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Liquid crystals The OR Solution Numerics Conclusions

Liquid crystals

Liquid crystals are intermediate
phases of matter between crystalline
solids and the liquid phase.

Carbon nanotubes as liquid crystals.
[Zhang, Kumar, ’08]

Nematic liquid crystals:

• Rod-shaped molecules.

• The molecules can flow.

• Directional order, but no
positional order.
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• Anisotropic optical properties

• Confinement leads to pattern formation.
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The order parameter: Q-tensors

• The material is represented by a symmetric, trace-free tensor field:

Ω ⊆ Rd → S0 :=
{

Q ∈ R3×3 : QT = Q, tr Q = 0
}
.

B Isotropic: Q(x) = 0

B Uniaxial: Q(x) 6= 0 and two eigenvalues coincide.

Q(x) = s(x)

(
n(x)⊗ n(x)−

1
3

Id
)

B Biaxial: all the eigenvalues are distinct.

Q(x) = 0 λ1 < λ2 = λ3

0 ≤ β2(Q) ≤ 1
−→

λ1 < λ2 < λ3
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The Landau-de Gennes energy

I[Q] :=

∫
Ω

{
L
2
|∇Q|2 + fb(Q)

}
fb(Q) :=

A
2

tr Q2 −
B
3

tr Q3 +
C
4

(
tr Q2

)2

where B, C, L are positive material-dependent parameters; A also depends on the
temperature.

B We work with A < 0.

B Energetically favorable configurations:

N := arg min fb =

{
s+

(
n⊗ n−

1
3

Id
)

: n ∈ S2
}

for s+ = s+(A, B, C) > 0.
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A 1D problem

A layer of nematic material bounded by parallel plates, with competing BC.

• Eigenvalue exchange

(i) Constant eigenframe

(ii) Negative uniaxiality
in the middle

• Bent director

• λ ∝ cell width

• Pitchfork bifurcation

[Palffy-Muhoray, Gartland, Kelly, ’94;
Bisi, Gartland, Rosso, Virga, ’03;
Lamy, ’14]
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The 2D problem: Planar bistable cell

Nematic-filled square well, of side length
√

2λ, with tangential BC.

Diagonal state Rotating state

[Tsakonas, Davidson, Brown, Mottram, ’07;
Luo, Majumdar, Erban, ’12. . . ]

Order reconstruction

[Kralj, Majumdar, ’14]

Order reconstruction solution, for small λ:

(i) Constant eigenframe (ẑ is an eigenvector)

(ii) Negative uniaxial cross along the diagonals.
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Setting of the problem

B Scaling x 7→ λx:

I[Q] :=

∫
Ω

{
1
2
|∇Q|2 +

λ2

L
fb(Q)

}
fb(Q) :=

A
2

tr Q2 −
B
3

tr Q3 +
C
4

(
tr Q2

)2

B Ω ⊆ R2 is a truncated square with side
length

√
2.

Dirichlet boundary conditions:

B Uniaxial, tangent conditions on the long edges (Qb(x, y) ∈ N ).

B ‘Artificial’ conditions on the short edges (Qb(x, y) /∈ N ).

Giacomo Canevari WORS in square domains 8/20



Liquid crystals The OR Solution Numerics Conclusions

Setting of the problem

B Scaling x 7→ λx:

I[Q] :=

∫
Ω

{
1
2
|∇Q|2 +

λ2

L
fb(Q)

}
fb(Q) :=

A
2

tr Q2 −
B
3

tr Q3 +
C
4

(
tr Q2

)2

B Ω ⊆ R2 is a truncated square with side
length

√
2.

Dirichlet boundary conditions:

B Uniaxial, tangent conditions on the long edges (Qb(x, y) ∈ N ).

B ‘Artificial’ conditions on the short edges (Qb(x, y) /∈ N ).

Giacomo Canevari WORS in square domains 8/20



Liquid crystals The OR Solution Numerics Conclusions

Setting of the problem

B Scaling x 7→ λx:

I[Q] :=

∫
Ω

{
1
2
|∇Q|2 +

λ2

L
fb(Q)

}
fb(Q) :=

A
2

tr Q2 −
B
3

tr Q3 +
C
4

(
tr Q2

)2

B Ω ⊆ R2 is a truncated square with side
length

√
2.

Dirichlet boundary conditions:

B Uniaxial, tangent conditions on the long edges (Qb(x, y) ∈ N ).

B ‘Artificial’ conditions on the short edges (Qb(x, y) /∈ N ).

Giacomo Canevari WORS in square domains 8/20



Liquid crystals The OR Solution Numerics Conclusions

Reducing to a scalar equation

We look for solutions to the Euler-Lagrange system

−∆Q +
λ2

L

(
AQ + BQ2 −

B
3

(tr Q2) Id−C(tr Q2)Q
)

= 0 (EL)

with constant eigenframe

n1 :=
1
√

2
(−1, 1, 0), n2 :=

1
√

2
(1, 1, 0), ẑ := (0, 0, 1).

Lemma
For A = −B2/(3C) and an arbitrary λ > 0, a branch of solutions to (EL) is given by

Q(x, y) := q(x, y)(n1 ⊗ n1 − n2 ⊗ n2)−
B

6C
(2ẑ⊗ ẑ− n1 ⊗ n1 − n2 ⊗ n2),

where q is a (classical) solution of

−∆q +
λ2

L

(
2Cq3 −

B2

2C
q
)

= 0 on Ω. (ACλ)
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The OR solution corresponds to a critical point of

H[q] :=

∫
Ω

{
|∇q|2 +

λ2

L
C
(

B2

4C2
− q2

)2
}

that satisfies the boundary condition

q(x, y) = qb(x, y) :=



B
2C

on C1 ∪ C3

−
B

2C
on C2 ∪ C4

g(y) on S1 ∪ S3

g(x) on S2 ∪ S4

and q(x, y) = 0 if x = 0 or y = 0.

The datum g : [−ε, ε]→ R is chosen in such a way that

−g′′ +
λ2

L

(
2Cg3 −

B2

2C
g
)
≥ 0 on (0, ε), g(0) = 0, g(ε) =

B
2C

and g(s) = −g(−s) for s < 0.
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• For λ� 1, there exists a unique critical point of H that satisfies the boundary
condition.

• The unique critical point is the global minimiser qmin of H.

• As λ� 1, the minimisers qmin develop transitions layers near the boundary.

B Asymptotic analysis of minimisers as λ↗ +∞
[Modica, Mortola, ’77; Sternberg, ’88; Fonseca, Tartar, ’89; . . . ]

2Cλ2

L
= 0.05

2Cλ2

L
= 200
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The saddle solution to Allen Cahn

A solution qs,λ to (ACλ) that satisfies qs,λ(x, y) = 0 if xy = 0 exists for any λ > 0.

• Analysis on R2 [Dang, Fife, Peletier, ’92;
Schatzman, ’95. . . ]

• Existence: solve (ACλ) on
Q := Ω ∩ (0, +∞)2 with B.C.

q(x, y) = 0 if x = 0 or y = 0,

then extend qs,λ by odd reflection.

• Uniqueness as in [Dang, Fife, Peletier, ’92].

• Sign of derivatives:

∂qs,λ

∂x
> 0,

∂qs,λ

∂y
> 0 on Q

(based on comparison principle).

Giacomo Canevari WORS in square domains 12/20
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Stability of the saddle solution

Is qs,λ stable, i.e. is the second variation

δ2H[η] :=
d2

dt2 |t=0
H[qs,λ + tη] =

∫
Ω

{
|∇η|2 +

λ2

L

(
6Cq2

s,λ −
B2

2C

)
η2
}

non-negative for any η ∈ H1
0(Ω)?

• For λ� 1, qs,λ is a minimiser, hence is stable.

• For λ� 1, qs,λ is not stable ([Schatzman, ’95]: infinite domain, λ = +∞).

Lemma
Define

µ(λ) := inf
η∈H1

0(Ω)∫
Ω η

2=1

∫
Ω

{
|∇η|2 +

λ2

L

(
6Cq2

s,λ −
B2

2C

)
η2
}
.

Then µ′(λ) < 0.
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A bifurcation result

Let λc the unique value of λ s.t. µ(λc) = 0.

Theorem
A pitchfork bifurcation arises at λ = λc, that is, in a neighbourhood of (λc, qs,λc ) the
equation (ACλ) has only two branches of solutions:

q = qs,λ or

{
λ = λ(t)
q = qs,λ(t) + tηλc + O(t2),

where ηλc 6≡ 0 is a solution of

−∆ηλc +
λ2

c

L

(
6Cq2

s,λc
−

B2

2C

)
ηλc = 0 on Ω.

B From an abstract bifurcation result [Crandall, Rabinowitz, ’73].

B Relies on µ′(λ) > 0, as in [Lamy, ’14].
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Numerics

Finite-difference approximation of the gradient flow

∂q
∂t
−∆q +

λ2

L

(
2Cq3 −

B2

2C
q
)

= 0, t =
20̄tL
γλ2

.

2Cλ2L−1 = 0.05, t = 0 t = 0.5 t = 2

2Cλ2L−1 = 200, t = 0 t = 0.5 t = 2
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β2(Q)

2Cλ2L−1 = 0.35× 10−2, t = 2

q(0, 0) vs. 2Cλ2L−1

λ2
c ≈

5L
C

Giacomo Canevari WORS in square domains 16/20
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Numerics on an hexagon

Finite-difference approximation of the Landau-de Gennes gradient flow

∂Q
∂t
−∆Q +

λ2

L

(
−

B2

3C
Q + BQ2 −

B
3

(tr Q2) Id−C(tr Q2)Q
)

= 0

Q11 Q22 Q12 = Q22

Initial condition:

(i) Constant eigenvector ẑ

(ii) 6-fold symmetry.
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Numerical solution for 2Cλ2L−1 = 10−6, t = 2:

Q11, contours at B/6C Q22, contours at B/6C Q33 ≈ −B/3C

Q12 = Q21, contours at 0 β(Q)
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Q11(0, 0)−
B

6C
vs. λ2L−1

λ2
c ≈

7L
C
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Conclusions

• A special solution to the Landau-de Gennes system on a square:

B constant eigenframe + uniaxial cross along the diagonals.

• Existence and qualitative properties for an arbitrary length size λ.

• Stability analysis:

B Global stability for small length side, λ2 . L/C

B Instability for large length side, with a pitchfork bifurcation at λ = λc.

• Numerics on a square and an hexagon

• Stabilisation?
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