The Well Order Reconstruction Solution for nematic liquid crystals in square domains

GIACOMO CANEVARI with APALA MAJUMDAR and AMY SPICER

Partial Order in Materials: at the Triple Point of Mathematics, Physics and Applications

BIRS, November 2017

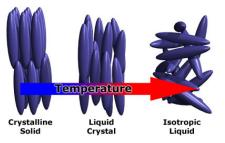
The OR Solution

Numerics

Conclusions O

Liquid crystals

Liquid crystals are intermediate phases of matter between crystalline solids and the liquid phase.



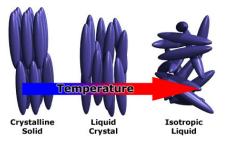
The OR Solution

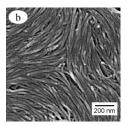
Numerics

Conclusions O

Liquid crystals

Liquid crystals are intermediate phases of matter between crystalline solids and the liquid phase.





Carbon nanotubes as liquid crystals. [Zhang, Kumar, '08]

Nematic liquid crystals:

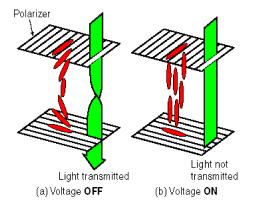
- Rod-shaped molecules.
- The molecules can flow.
- Directional order, but no positional order.

The OR Solution000000
000

Numerics

Conclusions O

- Anisotropic optical properties
- Confinement leads to pattern formation.



The OR Solution000000
000

Numerics

Conclusions O

The order parameter: Q-tensors

• The material is represented by a symmetric, trace-free tensor field:

$$\Omega \subseteq \mathbb{R}^d \to \mathbf{S}_0 := \left\{ \mathbf{Q} \in \mathbb{R}^{3 \times 3} \colon \mathbf{Q}^{\mathsf{T}} = \mathbf{Q}, \ \mathrm{tr} \, \mathbf{Q} = \mathbf{0} \right\}.$$

The OR Solution000000
000

Numerics

Conclusions O

The order parameter: Q-tensors

• The material is represented by a symmetric, trace-free tensor field:

$$\Omega \subseteq \mathbb{R}^d \to \mathbf{S}_0 := \left\{ \mathbf{Q} \in \mathbb{R}^{3 \times 3} \colon \mathbf{Q}^\mathsf{T} = \mathbf{Q}, \ \mathrm{tr} \, \mathbf{Q} = \mathbf{0} \right\}.$$

 \triangleright Isotropic: $\mathbf{Q}(\mathbf{x}) = \mathbf{0}$

The OR Solution000000
000

Numerics

Conclusions O

The order parameter: Q-tensors

• The material is represented by a symmetric, trace-free tensor field:

$$\Omega \subseteq \mathbb{R}^d \to \mathbf{S}_0 := \left\{ \mathbf{Q} \in \mathbb{R}^{3 \times 3} \colon \mathbf{Q}^{\mathsf{T}} = \mathbf{Q}, \ \mathrm{tr} \, \mathbf{Q} = \mathbf{0} \right\}.$$

 \triangleright **Isotropic**: $\mathbf{Q}(\mathbf{x}) = \mathbf{0}$

 \triangleright **Uniaxial:** $\mathbf{Q}(\mathbf{x}) \neq \mathbf{0}$ and two eigenvalues coincide.

$$\mathbf{Q}(\mathbf{x}) = s(\mathbf{x}) \left(\mathbf{n}(\mathbf{x}) \otimes \mathbf{n}(\mathbf{x}) - \frac{1}{3} \operatorname{Id} \right)$$

 $\lambda_1 < \lambda_2 = \lambda_3$

The OR Solution000000
000

Numerics

Conclusions O

The order parameter: Q-tensors

• The material is represented by a symmetric, trace-free tensor field:

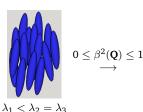
$$\Omega \subseteq \mathbb{R}^d \to \mathbf{S}_0 := \left\{ \mathbf{Q} \in \mathbb{R}^{3 \times 3} \colon \mathbf{Q}^\mathsf{T} = \mathbf{Q}, \ \mathrm{tr} \, \mathbf{Q} = \mathbf{0} \right\}.$$

- \triangleright **Isotropic**: $\mathbf{Q}(\mathbf{x}) = \mathbf{0}$
- \triangleright **Uniaxial:** $\mathbf{Q}(\mathbf{x}) \neq \mathbf{0}$ and two eigenvalues coincide.

$$\mathbf{Q}(\mathbf{x}) = s(\mathbf{x}) \left(\mathbf{n}(\mathbf{x}) \otimes \mathbf{n}(\mathbf{x}) - \frac{1}{3} \operatorname{Id} \right)$$

▷ **Biaxial**: all the eigenvalues are distinct.

 $\mathbf{Q}(\mathbf{x}) = \mathbf{0}$



 $\lambda_1 < \lambda_2 < \lambda_3$

The OR Solution000000
000

Numerics

Conclusions O

The Landau-de Gennes energy

$$\begin{split} I[\mathbf{Q}] &:= \int_{\Omega} \left\{ \frac{L}{2} \left| \nabla \mathbf{Q} \right|^2 + f_b(\mathbf{Q}) \right\} \\ f_b(\mathbf{Q}) &:= \frac{A}{2} \operatorname{tr} \mathbf{Q}^2 - \frac{B}{3} \operatorname{tr} \mathbf{Q}^3 + \frac{C}{4} \left(\operatorname{tr} \mathbf{Q}^2 \right)^2 \end{split}$$

where B, C, L are positive material-dependent parameters; A also depends on the temperature.

The OR Solution000000
000

Numerics

Conclusions O

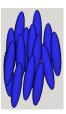
The Landau-de Gennes energy

$$\begin{split} I[\mathbf{Q}] &:= \int_{\Omega} \left\{ \frac{L}{2} \left| \nabla \mathbf{Q} \right|^2 + f_b(\mathbf{Q}) \right\} \\ f_b(\mathbf{Q}) &:= \frac{A}{2} \operatorname{tr} \mathbf{Q}^2 - \frac{B}{3} \operatorname{tr} \mathbf{Q}^3 + \frac{C}{4} \left(\operatorname{tr} \mathbf{Q}^2 \right)^2 \end{split}$$

where B, C, L are positive material-dependent parameters; A also depends on the temperature.

- ▷ We work with A < 0.
- ▷ Energetically favorable configurations:

$$\mathcal{N} := \arg\min f_b = \left\{ s_+ \left(\mathbf{n} \otimes \mathbf{n} - \frac{1}{3} \operatorname{Id} \right) : \mathbf{n} \in \mathbb{S}^2 \right\}$$
for $s_+ = s_+(A, B, C) > 0.$



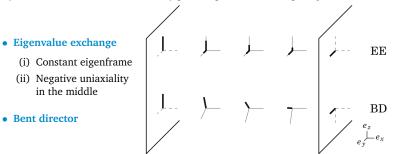
The OR Solution

Numerics

Conclusions O

A 1D problem

A layer of nematic material bounded by parallel plates, with competing BC.



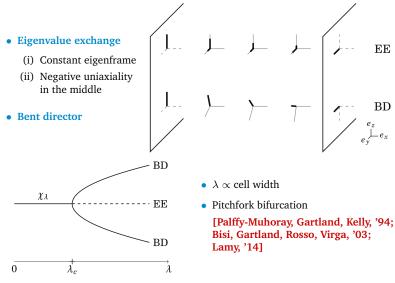
The OR Solution

Numerics

Conclusions O

A 1D problem

A layer of nematic material bounded by parallel plates, with competing BC.



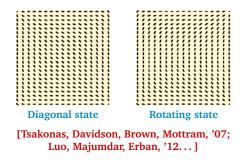
The OR Solution

Numerics

Conclusions O

The 2D problem: Planar bistable cell

Nematic-filled square well, of side length $\sqrt{2}\lambda$, with tangential BC.



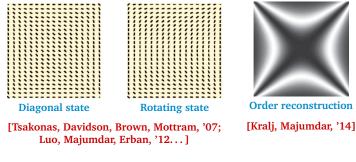
The OR Solution

Numerics

Conclusions

The 2D problem: Planar bistable cell

Nematic-filled square well, of side length $\sqrt{2}\lambda$, with tangential BC.



Order reconstruction solution, for small λ :

- (i) Constant eigenframe (\hat{z} is an eigenvector)
- (ii) Negative uniaxial cross along the diagonals.

The OR Solution

Numerics

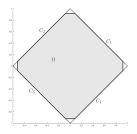
Conclusions

Setting of the problem

 \triangleright Scaling $x \mapsto \lambda x$:

$$I[\mathbf{Q}] := \int_{\Omega} \left\{ \frac{1}{2} |\nabla \mathbf{Q}|^2 + \frac{\lambda^2}{L} f_b(\mathbf{Q}) \right\}$$
$$f_b(\mathbf{Q}) := \frac{A}{2} \operatorname{tr} \mathbf{Q}^2 - \frac{B}{3} \operatorname{tr} \mathbf{Q}^3 + \frac{C}{4} \left(\operatorname{tr} \mathbf{Q}^2 \right)^2$$

 $\triangleright \ \Omega \subseteq \mathbb{R}^2$ is a truncated square with side length $\sqrt{2}$.



The OR Solution

Numerics

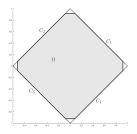
Conclusions

Setting of the problem

 \triangleright Scaling $x \mapsto \lambda x$:

$$I[\mathbf{Q}] := \int_{\Omega} \left\{ \frac{1}{2} |\nabla \mathbf{Q}|^2 + \frac{\lambda^2}{L} f_b(\mathbf{Q}) \right\}$$
$$f_b(\mathbf{Q}) := \frac{A}{2} \operatorname{tr} \mathbf{Q}^2 - \frac{B}{3} \operatorname{tr} \mathbf{Q}^3 + \frac{C}{4} \left(\operatorname{tr} \mathbf{Q}^2 \right)^2$$

 $\triangleright \ \Omega \subseteq \mathbb{R}^2$ is a truncated square with side length $\sqrt{2}$.



The OR Solution

Numerics

Conclusions O

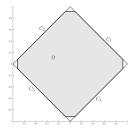
Setting of the problem

 \triangleright Scaling $x \mapsto \lambda x$:

$$I[\mathbf{Q}] := \int_{\Omega} \left\{ \frac{1}{2} |\nabla \mathbf{Q}|^2 + \frac{\lambda^2}{L} f_b(\mathbf{Q}) \right\}$$
$$f_b(\mathbf{Q}) := \frac{A}{2} \operatorname{tr} \mathbf{Q}^2 - \frac{B}{3} \operatorname{tr} \mathbf{Q}^3 + \frac{C}{4} \left(\operatorname{tr} \mathbf{Q}^2 \right)^2$$

 $\triangleright \ \Omega \subseteq \mathbb{R}^2$ is a truncated square with side length $\sqrt{2}$.

- ▷ Uniaxial, tangent conditions on the long edges ($\mathbf{Q}_{b}(x, y) \in \mathcal{N}$).
- ▷ 'Artificial' conditions on the short edges ($\mathbf{Q}_{b}(x, y) \notin \mathcal{N}$).



The OR Solution
000000

Numerics

Conclusions O

Reducing to a scalar equation

We look for solutions to the Euler-Lagrange system

$$-\Delta \mathbf{Q} + \frac{\lambda^2}{L} \left(A\mathbf{Q} + B\mathbf{Q}^2 - \frac{B}{3} (\operatorname{tr} \mathbf{Q}^2) \operatorname{Id} - C(\operatorname{tr} \mathbf{Q}^2) \mathbf{Q} \right) = 0$$
(EL)

with constant eigenframe

$$n_1:=\frac{1}{\sqrt{2}}(-1,\,1,\,0),\qquad n_2:=\frac{1}{\sqrt{2}}(1,\,1,\,0),\qquad \hat{z}:=(0,\,0,\,1).$$

The OR Solution
000000

Numerics

Conclusions O

Reducing to a scalar equation

We look for solutions to the Euler-Lagrange system

$$-\Delta \mathbf{Q} + \frac{\lambda^2}{L} \left(A\mathbf{Q} + B\mathbf{Q}^2 - \frac{B}{3} (\operatorname{tr} \mathbf{Q}^2) \operatorname{Id} - C(\operatorname{tr} \mathbf{Q}^2) \mathbf{Q} \right) = 0$$
(EL)

with constant eigenframe

$$n_1:=\frac{1}{\sqrt{2}}(-1,\,1,\,0),\qquad n_2:=\frac{1}{\sqrt{2}}(1,\,1,\,0),\qquad \hat{z}:=(0,\,0,\,1).$$

Lemma

For $A = -B^2/(3C)$ and an arbitrary $\lambda > 0$, a branch of solutions to (EL) is given by

$$\mathbf{Q}(x,y) := q(x,y)(\mathbf{n}_1 \otimes \mathbf{n}_1 - \mathbf{n}_2 \otimes \mathbf{n}_2) - \frac{B}{6C}(2\hat{\mathbf{z}} \otimes \hat{\mathbf{z}} - \mathbf{n}_1 \otimes \mathbf{n}_1 - \mathbf{n}_2 \otimes \mathbf{n}_2),$$

where q is a (classical) solution of

$$-\Delta q + \frac{\lambda^2}{L} \left(2Cq^3 - \frac{B^2}{2C}q \right) = 0 \quad on \ \Omega.$$
 (AC_{\lambda})

The OR Solution

Numerics

Conclusions O

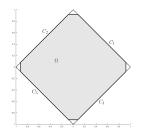
The OR solution corresponds to a critical point of

$$H[q] := \int_{\Omega} \left\{ |\nabla q|^2 + \frac{\lambda^2}{L} C \left(\frac{B^2}{4C^2} - q^2 \right)^2 \right\}$$

that satisfies the boundary condition

$$q(x, y) = q_{b}(x, y) := \begin{cases} \frac{B}{2C} & \text{on } C_{1} \cup C_{3} \\ -\frac{B}{2C} & \text{on } C_{2} \cup C_{4} \\ g(y) & \text{on } S_{1} \cup S_{3} \\ g(x) & \text{on } S_{2} \cup S_{4} \end{cases}$$

and q(x, y) = 0 if x = 0 or y = 0.



The OR Solution

Numerics

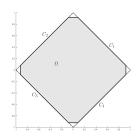
Conclusions

The OR solution corresponds to a critical point of

$$H[q] := \int_{\Omega} \left\{ |\nabla q|^2 + \frac{\lambda^2}{L} C \left(\frac{B^2}{4C^2} - q^2 \right)^2 \right\}$$

that satisfies the boundary condition

$$q(x, y) = q_{b}(x, y) := \begin{cases} \frac{B}{2C} & \text{on } C_{1} \cup C_{3} \\ -\frac{B}{2C} & \text{on } C_{2} \cup C_{4} \\ g(y) & \text{on } S_{1} \cup S_{3} \\ g(x) & \text{on } S_{2} \cup S_{4} \end{cases}$$



and q(x, y) = 0 if x = 0 or y = 0.

The datum $g \colon [-\varepsilon, \, \varepsilon] \to \mathbb{R}$ is chosen in such a way that

$$-g^{\prime\prime}+\frac{\lambda^2}{L}\left(2Cg^3-\frac{B^2}{2C}g\right)\geq 0\quad\text{on }(0,\,\varepsilon),\qquad g(0)=0,\quad g(\varepsilon)=\frac{B}{2C}$$

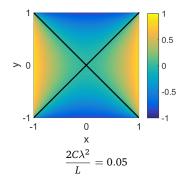
and g(s) = -g(-s) for s < 0.

The OR Solution

Numerics

Conclusions

- For $\lambda \ll 1$, there exists a unique critical point of *H* that satisfies the boundary condition.
- The unique critical point is the global minimiser q_{\min} of *H*.

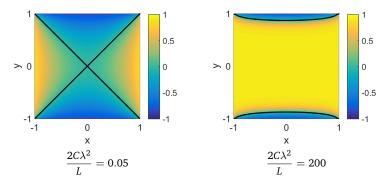


Numerics

Conclusions

- For $\lambda \ll 1$, there exists a unique critical point of H that satisfies the boundary condition.
- The unique critical point is the global minimiser q_{\min} of *H*.
- As $\lambda \gg 1$, the minimisers q_{\min} develop transitions layers near the boundary.

▷ Asymptotic analysis of minimisers as λ ≯ +∞
 [Modica, Mortola, '77; Sternberg, '88; Fonseca, Tartar, '89; ...]



The OR Solution

Numerics

Conclusions O

The saddle solution to Allen Cahn

A solution $q_{s,\lambda}$ to (AC_{λ}) that satisfies $q_{s,\lambda}(x, y) = 0$ if xy = 0 exists for any $\lambda > 0$.

• Analysis on ℝ² [Dang, Fife, Peletier, '92; Schatzman, '95...]

The OR Solution

Numerics

Conclusions O

The saddle solution to Allen Cahn

A solution $q_{s,\lambda}$ to (AC_{λ}) that satisfies $q_{s,\lambda}(x, y) = 0$ if xy = 0 exists for any $\lambda > 0$.

- Analysis on \mathbb{R}^2 [Dang, Fife, Peletier, '92; Schatzman, '95...]
- **Existence:** solve (AC_{λ}) on $Q := \Omega \cap (0, +\infty)^2$ with B.C.

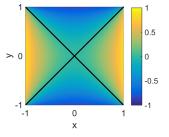
$$q(x, y) = 0$$
 if $x = 0$ or $y = 0$,

then extend $q_{s,\lambda}$ by odd reflection.

- Uniqueness as in [Dang, Fife, Peletier, '92].
- Sign of derivatives:

$$\frac{\partial q_{s,\lambda}}{\partial x} > 0, \quad \frac{\partial q_{s,\lambda}}{\partial y} > 0 \qquad \text{on } Q$$

(based on comparison principle).



The OR Solution

Numerics

Conclusions O

Stability of the saddle solution

Is $q_{s,\lambda}$ stable, i.e. is the second variation

$$\delta^2 H[\eta] := \frac{\mathrm{d}^2}{\mathrm{d}t^2}_{|t=0} H[q_{s,\lambda} + t\eta] = \int_{\Omega} \left\{ |\nabla \eta|^2 + \frac{\lambda^2}{L} \left(6Cq_{s,\lambda}^2 - \frac{B^2}{2C} \right) \eta^2 \right\}$$

non-negative for any $\eta \in H_0^1(\Omega)$?

- For $\lambda \ll 1$, $q_{\mathrm{s},\lambda}$ is a minimiser, hence is stable.
- For $\lambda \gg 1$, $q_{s,\lambda}$ is not stable ([Schatzman, '95]: infinite domain, $\lambda = +\infty$).

The OR Solution

Numerics

Conclusions

Stability of the saddle solution

Is $q_{\mathrm{s},\lambda}$ stable, i.e. is the second variation

$$\delta^2 H[\eta] := \frac{\mathrm{d}^2}{\mathrm{d}t^2}_{|t=0} H[q_{\mathrm{s},\lambda} + t\eta] = \int_{\Omega} \left\{ |\nabla \eta|^2 + \frac{\lambda^2}{L} \left(6Cq_{\mathrm{s},\lambda}^2 - \frac{B^2}{2C} \right) \eta^2 \right\}$$

non-negative for any $\eta \in H_0^1(\Omega)$?

- For $\lambda \ll 1$, $q_{\mathrm{s},\lambda}$ is a minimiser, hence is stable.
- For $\lambda \gg 1$, $q_{s,\lambda}$ is not stable ([Schatzman, '95]: infinite domain, $\lambda = +\infty$).

Lemma

Define

$$\mu(\lambda) := \inf_{\substack{\eta \in H_0^1(\Omega) \\ \int_{\Omega} \eta^2 = 1}} \int_{\Omega} \left\{ |\nabla \eta|^2 + \frac{\lambda^2}{L} \left(6Cq_{\mathfrak{s},\lambda}^2 - \frac{B^2}{2C} \right) \eta^2 \right\}$$

Then $\mu'(\lambda) < 0$.

The OR Solution

Numerics

Conclusions O

A bifurcation result

Let λ_c the unique value of λ s.t. $\mu(\lambda_c) = 0$.

Theorem

A pitchfork bifurcation arises at $\lambda = \lambda_c$, that is, in a neighbourhood of $(\lambda_c, q_{s,\lambda_c})$ the equation (AC_{λ}) has only two branches of solutions:

$$q = q_{\mathrm{s},\lambda} \quad \text{or} \quad \begin{cases} \lambda = \lambda(t) \\ q = q_{\mathrm{s},\lambda(t)} + t\eta_{\lambda_c} + O(t^2), \end{cases}$$

where $\eta_{\lambda_c}\not\equiv 0$ is a solution of

$$-\Delta \eta_{\lambda_{\rm c}} + \frac{\lambda_{\rm c}^2}{L} \left(6Cq_{s,\lambda_{\rm c}}^2 - \frac{B^2}{2C} \right) \eta_{\lambda_{\rm c}} = 0 \quad on \ \Omega.$$

- ▷ From an abstract bifurcation result [Crandall, Rabinowitz, '73].
- ▷ Relies on $\mu'(\lambda) > 0$, as in **[Lamy, '14]**.

The OR Solution

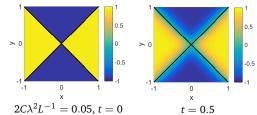
Numerics

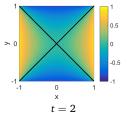
Conclusions O

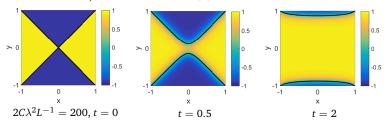
Numerics

Finite-difference approximation of the gradient flow

$$\frac{\partial q}{\partial t} - \Delta q + \frac{\lambda^2}{L} \left(2Cq^3 - \frac{B^2}{2C}q \right) = 0, \qquad t = \frac{20\bar{t}L}{\gamma\lambda^2}.$$







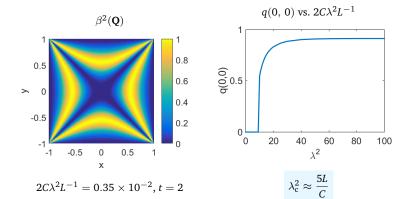
Giacomo Canevari

WORS in square domains

The OR Solution000000
000

Numerics

Conclusions O



The OR Solution000000
000

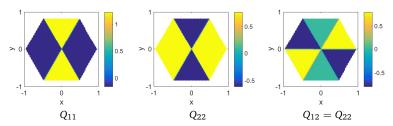
Numerics

Conclusions O

Numerics on an hexagon

Finite-difference approximation of the Landau-de Gennes gradient flow

$$\frac{\partial \mathbf{Q}}{\partial t} - \Delta \mathbf{Q} + \frac{\lambda^2}{L} \left(-\frac{B^2}{3C} \mathbf{Q} + B \mathbf{Q}^2 - \frac{B}{3} (\operatorname{tr} \mathbf{Q}^2) \operatorname{Id} - C(\operatorname{tr} \mathbf{Q}^2) \mathbf{Q} \right) = 0$$



Initial condition:

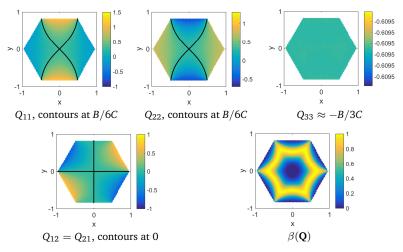
- (i) Constant eigenvector $\hat{\mathbf{z}}$
- (ii) 6-fold symmetry.

The OR Solution

Numerics

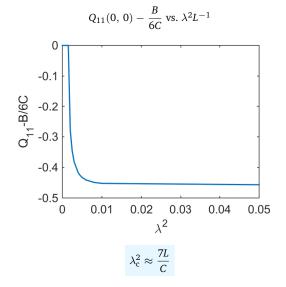
Conclusions

Numerical solution for $2C\lambda^2 L^{-1} = 10^{-6}$, t = 2:



Numerics

Conclusions O



Numerics

Conclusions

- A special solution to the Landau-de Gennes system on a square:
 - ▷ constant eigenframe + uniaxial cross along the diagonals.
- Existence and qualitative properties for an arbitrary length size λ .
- Stability analysis:
 - \triangleright Global stability for small length side, $\lambda^2 \lesssim L/C$
 - ▷ Instability for large length side, with a pitchfork bifurcation at $\lambda = \lambda_c$.
- Numerics on a square and an hexagon
- Stabilisation?