
Token Sliding on chordal graphs

Nicolas Bousquet
joint work with Marthe Bonamy (LaBRI, Bordeaux, France)

Banff - Reconfiguration Workshop

1/17

Reconfiguration of Independent Sets

Introduced by Hearn and Demaine in 2005
in a general study of one-player games :

A one-player game is a puzzle : one player
makes a series of moves, trying to accom-
plish some goal.

Question :
Giving my current position, can I reach my target position ?

• Equivalence with reconfiguration of satisfiability constraints.

• Generalize the Warehouseman’s problem (motion of robots).

• Introduced for colorings, satisfiability problems, dominating
sets, cliques, list colorings, bases of matroids...

2/17

Reconfiguration of Independent Sets

Introduced by Hearn and Demaine in 2005
in a general study of one-player games :

A one-player game is a puzzle : one player
makes a series of moves, trying to accom-
plish some goal.

Question :
Giving my current position, can I reach my target position ?

• Equivalence with reconfiguration of satisfiability constraints.

• Generalize the Warehouseman’s problem (motion of robots).

• Introduced for colorings, satisfiability problems, dominating
sets, cliques, list colorings, bases of matroids...

2/17

Reconfiguration of Independent Sets

Introduced by Hearn and Demaine in 2005
in a general study of one-player games :

A one-player game is a puzzle : one player
makes a series of moves, trying to accom-
plish some goal.

Question :
Giving my current position, can I reach my target position ?

• Equivalence with reconfiguration of satisfiability constraints.

• Generalize the Warehouseman’s problem (motion of robots).

• Introduced for colorings, satisfiability problems, dominating
sets, cliques, list colorings, bases of matroids...

2/17

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

X

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Main questions

• Reachability problem. Given two configurations, is it
possible to transform one into the other ?

• Connectivity problem. Given any pair of configurations, is it
possible to transform one into the other ?

• Minimization. Given two configurations, what is the length
of a shortest sequence ?

• Algorithmics. Can we efficiently solve these questions ? (In
polynomial time, FPT-time...).

4/17

Main questions

• Reachability problem. Given two configurations, is it
possible to transform one into the other ?

• Connectivity problem. Given any pair of configurations, is it
possible to transform one into the other ?

• Minimization. Given two configurations, what is the length
of a shortest sequence ?

• Algorithmics. Can we efficiently solve these questions ? (In
polynomial time, FPT-time...).

4/17

Formal definition of the problems
TS-Reachability
Input : A graph G , k ∈ N, two independent sets I , J of size k .
Output : YES iff there exists a TS-sequence from I to J.

TS-Connectivity
Input : A graph G , an integer k.
Output : YES iff it is possible to transform any independent set of
size k into any other via a TS-sequence.

TS-Reachability is PSPACE-complete on planar graphs.

Theorem (Hearn, Demaine ’05)

Polynomial time algorithms for :

• Demaine et al. Trees.

• Kamiński, Medvedev, Milanič. Cographs.

• Bonsma, Kamiński, Wrochna. Claw-free graphs.

• Fox-Epstein et al. Bipartite permutation graphs.
5/17

Our results

Can the TS-Reachability problem be decided on polynomial time
on interval graphs ? on chordal graphs ?

Question (Demaine et al.)

Answers

• YES on interval graphs.
Both TS-Reachability and TS-Connectivity can be decided in
polynomial time.

• Maybe No on split graphs.
Deciding TS-Connectivity is co-NP hard and co-W[2]-hard.
(split graph = V = V1 ∪ V2 where V1 induces a clique and V2

a stable set)

Remark :
With a similar construction ⇒ TS-connectivity is co-NP hard and
co-W[2]-hard on bipartite graphs.

6/17

Our results

Can the TS-Reachability problem be decided on polynomial time
on interval graphs ? on chordal graphs ?

Question (Demaine et al.)

Answers

• YES on interval graphs.
Both TS-Reachability and TS-Connectivity can be decided in
polynomial time.

• Maybe No on split graphs.
Deciding TS-Connectivity is co-NP hard and co-W[2]-hard.
(split graph = V = V1 ∪ V2 where V1 induces a clique and V2

a stable set)

Remark :
With a similar construction ⇒ TS-connectivity is co-NP hard and
co-W[2]-hard on bipartite graphs.

6/17

Our results

Can the TS-Reachability problem be decided on polynomial time
on interval graphs ? on chordal graphs ?

Question (Demaine et al.)

Answers

• YES on interval graphs.
Both TS-Reachability and TS-Connectivity can be decided in
polynomial time.

• Maybe No on split graphs.
Deciding TS-Connectivity is co-NP hard and co-W[2]-hard.
(split graph = V = V1 ∪ V2 where V1 induces a clique and V2

a stable set)

Remark :
With a similar construction ⇒ TS-connectivity is co-NP hard and
co-W[2]-hard on bipartite graphs.

6/17

Our results

Can the TS-Reachability problem be decided on polynomial time
on interval graphs ? on chordal graphs ?

Question (Demaine et al.)

Answers

• YES on interval graphs.
Both TS-Reachability and TS-Connectivity can be decided in
polynomial time.

• Maybe No on split graphs.
Deciding TS-Connectivity is co-NP hard and co-W[2]-hard.
(split graph = V = V1 ∪ V2 where V1 induces a clique and V2

a stable set)

Remark :
With a similar construction ⇒ TS-connectivity is co-NP hard and
co-W[2]-hard on bipartite graphs.

6/17

Hardness result on split graphs

Let G be a graph. Create a graph H :

• Create two copies V1,V2 of V (G).

• V1 induces a clique and V2 a stable set.

• We create an edge x1y2 iff y ∈ N[x].

• We add a vertex in V2 universal to V1.

• Add a matching of size k .

G

V1 V2

We can transform any independent set of H of size k + 1 into
any other iff there is no dominating set of size k in G .

Lemma

⇒ A dominating set plus the universal vertex is a frozen
independent set.

⇐ Move one by one vertices to the top.

Not Always Possible !

7/17

Hardness result on split graphs

Let G be a graph. Create a graph H :

• Create two copies V1,V2 of V (G).

• V1 induces a clique and V2 a stable set.

• We create an edge x1y2 iff y ∈ N[x].

• We add a vertex in V2 universal to V1.

• Add a matching of size k .

G

V1 V2

We can transform any independent set of H of size k + 1 into
any other iff there is no dominating set of size k in G .

Lemma

⇒ A dominating set plus the universal vertex is a frozen
independent set.

⇐ Move one by one vertices to the top.

Not Always Possible !

7/17

Hardness result on split graphs

Let G be a graph. Create a graph H :

• Create two copies V1,V2 of V (G).

• V1 induces a clique and V2 a stable set.

• We create an edge x1y2 iff y ∈ N[x].

• We add a vertex in V2 universal to V1.

• Add a matching of size k .

G

V1 V2

We can transform any independent set of H of size k + 1 into
any other iff there is no dominating set of size k in G .

Lemma

⇒ A dominating set plus the universal vertex is a frozen
independent set.

⇐ Move one by one vertices to the top.

Not Always Possible !

7/17

Hardness result on split graphs

Let G be a graph. Create a graph H :

• Create two copies V1,V2 of V (G).

• V1 induces a clique and V2 a stable set.

• We create an edge x1y2 iff y ∈ N[x].

• We add a vertex in V2 universal to V1.

• Add a matching of size k .

G

V1 V2

We can transform any independent set of H of size k + 1 into
any other iff there is no dominating set of size k in G .

Lemma

⇒ A dominating set plus the universal vertex is a frozen
independent set.

⇐ Move one by one vertices to the top.

Not Always Possible !

7/17

Hardness result on split graphs

Let G be a graph. Create a graph H :

• Create two copies V1,V2 of V (G).

• V1 induces a clique and V2 a stable set.

• We create an edge x1y2 iff y ∈ N[x].

• We add a vertex in V2 universal to V1.

• Add a matching of size k .

G

V1 V2

We can transform any independent set of H of size k + 1 into
any other iff there is no dominating set of size k in G .

Lemma

⇒ A dominating set plus the universal vertex is a frozen
independent set.

⇐ Move one by one vertices to the top.

Not Always Possible !

7/17

Hardness result on split graphs

Let G be a graph. Create a graph H :

• Create two copies V1,V2 of V (G).

• V1 induces a clique and V2 a stable set.

• We create an edge x1y2 iff y ∈ N[x].

• We add a vertex in V2 universal to V1.

• Add a matching of size k .

G

V1 V2

We can transform any independent set of H of size k + 1 into
any other iff there is no dominating set of size k in G .

Lemma

⇒ A dominating set plus the universal vertex is a frozen
independent set.

⇐ Move one by one vertices to the top.

Not Always Possible !

7/17

Hardness result on split graphs

Let G be a graph. Create a graph H :

• Create two copies V1,V2 of V (G).

• V1 induces a clique and V2 a stable set.

• We create an edge x1y2 iff y ∈ N[x].

• We add a vertex in V2 universal to V1.

• Add a matching of size k .

G

V1 V2

We can transform any independent set of H of size k + 1 into
any other iff there is no dominating set of size k in G .

Lemma

⇒ A dominating set plus the universal vertex is a frozen
independent set.

⇐ Move one by one vertices to the top.

Not Always Possible !

7/17

Hardness result on split graphs

Let G be a graph. Create a graph H :

• Create two copies V1,V2 of V (G).

• V1 induces a clique and V2 a stable set.

• We create an edge x1y2 iff y ∈ N[x].

• We add a vertex in V2 universal to V1.

• Add a matching of size k .

G

V1 V2

We can transform any independent set of H of size k + 1 into
any other iff there is no dominating set of size k in G .

Lemma

⇒ A dominating set plus the universal vertex is a frozen
independent set.

⇐ Move one by one vertices to the top.

Not Always Possible !

7/17

Hardness result on split graphs

Let G be a graph. Create a graph H :

• Create two copies V1,V2 of V (G).

• V1 induces a clique and V2 a stable set.

• We create an edge x1y2 iff y ∈ N[x].

• We add a vertex in V2 universal to V1.

• Add a matching of size k .

G

V1 V2

We can transform any independent set of H of size k + 1 into
any other iff there is no dominating set of size k in G .

Lemma

⇒ A dominating set plus the universal vertex is a frozen
independent set.

⇐ Move one by one vertices to the top.

Not Always Possible !

7/17

Hardness result on split graphs

Let G be a graph. Create a graph H :

• Create two copies V1,V2 of V (G).

• V1 induces a clique and V2 a stable set.

• We create an edge x1y2 iff y ∈ N[x].

• We add a vertex in V2 universal to V1.

• Add a matching of size k .

G

V1 V2

We can transform any independent set of H of size k + 1 into
any other iff there is no dominating set of size k in G .

Lemma

⇒ A dominating set plus the universal vertex is a frozen
independent set.

⇐ Move one by one vertices to the top.

Not Always Possible !

7/17

Hardness result on split graphs

Let G be a graph. Create a graph H :

• Create two copies V1,V2 of V (G).

• V1 induces a clique and V2 a stable set.

• We create an edge x1y2 iff y ∈ N[x].

• We add a vertex in V2 universal to V1.

• Add a matching of size k .

G

V1 V2

We can transform any independent set of H of size k + 1 into
any other iff there is no dominating set of size k in G .

Lemma

⇒ A dominating set plus the universal vertex is a frozen
independent set.

⇐ Move one by one vertices to the top.

Not Always Possible !

7/17

Hardness result on split graphs

Let G be a graph. Create a graph H :

• Create two copies V1,V2 of V (G).

• V1 induces a clique and V2 a stable set.

• We create an edge x1y2 iff y ∈ N[x].

• We add a vertex in V2 universal to V1.

• Add a matching of size k .

G

V1 V2

We can transform any independent set of H of size k + 1 into
any other iff there is no dominating set of size k in G .

Lemma

⇒ A dominating set plus the universal vertex is a frozen
independent set.

⇐ Move one by one vertices to the top.

Not Always Possible !

7/17

Hardness result on split graphs

Let G be a graph. Create a graph H :

• Create two copies V1,V2 of V (G).

• V1 induces a clique and V2 a stable set.

• We create an edge x1y2 iff y ∈ N[x].

• We add a vertex in V2 universal to V1.

• Add a matching of size k .

G

V1 V2

We can transform any independent set of H of size k + 1 into
any other iff there is no dominating set of size k in G .

Lemma

⇒ A dominating set plus the universal vertex is a frozen
independent set.

⇐ Move one by one vertices to the top. Not Always Possible !
7/17

Fix the problem

X

N(X)

• y is a private neighbor of x in X if N(y) ∩ X = {x}.
• The set X is j-blocking if |X | = j and no vertex of X has a

private neighbor.

For every G , we can construct in polynomial time a graph G ′ :
• with no blocking set of size j ≤ k + 1, and
• with a dominating set of size at most k iff G has.

We can transform any independent set of H ′ of size k + 1 into
any other iff there is no dominating set of size k in G ′.

Lemma

8/17

Fix the problem

X

N(X)

• y is a private neighbor of x in X if N(y) ∩ X = {x}.
• The set X is j-blocking if |X | = j and no vertex of X has a

private neighbor.

For every G , we can construct in polynomial time a graph G ′ :
• with no blocking set of size j ≤ k + 1, and
• with a dominating set of size at most k iff G has.

We can transform any independent set of H ′ of size k + 1 into
any other iff there is no dominating set of size k in G ′.

Lemma

8/17

Fix the problem

X

N(X)

• y is a private neighbor of x in X if N(y) ∩ X = {x}.
• The set X is j-blocking if |X | = j and no vertex of X has a

private neighbor.

For every G , we can construct in polynomial time a graph G ′ :
• with no blocking set of size j ≤ k + 1, and
• with a dominating set of size at most k iff G has.

We can transform any independent set of H ′ of size k + 1 into
any other iff there is no dominating set of size k in G ′.

Lemma

8/17

Fix the problem

X

N(X)

• y is a private neighbor of x in X if N(y) ∩ X = {x}.
• The set X is j-blocking if |X | = j and no vertex of X has a

private neighbor.

For every G , we can construct in polynomial time a graph G ′ :
• with no blocking set of size j ≤ k + 1, and
• with a dominating set of size at most k iff G has.

We can transform any independent set of H ′ of size k + 1 into
any other iff there is no dominating set of size k in G ′.

Lemma

8/17

Conclusion

k-Dominating Set is NP-hard and W[2]-hard.

⇓
k-Dominating Set with no blocking set of size ≤ k + 1

is NP-hard and W[2]-hard.

⇓
k-TS-Connectivity is co-NP-hard and co-W[2]-hard.

9/17

Conclusion

k-Dominating Set is NP-hard and W[2]-hard.

⇓
k-Dominating Set with no blocking set of size ≤ k + 1

is NP-hard and W[2]-hard.

⇓
k-TS-Connectivity is co-NP-hard and co-W[2]-hard.

9/17

Conclusion

k-Dominating Set is NP-hard and W[2]-hard.

⇓
k-Dominating Set with no blocking set of size ≤ k + 1

is NP-hard and W[2]-hard.

⇓
k-TS-Connectivity is co-NP-hard and co-W[2]-hard.

9/17

Interval graphs

An interval graph is an intersection graph of intervals on the line.
Remark :
A geometric representation can be obtained in polynomial time.

The Leftmost Independent Set (LIS) satisfies :

• The LIS contains the leftmost vertex, i.e. the vertex x with
minimum right-end.

• LIS(G) = x ∪ LIS(G [V \ N[x]]).

Decide if an Independent Set of size k can be transformed into
the LIS.

Informal goal

10/17

Interval graphs

An interval graph is an intersection graph of intervals on the line.
Remark :
A geometric representation can be obtained in polynomial time.

The Leftmost Independent Set (LIS) satisfies :

• The LIS contains the leftmost vertex, i.e. the vertex x with
minimum right-end.

• LIS(G) = x ∪ LIS(G [V \ N[x]]).

Decide if an Independent Set of size k can be transformed into
the LIS.

Informal goal

10/17

Interval graphs

An interval graph is an intersection graph of intervals on the line.
Remark :
A geometric representation can be obtained in polynomial time.

The Leftmost Independent Set (LIS) satisfies :

• The LIS contains the leftmost vertex, i.e. the vertex x with
minimum right-end.

• LIS(G) = x ∪ LIS(G [V \ N[x]]).

Decide if an Independent Set of size k can be transformed into
the LIS.

Informal goal

10/17

Interval graphs

An interval graph is an intersection graph of intervals on the line.
Remark :
A geometric representation can be obtained in polynomial time.

The Leftmost Independent Set (LIS) satisfies :

• The LIS contains the leftmost vertex, i.e. the vertex x with
minimum right-end.

• LIS(G) = x ∪ LIS(G [V \ N[x]]).

Decide if an Independent Set of size k can be transformed into
the LIS.

Informal goal

10/17

Interval graphs

An interval graph is an intersection graph of intervals on the line.
Remark :
A geometric representation can be obtained in polynomial time.

The Leftmost Independent Set (LIS) satisfies :

• The LIS contains the leftmost vertex, i.e. the vertex x with
minimum right-end.

• LIS(G) = x ∪ LIS(G [V \ N[x]]).

Decide if an Independent Set of size k can be transformed into
the LIS.

Informal goal

10/17

First try : Naive Method

I can be transformed into the LIS iff
• The leftmost vertex of x of I can be pushed to the

leftmost vertex y of LIS(G).

• I \ x can be transformed into LIS(G) \ y in G [V \ N[y]).

Lemma

Naive algorithm :

• Push the leftmost vertex of the independent set to the left
and check that it can be transformed into the leftmost vertex.

• Repeat in V \ N[y] for the remaining vertices.

Problem :
We might need to move vertices to the right to push the leftmost
vertex to the left.

11/17

First try : Naive Method

I can be transformed into the LIS iff
• The leftmost vertex of x of I can be pushed to the

leftmost vertex y of LIS(G).

• I \ x can be transformed into LIS(G) \ y in G [V \ N[y]).

Lemma

Naive algorithm :

• Push the leftmost vertex of the independent set to the left
and check that it can be transformed into the leftmost vertex.

• Repeat in V \ N[y] for the remaining vertices.

Problem :
We might need to move vertices to the right to push the leftmost
vertex to the left.

11/17

First try : Naive Method

I can be transformed into the LIS iff
• The leftmost vertex of x of I can be pushed to the

leftmost vertex y of LIS(G).

• I \ x can be transformed into LIS(G) \ y in G [V \ N[y]).

Lemma

Naive algorithm :

• Push the leftmost vertex of the independent set to the left
and check that it can be transformed into the leftmost vertex.

• Repeat in V \ N[y] for the remaining vertices.

Problem :
We might need to move vertices to the right to push the leftmost
vertex to the left.

11/17

First try : Naive Method

I can be transformed into the LIS iff
• The leftmost vertex of x of I can be pushed to the

leftmost vertex y of LIS(G).

• I \ x can be transformed into LIS(G) \ y in G [V \ N[y]).

Lemma

Naive algorithm :

• Push the leftmost vertex of the independent set to the left
and check that it can be transformed into the leftmost vertex.

• Repeat in V \ N[y] for the remaining vertices.

Problem :
We might need to move vertices to the right to push the leftmost
vertex to the left.

11/17

First try : Naive Method

I can be transformed into the LIS iff
• The leftmost vertex of x of I can be pushed to the

leftmost vertex y of LIS(G).

• I \ x can be transformed into LIS(G) \ y in G [V \ N[y]).

Lemma

Naive algorithm :

• Push the leftmost vertex of the independent set to the left
and check that it can be transformed into the leftmost vertex.

• Repeat in V \ N[y] for the remaining vertices.

Problem :
We might need to move vertices to the right to push the leftmost
vertex to the left.

11/17

First try : Naive Method

I can be transformed into the LIS iff
• The leftmost vertex of x of I can be pushed to the

leftmost vertex y of LIS(G).

• I \ x can be transformed into LIS(G) \ y in G [V \ N[y]).

Lemma

Naive algorithm :

• Push the leftmost vertex of the independent set to the left
and check that it can be transformed into the leftmost vertex.

• Repeat in V \ N[y] for the remaining vertices.

Problem :
We might need to move vertices to the right to push the leftmost
vertex to the left.

11/17

First try : Naive Method

I can be transformed into the LIS iff
• The leftmost vertex of x of I can be pushed to the

leftmost vertex y of LIS(G).

• I \ x can be transformed into LIS(G) \ y in G [V \ N[y]).

Lemma

Naive algorithm :

• Push the leftmost vertex of the independent set to the left
and check that it can be transformed into the leftmost vertex.

• Repeat in V \ N[y] for the remaining vertices.

Problem :
We might need to move vertices to the right to push the leftmost
vertex to the left.

11/17

First try : Naive Method

I can be transformed into the LIS iff
• The leftmost vertex of x of I can be pushed to the

leftmost vertex y of LIS(G).

• I \ x can be transformed into LIS(G) \ y in G [V \ N[y]).

Lemma

Naive algorithm :

• Push the leftmost vertex of the independent set to the left
and check that it can be transformed into the leftmost vertex.

• Repeat in V \ N[y] for the remaining vertices.

Problem :
We might need to move vertices to the right to push the leftmost
vertex to the left.

11/17

Informal algorithm

Repeat the following procedure

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• If no vertices of the independent sets have moved, make a
decision.

12/17

Informal algorithm

Repeat the following procedure

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• If no vertices of the independent sets have moved, make a
decision.

12/17

Informal algorithm

Repeat the following procedure

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• If no vertices of the independent sets have moved, make a
decision.

12/17

Informal algorithm

Repeat the following procedure

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• If no vertices of the independent sets have moved, make a
decision.

12/17

Informal algorithm

Repeat the following procedure

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• If no vertices of the independent sets have moved, make a
decision.

12/17

Informal algorithm

Repeat the following procedure

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• If no vertices of the independent sets have moved, make a
decision.

12/17

Informal algorithm

Repeat the following procedure

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• If no vertices of the independent sets have moved, make a
decision.

12/17

Informal algorithm

Repeat the following procedure

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• If no vertices of the independent sets have moved, make a
decision.

12/17

Informal algorithm

Repeat the following procedure

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• If no vertices of the independent sets have moved, make a
decision.

12/17

Informal algorithm

Repeat the following procedure

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• If no vertices of the independent sets have moved, make a
decision.

12/17

Algorithm for TS-Reachability

We repeat the following procedure on each independent set I
and J :

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• If no vertices of the independent sets have moved, compare
the first vertices of I ′ and J ′ :

• If they are different : answer NO.
• If they are the same : delete their first vertices and their

neighborhoods and repeat.

13/17

Algorithm for TS-Reachability

We repeat the following procedure on each independent set I
and J :

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• If no vertices of the independent sets have moved, compare
the first vertices of I ′ and J ′ :

• If they are different : answer NO.
• If they are the same : delete their first vertices and their

neighborhoods and repeat.

13/17

Algorithm for TS-Reachability

We repeat the following procedure on each independent set I
and J :

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• If no vertices of the independent sets have moved, compare
the first vertices of I ′ and J ′ :

• If they are different : answer NO.
• If they are the same : delete their first vertices and their

neighborhoods and repeat.

13/17

Algorithm for TS-Reachability

We repeat the following procedure on each independent set I
and J :

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• If no vertices of the independent sets have moved, compare
the first vertices of I ′ and J ′ :

• If they are different : answer NO.
• If they are the same : delete their first vertices and their

neighborhoods and repeat.

13/17

Algorithm for TS-Reachability

We repeat the following procedure on each independent set I
and J :

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• If no vertices of the independent sets have moved, compare
the first vertices of I ′ and J ′ :

• If they are different : answer NO.
• If they are the same : delete their first vertices and their

neighborhoods and repeat.

13/17

Running time

This sequence might not be polynomial...

Assume that the first vertex of I is the ith vertex.
We might use O(i) times induction to move the first
vertex on the leftmost vertex.

C (n, k) ≈ max
i≤n

(
i · C (n − i , k − 1)

)
≈ nk

⇒ Exponential running time (a priori).

• Given two independent sets, does there exist a polynomial
P such that a minimum transformation between I and J, if
it exists, has length at most P(n) ?

• If yes, is the sequence of this algorithm polynomial ?

Questions

14/17

Running time

This sequence might not be polynomial...

Assume that the first vertex of I is the ith vertex.
We might use O(i) times induction to move the first
vertex on the leftmost vertex.

C (n, k) ≈ max
i≤n

(
i · C (n − i , k − 1)

)
≈ nk

⇒ Exponential running time (a priori).

• Given two independent sets, does there exist a polynomial
P such that a minimum transformation between I and J, if
it exists, has length at most P(n) ?

• If yes, is the sequence of this algorithm polynomial ?

Questions

14/17

Running time

This sequence might not be polynomial...

Assume that the first vertex of I is the ith vertex.
We might use O(i) times induction to move the first
vertex on the leftmost vertex.

C (n, k) ≈ max
i≤n

(
i · C (n − i , k − 1)

)
≈ nk

⇒ Exponential running time (a priori).

• Given two independent sets, does there exist a polynomial
P such that a minimum transformation between I and J, if
it exists, has length at most P(n) ?

• If yes, is the sequence of this algorithm polynomial ?

Questions

14/17

Running time

This sequence might not be polynomial...

Assume that the first vertex of I is the ith vertex.
We might use O(i) times induction to move the first
vertex on the leftmost vertex.

C (n, k) ≈ max
i≤n

(
i · C (n − i , k − 1)

)
≈ nk

⇒ Exponential running time (a priori).

• Given two independent sets, does there exist a polynomial
P such that a minimum transformation between I and J, if
it exists, has length at most P(n) ?

• If yes, is the sequence of this algorithm polynomial ?

Questions

14/17

Running time

This sequence might not be polynomial...

Assume that the first vertex of I is the ith vertex.
We might use O(i) times induction to move the first
vertex on the leftmost vertex.

C (n, k) ≈ max
i≤n

(
i · C (n − i , k − 1)

)
≈ nk

⇒ Exponential running time (a priori).

• Given two independent sets, does there exist a polynomial
P such that a minimum transformation between I and J, if
it exists, has length at most P(n) ?

• If yes, is the sequence of this algorithm polynomial ?

Questions

14/17

Dynamic programming
Gu is the graph at the right of u, i.e. :

• without vertices strictly before u,

• without vertices that intersect u.
u

Let I = {u1, . . . , uk} be an independent set.

R(v , i) : rightmost possible first vertex of an IS we can reach
from {ui , . . . , uk} in Gv .

Definition

Lemma : R(v , i) can be computed in polynomial time.

• R(v , k) can be computed in polynomial time
(rightmost vertex in the component of uk in Gv).

• Otherwise, repeat :
• Access to y = R(ui , i + 1) (induction).
• z : leftmost vertex we can reach from ui in Gv \ N(y).
• ui ← z .

Complexity : O(n ·m).

15/17

Dynamic programming
Gu is the graph at the right of u, i.e. :

• without vertices strictly before u,

• without vertices that intersect u.

Let I = {u1, . . . , uk} be an independent set.

R(v , i) : rightmost possible first vertex of an IS we can reach
from {ui , . . . , uk} in Gv .

Definition

Lemma : R(v , i) can be computed in polynomial time.

• R(v , k) can be computed in polynomial time
(rightmost vertex in the component of uk in Gv).

• Otherwise, repeat :
• Access to y = R(ui , i + 1) (induction).
• z : leftmost vertex we can reach from ui in Gv \ N(y).
• ui ← z .

Complexity : O(n ·m).

15/17

Dynamic programming
Gu is the graph at the right of u, i.e. :

• without vertices strictly before u,

• without vertices that intersect u.

Let I = {u1, . . . , uk} be an independent set.

R(v , i) : rightmost possible first vertex of an IS we can reach
from {ui , . . . , uk} in Gv .

Definition

Lemma : R(v , i) can be computed in polynomial time.

• R(v , k) can be computed in polynomial time
(rightmost vertex in the component of uk in Gv).

• Otherwise, repeat :
• Access to y = R(ui , i + 1) (induction).
• z : leftmost vertex we can reach from ui in Gv \ N(y).
• ui ← z .

Complexity : O(n ·m).

15/17

Dynamic programming
Gu is the graph at the right of u, i.e. :

• without vertices strictly before u,

• without vertices that intersect u.

Let I = {u1, . . . , uk} be an independent set.

R(v , i) : rightmost possible first vertex of an IS we can reach
from {ui , . . . , uk} in Gv .

Definition

Lemma : R(v , i) can be computed in polynomial time.

• R(v , k) can be computed in polynomial time
(rightmost vertex in the component of uk in Gv).

• Otherwise, repeat :
• Access to y = R(ui , i + 1) (induction).
• z : leftmost vertex we can reach from ui in Gv \ N(y).
• ui ← z .

Complexity : O(n ·m).

15/17

Dynamic programming
Gu is the graph at the right of u, i.e. :

• without vertices strictly before u,

• without vertices that intersect u.

Let I = {u1, . . . , uk} be an independent set.

R(v , i) : rightmost possible first vertex of an IS we can reach
from {ui , . . . , uk} in Gv .

Definition

Lemma : R(v , i) can be computed in polynomial time.

• R(v , k) can be computed in polynomial time
(rightmost vertex in the component of uk in Gv).

• Otherwise, repeat :
• Access to y = R(ui , i + 1) (induction).
• z : leftmost vertex we can reach from ui in Gv \ N(y).
• ui ← z .

Complexity : O(n ·m).

15/17

Dynamic programming
Gu is the graph at the right of u, i.e. :

• without vertices strictly before u,

• without vertices that intersect u.

Let I = {u1, . . . , uk} be an independent set.

R(v , i) : rightmost possible first vertex of an IS we can reach
from {ui , . . . , uk} in Gv .

Definition

Lemma : R(v , i) can be computed in polynomial time.

• R(v , k) can be computed in polynomial time
(rightmost vertex in the component of uk in Gv).

• Otherwise, repeat :
• Access to y = R(ui , i + 1) (induction).
• z : leftmost vertex we can reach from ui in Gv \ N(y).
• ui ← z .

Complexity : O(n ·m).

15/17

Dynamic programming
Gu is the graph at the right of u, i.e. :

• without vertices strictly before u,

• without vertices that intersect u.

Let I = {u1, . . . , uk} be an independent set.

R(v , i) : rightmost possible first vertex of an IS we can reach
from {ui , . . . , uk} in Gv .

Definition

Lemma : R(v , i) can be computed in polynomial time.

• R(v , k) can be computed in polynomial time
(rightmost vertex in the component of uk in Gv).

• Otherwise, repeat :
• Access to y = R(ui , i + 1) (induction).
• z : leftmost vertex we can reach from ui in Gv \ N(y).
• ui ← z .

Complexity : O(n ·m).
15/17

Algorithm for TS-Connectivity

We repeat the following procedure on “any” independent set I :

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• If no vertex of the independent set has moved, answer NO
(we cannot reach the LIS).

Computation ?
Using a slightly more complicated dynamic programming algorithm.

16/17

Algorithm for TS-Connectivity

We repeat the following procedure on “any” independent set I :

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• If no vertex of the independent set has moved, answer NO
(we cannot reach the LIS).

Computation ?
Using a slightly more complicated dynamic programming algorithm.

16/17

Algorithm for TS-Connectivity

We repeat the following procedure on “any” independent set I :

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• If no vertex of the independent set has moved, answer NO
(we cannot reach the LIS).

Computation ?
Using a slightly more complicated dynamic programming algorithm.

16/17

Algorithm for TS-Connectivity

We repeat the following procedure on “any” independent set I :

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• If no vertex of the independent set has moved, answer NO
(we cannot reach the LIS).

Computation ?
Using a slightly more complicated dynamic programming algorithm.

16/17

Algorithm for TS-Connectivity

We repeat the following procedure on “any” independent set I :

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• If no vertex of the independent set has moved, answer NO
(we cannot reach the LIS).

Computation ?
Using a slightly more complicated dynamic programming algorithm.

16/17

Algorithm for TS-Connectivity

We repeat the following procedure on “any” independent set I :

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• If no vertex of the independent set has moved, answer NO
(we cannot reach the LIS).

Computation ?
Using a slightly more complicated dynamic programming algorithm.

16/17

Conclusion and open problems

• Complexity of the TS-Reachability on split graphs ? on chordal
graphs ?

• Complexity of the TS problems on more general intersection
graphs ?

• What about the minimum length sequence ?

Thanks for your attention !

17/17

Conclusion and open problems

• Complexity of the TS-Reachability on split graphs ? on chordal
graphs ?

• Complexity of the TS problems on more general intersection
graphs ?

• What about the minimum length sequence ?

Thanks for your attention !

17/17

