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|. Introduction to Dynamic Transition Theory

Basic models in

_ classical, geophysical and astrophysical fluid dynamics
_ statistical physics
_ chemical reactions

_ biological and ecological models

can all be put into dissipative dynamical systems as follows:

d
(1) o Lyu 4+ G(u, A)
dt
where u is the order parameter, \ is the control parameter of the system, L, is a

linear operator, and G(u, A) is the nonlinear operator.



Phase Transition

e |t is a universal phenomena in most, if not all, natural systems.

e [t refers to the transition of the system from one state to another, as the control
parameter crosses certain critical threshold.



Unified definition of phase transitions (Ma-Wang)

Let 51(N), B2(A), - - - € C be eigenvalues of Ly. If

(<0 if A<\,

ReB;(\) 4 =0 if A=\, 1<i<m,
>0 ifA> )

RefB,(Xg) <0 m+1<j,

then the system (1) always undergoes a dynamic transition as A crosses Ao, and Ag
is the critical threshold/point.

Note: The above definition was a theorem on dynamic transition we have proved;
see [Ma-Wang, Phase Transition Dynamics, 555pp, 2013, Springer].

This theorem ensures the validity of the above definition.



Principle of Phase Transition Dynamics (Ma-Wang):

Phase transitions of all dissipative systems can be classified into three
categories: continuous, catastrophic, and

Iim w) =u continuous transition

A— Ao

lim wuy # u catastrophic transition
P

A— Ao

both i = u and i u h
o) )\LH;OUJ)\ u an Ai}rriouk;éu appen

Here @ is the basic state, and ), are the transition states (physically, transition
states correspond to local attractors).



Note:

e The above principle is ensured by the dynamic transition theorem in Phase
Transition Dynamics book.

e This is a universal principle, applicable to phase transitions of all dissipative
systems in Nature. |t cannot be derived from classical bifurcation theory.

e [t offers a guiding principle for studying phase transitions of natural systems.

e The dynamic transition theory provides a systematic approach for classifying and
determining the detailed information of the transition.



Il. Phase Transitions of Thermodynamical Systems

Thermodynamic Systems (Ma-Wang, 2017)

e A thermodynamic system is described by order parameters (state functions),
control parameters, and - which is a functional of the
order parameters.

e All thermodynamic potentials are expressed in terms of conjugate pairs. The
most commonly considered conjugate thermodynamic variables are

1) the temperature T and the entropy S, and

2) f the generalized force and X the generalized displacement.
Typical examples of (f, X) include (the pressure p, the volume V'), (applied
magnetic field H, magnetization M), (applied electric field E, electric
polarization P).



Potential-Descending Principle (MW17a)

For each thermodynamic system, there are order parameters uw = (uy, -+ ,unN),
control parameters A\, and the . For
a non-equilibrium state u(t;ug) of the system with initial state u(0,ug) = ug,

1) the potential F(u(t;uo); A) is decreasing: %F(u(t;ug); A) < 0 vVt > 0;

2) the order parameters u(t;ug) have a limit: tlim u(t; ug) = u;
— 00

3) there is an open and dense set O of initial data in the space of state functions,
such that for any ug € O, the corresponding u is a minimum of F', which is
called an equilibrium of the thermodynamic system:

0F (u; \) = 0.



1. The potential-descending principle leads to both the first and second laws of
thermodynamics

For the equilibrium state, PDP says that > F(i; A) = 0, and then

dFaN) = 2 e nsu s O gy = OF w2

- du O\ O\ A

which is the first law of thermodynamics.

For a given non-equilibrium thermodynamic state u(t), the PDP tells us that

dF o) du )
= ()N <0 = = F(u(t); A)du < 0.
Hence 5 OF OF
AF (u(t), \) = 5= F(u(t); \idu + X < S d),

which is the second law of thermodynamics.



2. PDP s a first principle of statistical mechanics. Namely, PDP leads to all
three distributions: Maxwell-Boltzmann distribution, the Bose-Einstein distribution,
the Fermi-Dirac distribution.

3. Let F'(u,\) be the thermodynamic potential of a thermodynamic system with
order parameters u and control parameters A\. Then PDP gives rise to the following
dynamic equation:

(2) z—? — SF(u ),
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4. Irreversibility in Thermodynamic Systems

e PDP offers a clear description of the irreversibility of thermodynamical systems.
Consider a non-equilibrium initial state ug, the PDP amounts to saying that the
potential is decreasing:

d
%F(u(t; ug); A) < 0 vVt > 0.

This shows that the state of the system u(¢;ug) will never return to its initial
state ug in the future time. This is exactly the irreversibility.

e Entropy S is a state function, which is the solution of basic thermodynamic
equations. Thermodynamic potential is a higher level physical quantity than
entropy, and consequently, is the correct physical quantity, rather than the
entropy, for describing irreversibility for all thermodynamic systems.
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Classical Notions of Phase Transitions:

e Ehrenfest (1933): Phase transitions are defined in terms of singularities, at
the critical threshold, of such thermodynamic observable parameters as heat
capacity, magnetic susceptibility, etc., which are observable.

Classification (n-th order transition): Phase transitions are classified based on
the behavior of the thermodynamic potentials, and were labeled by the n-th
order derivative of the free energy that is discontinuous at the transition.

e Landau’s definition (1940): The transition state of the system beaks the
symmetry of the basic state u. Landau’s transition is of second-order.

e Topological order definition (1971, Thouless-Haldane-Kosterlitz, 2016 Nobel in
Phys.): The topological structure of uy in the physical space differs from that
of the basic state. This transition is of 3rd-order or higher-order.
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Basic Theorem of Thermodynamic Phase Transitions (Ma-Wang, 2013)

e For the phase transition of a thermodynamic system, there exist only
first-order, second-order and third-order phase transitions.

e Moreover the following relations between the Ehrenfest classification and
the dynamical classification hold true:

second-order

first-order

either first or third-order
first-order

third-order

LLT T

continuous

catastrophic

random

either catastrophic or random

random with asymmetric fluctuations.
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Remarks

e This theorem can only be derived using the dynamic transition theory.

e In classical thermodynamics, there is no theory to determine the Ehrenfest
classification.

e In the theorem, the 1st and 2nd-order transitions on the left-hand side can only
be verified and determined by experiments, while the right-hand side is rigorously

determined by the dynamic transition theory.

e The 3rd-order transition cannot be determined by thermodynamic parameters,
and the topological-order is sometimes used experimentally for this purpose.

e The dynamic transition theory offers an easy theoretical approach to completely
determine 3rd-order transitions.
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Il1l. Dynamic Transitions in GFD and Climate Dynamics

The theory has been applied to a wide range of problems in nonlinear sciences,
leading to a number of physical predictions:

_ Classical Fluid Dynamics: Bénard convection, Taylor problem, and Taylor-
Couette-Poiseuille flows (mechanism of the formation of the Taylor vortices)

_ Geophysical Fluid Dynamics and Climate Dynamics: rotating Boussinesq
equations (joint with C. Hsia), double-diffusive models (joint with J. Bona & C.
Hsia), thermohaline circulation, ENSO (metastable states oscillation theory), ....

_ Equilibrium phase transitions: Gas-liquid transition (the nature and theory of
the critical point), ferromagnetism (asymmetry principle of fluctuations), binary
systems, superconductivity, and superfluidity

15



_ Pattern formation and Topological Phase Transitions:

— Benard convection
— Taylor-Couette-Poiseuille flows and formation of Taylor vortices

— formation and mechanism of different patterns in Marengoni flow (with H.

Dijkstra and T. Sengul),
— quantum phase transitions — work in progress
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Baroclinic instabiltiy and transitions:

The nondimensional two-layer quasi-geostrophic model (Pedlosky, 1970):

(0 Oy 0 OYy O] 1
®) |gt o 5y~ 521 5z | [+ F e = 1) + By] = —rApy + oA,

O 0 Othp O | _ N

where Re is the Reynolds number, r is friction coefficient, 3 is the planetary
vorticity factor, F' is the Froude number, and the basic (shear-type) flow [Mak 85,

Cai-Mak 87] is §0) = —Uy, ( ) = Uy.

Let 1 = 5 (11 + 12) = 3 (1 — ¥2) + Uy.

Domain; R = (0,277 1) x (0,7), with v being the wavenumber of the lowest
zonal harmonic.

BC: (¢, 0) are periodic in z (zonal), and free-slip in y (meridional).
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For 2F > ~2 4+ 1, let A\x; = v*k* + [, and the critical shear U, be defined by

A

U2 =U?(k,1)E min U (k,1),

k>1
Ak’l<2F
U (k1) = ! F5” + Mtz Mt +7)°
" 2F — Mgy \ Mea(F 4 A g)? V2 k2 '

Transition number:

b= (2F — \; )(Y*k? — %) 4 212\, ;

which captures the nonlinear interactions and dictates the types of transitions.
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Theorem [Cai-Hernandez-Ong-Wang, 2017]

1. Let 2F < ~? + 1. Then for system (2) and (3), the basic shear flow always
stable for any shear strength U.

2. Let 2F > 2 + 1. If the transition number b > 0, then the system undergoes a
continuous transition to a stable periodic orbit as U crosses U..:

W(x,y,t) = pykU,sin (wt + ’yl%:c) sinly + O(|U — U,)),
1 N
(5) O(xz,y,t) =p (E)\f{j + r) COS (wt + ’ykx) sin [y
lecﬁF

+p
Api(F =+ A

) sin (wt + Wl%x) sin lAy + O(|U - U,|),
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where

42F — AI%,Z)(%)\O,QZA +7r)(U - U,)

2
(6) V2R2F[(2F — N, 1) (v2k2 — 12) + 212X (N +7)
k
w=—1 2 —|—O(]U—UC]3/2).
F + )‘l%,f

3. Let 2F > ~2? 4+ 1. If transition number b < 0, then the system undergoes
a catastrophic transition as U crosses U.. Also, the system bifurcates to an
unstable periodic solution of the form similar to the above for U < U...

Note: If v = 1, the transition number b > 0 is always positive and the system always
undergoes a continuous dynamic transition leading spatiotemporal oscillations.

This suggests that a continuous transition to spatiotemporal patterns is preferable
for the shear flow associated with baroclinic instability.
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e The 3D continuously stratified rotating Boussinesq equations are fundamental
equations in GFD;

e Dynamics associated with their basic zonal shear flows play a crucial role
in understanding many important GFD processes, such as the meridional
overturning oceanic circulation and the geophysical baroclinic instability;

The linearized eigenvalue problem around the basic shear flow v = (Uz,0,0)
involves variable coefficients;

e We are developing computer-assisted method, combining the dynamic transition
theory and numerical computation, to capture the stable and unstable modes,
and their nonlinear interactions; see [Dijkstra-Sengul-Shen-Wang '15, Sengul-
Wang '17], Marco Hernandez, Quan Wang, ...
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IV. Non-Markovian Parameterizing Manifolds and Closures of
SPDE

e M. D. Chekroun, H. Liu, and S. Wang: “Approximation of Invariant Manzifolds:
Stochastic Manzifolds for Nonlinear SPDFEs 1." SpringerBriefs in Mathematics.
Springer, New York, xv+127 pp., 2015.

e M. D. Chekroun, H. Liu, and S. Wang: “Stochastic Parameterizing Manifolds
and Non-Markovian Reduced Equations: Stochastic Manifolds for Nonlinear
SPDEs II." SpringerBriefs in Mathematics. Springer, New York, xvii+129 pp.,
2015.

e M. D. Chekroun, H. Liu, J. McWilliams, and S. Wang: Closures for stochastic
partial differential equations driven by degenerate noise, 66pp. in preparation.
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The SPDEs considered

m We will be mainly concerned with SPDEs that can be written into the abstract form

du = (Lyu + B(u,u))dt + dW;, u € H. (3)

m Typically, L, = —A + P, where P, is a bounded linear operator depending continuously on
A (from D(A) € H, € H), and —A is sectorial, and Re(c(—A)) < 0.

m The nonlinearity B: H, x H, — H is a bilinear mapping with a € [0,1).

m Here the noise is degenerate and takes the form

N
Wi(w) = Y o Wi (w)eg(x), teR, x€@, 0. >0, we Q. (4)
k=1

Qur goal
g

Given a low-dimensional reduced phase space, e.g. H® = span{ey,--- ,e,}, we aim at
determining m-dimensional closure systems able to mimic the main (or certain) features of the
SPDE dynamics. In practice, m corresponds to a cutoff wavenumber k..

Our approach

m Given a decomposition H® & H® = H, we seek for parameterizations of the high modes,
i.e. for mapping h : H® — H* (possibly random}), that will obey key statistical constraints
with respect to the ergodic invariant measure when it exists (Hairer, Mattingly,...). 23



In a first attempt, let us look for deterministic high-mode parameterizations of the form

Guidance from the ergodic theory of SPDEs (Hairer, Mattingly, Flandoli,...)

Assume that the SPDE (3) admits an (unique) ergodic invariant measure ji. Let us introduce
the normalized parameterization defect (over [0, T]) associated with ©,,, namely

fﬂ ‘ ug(bw), en) — Py (uc(t; w)) “d

‘[ﬂ (ug(t;w), ey |2 dt

,w e ()

y I:T:m}
Then for each n = m +1, and “any" solution u of Eq. (3), T]im On (T; w) exists P-a.s., and
—ei30

lim @, (T:w) = C Coey) — @, (&) *du, P-as.,
r!L( j n-{ﬁ,g}eH“x?{El(' r!} r!'f” M

where
Cp = / C,e 24
! ( (EL)eHExHE H HH ;H)
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Variational perspective

Intuitively one wants lim @, (T;w) < 1 IP-a.s. for as much as possible ¢,-modes,

—+ 30
n > m+1 = one wants a parameterizing manifold (PM).
The extreme case in which for all n =2 m+ 1, @,, = 1, corresponds to the Galerkin

approximation (i.e. no high-mode parameterizations) whereas the case Q, = 0 (for all n)
includes inertial manifolds or other slow manifolds, when they exist!

One are thus naturally inclined to look for solutions to the following sequence of variational
problems

min Cen) — DOy (E)Pdu, n>m+1.
&, -/'[ﬁﬂ.f]'EH“xHEH‘ "} HI:H M ~

One can prove by using the general disintegration theorem of probability measures that the
optimal parameterization (when &,, is taken in Lﬁ.: (HE, H®))

m@) = [ tdm(@), Zen,

denotes the optimal Markovian high-mode parameterization. Here, y; denotes the
disintegrated probability measure on the high-mode space H*® and that is conditioned on

the low-mode variable ¢ in H*.
Recall that

u(B x F) = [F uz (B)due(Z), B x F e B(H®) @ B(H®)

where i, is the push-forward of the measure i by Il,, i.e. u.(F) = u(II;1(F)). >



Mode-dependent minimization problems

With this purpose in mind, given a reduced phase space H* := 5pan{e1,~ -+ ,em}, and a fully
resolved solution u(t,w) of (3) available over a training interval [0, T]| for a noise realization w,
we propose to solve n = m + 1 the following multiscale minimization problem

i

T
min / lun(t, w) — :.'E!”[u.:lft,mj]lf"r,{i'_rmﬂidt, (5a)
T J0
where 1, [&](T, 6_rw) is the sol., at t = 0 and for the noise realization w, of
dit! =LtV (s)ds + dII.W;, se [—T,0], (5b)
dull) = [,BHHE!”(S] + HHE{HE” (s — T:J,I.'E”I:S — 1)) |ds + dIT,Ws—r, s €[0,7], (5¢)
with u'" (s,w)|s—0 =€ € H*, and e (5,0 _rw)|s—p = 0. (5d)
M x 0_qw Ho X 81w Ho % w
\

o S N SV AT T R
""h.,.r"'l. IL‘"-' ‘-"-"-\.HJI .I'II. fTL] f"&"l,r' LY, ﬁ“'\-. ot ‘.!:

it T, w: ) ug (s =T wif)

()

T f_Tw
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Theorem (M. Chekroun, H. Liu, J. McWilliams, & S. W., 2017)

Consider the SPDE (3) with L being self-adjoint and the noise being given by

N
=% aWE(w)e, op >0, w € Q. (8)

Then given a reduced phase space H*, the stochastic process (uil},uﬂ”) evolving in

H® x span{e,} and solving the backward-forward system (5b)-(5c) subject to the boundary
conditions (5d), has the following integral representation,

0
I-‘E;”[@]fT,H_TﬂJjI = _E'B"rnnw—rfwj + Bn / E_'E“snr!ws (w)ds

=T

0
+ {;_nﬁusnna{”i”[’Srw;g),ﬂil} (S,w;{::l) dS, ; € Hcr

oS —T
and :
uD(s,w;g) = eteg— [ TILIIW, (@) dS + TIWe (@), s € [-7,0]
o T

Moreover, the stochastic process HEEI:I [E](T,8 _rw;0) admits the following expression

w8 (1,0 w) = oue™ W' _(w) + Z7( B.w) + E Z( plivi( (B, w)

h=1&H=1

9= C?rllsil ('Srwjgfl =1 Cg,iz,r'l (ﬁ,w]{:,z + D:i i (T,'S:Jgfl gfz) <B(Ef1 €y :J,En}.
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Explicit formulas
Here oy = 0 and Z%(B, w) = 0 if n = N, and where for all n,

i‘] , i.'-!

1—exp (— (B +Bi, —Pn)T) .
D! . (1,B) = { Bty 7 TPy TPy P70 (9)
T

, otherwise

while the path-dependent cnnl"ficinnts are given by Z0 (B, w) := oufpn J"”Tr' sén W (w) ds, and
an rz ﬁﬂ_} EMHH rz qu rz ﬁm EMHTI rz wit-h.

0
M™ f1 iy I:ﬂ w) = i, O, / E_'B”SWLI I:M)W.F (w) ds,

o =T

rar1 i2 0 —Bysyaril 0 (5—s")Biy tari2 4
(B, w) = —0;, 0, Biy ./_r('? W L’w)/ e Wi (w)d )dS

o5

. 0 .
F“l iz (B,w) == H:?’rlfﬁ,m) F“l iz (B,w) == 7, / E{.ﬁj'l—.ﬁjz}SW;E (w)ds, (10)

o =T

o 0 - . 0 - .
MEJ;_IJE(’B,M} = {?'r'l{?'r'zﬁr-l ﬁfz / (f_nﬁuS [ {,':5—5 :I'B"l Wsr} (m)ds’ [ El[s—s :I'BJZWE [mjds’) ds

o —T o B o &

0 0 P :
M2 (B, w) = —a, B, | [_ r(f'{.ﬁ,-l —Bn)s | [5 5B Wiz () dsf) s

m These non-Markovian M, -terms solve auxiliary Random Auxiliary Equations (RDEs).

0
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Application to a stochastic Burgers-Sivashinsky equation

We consider the Burgers-Sivashinsky equation driven by a degenerate additive
noise:

du = (Vig, + Au — wug)dt + dWi(z,w), (x,t) € (0,1) x RT,
u(0,t;w) = u(l, t;w) =0, t = 0,
u(x,0;w) = ug(x), x € (0,1).

with Wi(z,w) = Zle oWk (w)er(z), o, =0, Ne ZT.

The SPDE is set in a parameter regime where sharp spatial gradient is present
in the spatiotemporal field:
@ | =9m, v=0.01, A = (100 +1)vw? /L% We have 10 unstable eigenmodes.

@ The eigenmodes 15 — 30 are forced, oy, = 4/v k=2 /( Ef:k# k2).
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PDF and PSD of the TV-norm anomalies,

ullrv = ([luflrv)
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