · n = 1

Elastic and viscous stress tensors:

Te =−∇nT ∂W
∂∇n

−∇s ⊗ ∂W
∂∇s

Tv =
(
β1ṡ + α1n · D(v)n

)
n ⊗ n + α2N⊗ n

+α3n ⊗N + α4D(v) + α5D(v)n ⊗ n + α6n ⊗ D(v)n.

The Leslie coefficients αi and βi (s) are now functions of s,
αi = αi (s), s ∈ (−1

2 , 1).
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Energy and singular potentials

Simplified energy, with k1, k2 > 0, related to Frank’s constants:

W = k1|∇s|2 + k2s
2|∇n|2 + f (s)

f (s), s ∈ (−1
2 , 1) is a polynomial (Doi, 1983) or a singular, single

(or double-well) potential, (Ericksen, 1991)

lim
s→{− 1

2
,1}

f (s) = +∞.

High concentration or low temperature nematic. For the purpose of the

s-model to inform the variable director one, we further restrict s to (0, 1).

.
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The viscosity coefficients

For lyotropic liquid crystals, in the 1980’s and 90’s, a great deal of
effort by the rheological community was devoted to determine the
functions αi (s) and βi (s):

I Expressions for αi (s) near s = 0 and concentration studies of
double-well potential f (s) (Kuzzuu-Doi, 1983-84). Two
approaches: model flow with Smolukowsky equation (1983) or
with Ericksen-Leslie (1984).

I Rheological measurements coupled with molecular theory,
along the lines of Miesowitz’s expermients (Berry, Doi,
Marrucci, Larson,. . . 1980-90’s). In particular, these provide
information on the behavior near s = 0, defect locations.

I Ericksen (1991) further explored the compatibility of the
above results with the dissipation function emerging from the
Landau-deGennes theory.
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On the approximation of viscosity coefficients αi

Developed by Kuzzu-Doi (1983) and based on Onsager’s theory of
lyotripic liquid crystals, combined with expression of Leslie’s
viscous stress tensor. Two main assumptions:

I Aligning regime flow

I The order tensor Q takes equilibrium values only.

The αi coefficients are found to depend on isotropic viscosity η0,
dimensionless concentration C and order parameters

S2 =< P2(u · n) >≡ s, S4 =< P4(u · n) >

P2,P4 are Legendre polynomials of 2nd and 4th degree. < · · · >
denotes the average with respect to the distribution function f0(u).
The function f0(u) is the minimizer of Onsager’s microscopic free
energy A.
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Approximated Onsager free energy minimization

Approximation schemes to minimize A developed by Kuzzuu-Doi
(1984), Marrucci (1981) and Berry (1988) consisted in expressing

αi (s) =k(p)Ai (s), 1 ≤ i ≤ 6, i 6= 4,

k(p) = η0(1− p2)2

The minimization provides expressions for the dimensionless
rational functions Ai (s). p aspect ratio of rod-like molecules. The
quantity η0 depends on concentration, isotropic viscosity and the
molecular weight as well the length of the rod.

For a survey of experimental and theoretical work on viscosity
coefficients: R. Larson, The Structure and Rheology of Complex
Fluids, 1999.
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General viscosity relations and determining viscosities βi

The previous methods commonly yield

|γ1

γ2
(s)| ≤ 1, s ∈ (−1

2
, 1),

lim
s→0

γ1

γ2
(s) = 0, γ1(s) = O(s2), γ2(s) = O(s)

lim
s→1−

γ1

γ2
(s) = −1, lim

s→− 1
2

+

γ1

γ2
(s) = 1.

These relations proved relevant to study of defects in flow
(MCC-Mukherjee; 1996, 1997).
To obtain information on the coefficients βi , we require consitency
between between the dissipation function, R, expressed as a
quadratic on {ṡ, N and D(v)} and the analogous function written
in terms of D(v) and the co-rotational time derivative of Q,
Q̂ = Q̇ −W (v)Q + QW (v). This yields

β(s) ≡ −β1(s) = −β3(s) > 0, β2(s) = O(1).

24 / 38



Marrucci’s viscosities

For k(p) = η0(1− p2)2.
p is the aspect ratio of a rod-like molecule.

α1 = −s2k(p), α2 = −s(1 + 2s)

(2 + s)
k(p), α3 = −s(1− s)

(2 + s)
k(p),

α4 =
(1− s)

3
k(p), α5 = sk(p), α6 = 0.

In view of moelcular theory and rheological data, we assume that

α1(s) =α0
1s

2,

αi (s) =α0
i s, i = 2, 3, 5, 6,

α4(s) =α4,

γ1(s) =γ0
1s

2, γ2(s) = γ0
2s,

β1(s) =β3(s) = const, β2 = const.

From these properties, it follows that s satisfies a nonlinear

parabolic equation: it has maximum and comparison principles.
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The maximum principle: s bounded away from 1

Suppose that the liquid crystal occupies a 3-dimensional, bounded domain

Ω ⊂ R3, with a smooth boundary ∂Ω. Let s(x , t), n(x , t), v(x , t), p(x , t)

be a smooth solution of the governing equations corresponding to initial

and boundary data 0 < s(x , 0) ≤ 1− ε and 0 < s(x , t) < 1− ε, x ∈ ∂Ω.

Then s(x , t) ≤ 1− ε, for all x ∈ Ω and T > t > 0.

st + (v · ∇)s = ∆s − f ′(s)− s|∇n|2 − n · D(v)n.

We argue by contradiction and suppose that s(x , t) reaches its maximum
at a point and time (x∗, t∗) ∈ Ω× [0,T ] and such that s(x∗, t∗) is
arbitrarily close to s = 1:

st = 0, ∇s = 0, 4s ≤ 0, at, (x∗, t∗).

Since the left-hand side is identically 0 and the right-hand side is strictly
negative, we conclude that, either

I Max s(x , t) is bounded away from 1, or

I Max s(x , t) occurs at t = 0 or x ∈ ∂Ω.

The result holds for the full equation since n ·D(v)n remains bounded as

s → 1.
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Invariant set s ≥ 0: a formal result

Let ε > 0 be small. Suppose that

lim
s→ε+

f (s) = +∞, lim
s→ε+

f ′(s) = −∞.

Let {s(x, t),n(x, t), v(x, t), p(x, t)}, x ∈ Ω, T > t > 0 be a
smooth solution of the governing equations corresponding to initial
and boundary data

0 < ε ≤ s(x, 0) < 1, 0 < ε ≤ s(x, t) < 1, x ∈ ∂Ω, t ∈ (0,T ).

Then, s(x, t) > ε > 0, for all x ∈ Ω and T > t > 0. Indeed, for
0 < s < s∗,

st + (v · ∇)s = ∆s + |f ′(s)| − s|∇n|2 − s2n · D(v)n.

Note that smooth solutions cannot have an interior minimum such
that s > 0, small. For the purpose of well-posedness of Ericksen’s
model assumptions on f (s) can be relaxed to a single-well
potential at s∗.
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Some conclusions

Let us set d =
√
sn, s ∈ (0, 1) and rewrite Ericksen’s equations in

terms of d and s. The new equations do not correspond to a
variable director model. Otherwise, the following E-model equation

γ0
1

2

d

dt
|d|2 = 2k

(
d · 4d +

2

z
(∇d)∇z · d

)
− γ0

2

z2
d · D(v)d + λ̂|d|2

would be compatible with the s-eqn

β2(s)ṡ = ∇ · ( ∂W
∂∇s

)− ∂W
∂s
− f ′(s)− β3(s)n · D(v)n.

However there is no Lagrange multiplier λ̂ such that both equations
are identical (otherwise β1 and β3 would take nonphysical values).
Ericksen’s model serves as guidance in formulating a variable
director model. We want to preserve the maximum principle,
Leslie’s inequalities and the viscous stress tensor.
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Proposal of a variable director model

Step 1. Postulate a free energy of the form

W = W0(d,∇d) + f (|d|2), f ′(z∗) = 0, z∗ ∈ (0, 1).

where f is a single-well potential, singular at s = 1, with f ′(0) < 0
and W0 satisfies a Hadamard condition (e.g, it can be obtained as
a quadratic form of M = d⊗ d). Can we take W0 =WOF( d

|d|)?

Step 2. Postulate the viscous stress tensor

Tv =α0
1(d · D(v)d)d⊗ d + α0

2d̊⊗ d + α0
3d⊗ d̊ + α4D(v)

+α0
5D(v)d⊗ d + α0

6d⊗ D(v)d.

It follows from stress tensor for Ericksen’s model
γ0

2
2 = β3 = β1.

Step 3. Keeping up with the scaling leading to Tv, take

gv = γ0
1 d̊ + γ0

2D(v)d.
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Rate of dissipation function and maximum principle

2Rd =Te · ∇v + gv · d̊ = α0
1(d · D(v)d)2 + 2γ0

2 d̊ · D(v)d

+γ0
1 |̊d|2 + (α0

5 + α0
6)|D(v)d|2 + α4|D(v)|2.

Evolution equation for d:

γ0
1 d̊ = ∇ · ∂W0

∂∇d
− ∂W0

∂d
− γ0

2D(v)d− 2f ′(|d|2)d.

For the one-constant energy, we get

γ0
1 d̊ = 2k4d− γ0

2D(v)d− 2f ′(|d|2)d.

Taking the inner product of the previous equation by d, we get

γ0
1

2

d

dt
(|d|2) = 2k(4(|d|2)− |∇d|2))− γ0

2D(v)d · d− 2f ′(|d|2).

Smooth solutions have maximum principle properties which yield
bounds on |d|.
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Sufficient conditions for R ≥ 0

Suppose that α0
1 < 0 and |d| 6= 0. Then the dissipation function

satisfies Rd > 0 provided α4 > 0 and

α0
1 +

3ᾱ4

2
+ α0

5 + α0
6 > 0 and 2 ᾱ4 + α0

5 + α0
6 −

(γ02 )2

γ01
> 0 .

A simple calculation shows that

2Rd =ε|D(v)|2 + ᾱ4 trB2 +
η0

3

|d|2
|d× D(v)d|2 +

η0
2

|d|2
|D(v)d · d|2

+γ0
1 |d|2 |̊d +

γ0
2

γ0
1 |d|

2 d× D(v)d|2,

η0
2 =α0

1|d|2 +
3ᾱ4

2|d|2
+ α0

5 + α0
6, η0

3 =
2ᾱ4

|d|2
+ α0

5 + α0
6 −

(γ0
2 )2

γ0
1

.

Expressed in terms of n, we observe that there are no singularities
in the coefficients.
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Governing equations

ρv̇ =∇ · (∂W0(d,∇d)

∂(∇d)
∇dT ) +∇ · Tv −∇p,

∇ · v = 0

γ0
1 ḋ =∇ · ∂W0

∂∇d
− γ0

2

|d|2
D(v)d + γ0

1W (v)d− f ′(|d|2)|d|−2d.

Tv =α0
1(d · D(v)d)d⊗ d + α0

2d̊⊗ d + α0
3d⊗ d̊ + α4D(v)

+α0
5D(v)d⊗ d + α0

6d⊗ D(v)d.

Taking f (s) as a ’narrow’ well with minimum at 0 < s∗ < 1, the
model corresponds to relaxing the constraint |d| =

√
s∗.
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Well posedness of the model

Let (v ,d) be a weak solution of the system. Then the following
additional regularity properties hold:

d ∈W 1,4/3(0,T ; L2) ⊂ AC([0,T ]; L2) ⊂ Cw ([0,T ;H1
0 ])

v ∈W 1,4/3(0,T ; L2
σ) ⊂ AC([0,T ]; L2

σ) ⊂ Cw ([0,T ];H1
0,σ).

Theorem

Assume that the free energy of the system is as in Step 1. Assume that
the viscosity coefficients satisfy inequalities. Suppose that d and v satisfy
prescribed Dirichlet boundary conditions, with v = 0 on ∂Ω. For
dimension n ≤ 3 and Ω ⊂ R3, open, bounded and convex, initial data
v 0 ∈ V 0,2(Ω)) and 0 < T <∞, d0 ∈ H1, |d0| ≤ 1 the system has a
global weak solution (v ,d, p) with the properties

v ∈ L2(0,T ;V 1,2(Ω)) ∩ L∞(0,T ;V 0,2(Ω)),

d− d0 ∈ L∞[0,T ; L2(Ω)] ∩ H1[0, t; L
4
3 (Ω)].

Proofs analogous to (Emmrich, Lasarovich 2016). All analyses with the

assumption α1 ≥ 0 hold with the relevant modifications. 33 / 38



Conclusions

I Variable director models are very coarse and do not represent
the multiscale physics of liquid crystal flow. They are not
appropriate to describe defects.

I Their simplifying value diminishes as more information on
constitutive functions around s = 0 is brought in.

I It provides the necessary ingredients to prove well-posedness
of Ericksen’s system (ongoing work, in 3d).

I Ericksen’s model reduces to Leslie-Ericksen when setting s > 0
constant and taking variations with respect to product

√
sd.

I The results extend to the case W0 =WOF( d
|d|). However, the

analysis turns out to be cumbersome and Ericksen’s model is
a better choice.

I This work allows us to establish well-posedness of the liquid
crystal model coupled with electrokinetics and when very
small particles are present.
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Poisson-Nernst-Planck- Leslie Ericksen equations

∂ck
∂t

+∇ · (vck) = ∇ ·
( ck
kBT

D∇µk
)

−ε0∇ · (ε∇Φ) =
N∑

k=1

qzkck

ρv̇ −∇ · (−pI + µD(v) + Tv + Te)−
N∑

k=1

ckzk∇Φ = ρf

gv −∇ · (
∂W
∂∇n

) +
∂W
∂n

+ εa(n · ∇Φ)∇Φ + λn = ρg

Chemical Potential:

µk :=
∂W
∂ck

=
∂Wion

∂ck
+qzkΦ = kBT (ln ck +1)+qzkΦ, k = 1, . . .N
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Fields of the problem

I liquid crystal velocity field v

I nematic director n

I Leslie coefficients αi and their combinations γi , γ̂i
I Oseen-Frank energy WOF

I Frank coefficients Ki

I Molecular forces ge, gv

I Stress tensor Te, Tv

I Electrostatic potential Φ, Φi := Φ− Φe

I Ion concentration variables ck . Take {c1, c2}
I Balance zk . Take z1 = 1 = −z2

I Chemical Potential µk
I Ionic energy density Wion

I Electrostatic energy WC. Coulombic (ions) + Dielectric (lc’s)
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Relative Velocity of Ionic Particles:

uk − v =
1

BT
D
(
∇(

∂Wion

∂ck
)− zkck∇Φ

)
, k = 1, . . .N

Dissipation Function:

R = RLC +
N∑

k=1

(1

2
KBTckD−1(uk − v) · (uk − v)

+
ck

KBT
D∇µk · ∇µk

)
≥ cv

(
nTD(v)n)2 + |N|2

+ |D(v)n|2 + ck(|uk − v |2 + |∇µk |2)
)
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Total Energy Density

:

W =WOF(n,∇n) + kBT
N∑

k=1

ck log ck −
1

2
(ε∇Φ · ∇Φ) +

N∑
k=1

zkckΦ

Diffusivity Tensor:
D = D⊥I + Dan ⊗ n

Dielectric Tensor:
ε = ε⊥I + εan ⊗ n

Energy Relation:

d

dt

∫
Ω
{1

2
ρ|v |2 +W}+

∫
Ω
{µ|D(v)|2 + (Tv,∇v) + (gv, ṅ)

+
N∑

k=1

Dkck
kBT

(Dk∇µk · ∇µk)} =

∫
Ω

(ρf , v) + (ρg , ṅ)
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