Token Sliding on chordal graphs

Nicolas Bousquet
joint work with Marthe Bonamy (LaBRI, Bordeaux, France)

Banff - Reconfiguration Workshop

. GASCOP D

1/17

Reconfiguration of Independent Sets

Introduced by Hearn and Demaine in 2005
in a general study of one-player games

A one-player game is a puzzle : one player
makes a series of moves, trying to accom-
plish some goal.

Question :
Giving my current position, can | reach my target position ?

2/17

Reconfiguration of Independent Sets

Introduced by Hearn and Demaine in 2005
in a general study of one-player games

A one-player game is a puzzle : one player
makes a series of moves, trying to accom-
plish some goal.

Question :
Giving my current position, can | reach my target position ?

e Equivalence with reconfiguration of satisfiability constraints.

e Generalize the Warehouseman's problem (motion of robots).

2/17

Reconfiguration of Independent Sets

Introduced by Hearn and Demaine in 2005
in a general study of one-player games

A one-player game is a puzzle : one player
makes a series of moves, trying to accom-
plish some goal.

Question :

Giving my current position, can | reach my target position ?
e Equivalence with reconfiguration of satisfiability constraints.
e Generalize the Warehouseman's problem (motion of robots).

e Introduced for colorings, satisfiability problems, dominating
sets, cliques, list colorings, bases of matroids...

2/17

Token Sliding

Definition (TS—sequence)]

A TS-sequence I1,..., I, of independent sets is a sequence such
that there exist v € /i1 and u € /; such that /11 = [U{v}\{u}
and uv is an edge.

3/17

Token Sliding

Definition (TS—sequence)]

A TS-sequence I1,..., I, of independent sets is a sequence such

that there exist v € /;11 and u € /; such that /11 = [U{v}\{u}
and uv is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

Definition (TS—sequence)]

A TS-sequence I1,..., I, of independent sets is a sequence such

that there exist v € /;11 and u € /; such that /11 = [U{v}\{u}
and uv is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

Definition (TS—sequence)]

A TS-sequence I1,..., I, of independent sets is a sequence such

that there exist v € /;11 and u € /; such that /11 = [U{v}\{u}
and uv is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

Definition (TS—sequence)]

A TS-sequence I1,..., I, of independent sets is a sequence such

that there exist v € /;11 and u € /; such that /11 = [U{v}\{u}
and uv is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

Definition (TS—sequence)]

A TS-sequence I1,..., I, of independent sets is a sequence such

that there exist v € /;11 and u € /; such that /11 = [U{v}\{u}
and uv is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

Definition (TS—sequence)]

A TS-sequence I1,..., I, of independent sets is a sequence such

that there exist v € /;11 and u € /; such that /11 = [U{v}\{u}
and uv is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

Definition (TS—sequence)]

A TS-sequence I1,..., I, of independent sets is a sequence such

that there exist v € /;11 and u € /; such that /11 = [U{v}\{u}
and uv is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

Definition (TS—sequence)]

A TS-sequence I1,..., I, of independent sets is a sequence such

that there exist v € /;11 and u € /; such that /11 = [U{v}\{u}
and uv is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

Definition (TS—sequence)]

A TS-sequence I1,..., I, of independent sets is a sequence such

that there exist v € /;11 and u € /; such that /11 = [U{v}\{u}
and uv is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

Definition (TS—sequence)]

A TS-sequence I1,..., I, of independent sets is a sequence such

that there exist v € /;11 and u € /; such that /11 = [U{v}\{u}
and uv is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

Definition (TS—sequence)]

A TS-sequence I1,..., I, of independent sets is a sequence such

that there exist v € /;11 and u € /; such that /11 = [U{v}\{u}
and uv is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

Definition (TS—sequence)]

A TS-sequence I1,..., I, of independent sets is a sequence such

that there exist v € /;11 and u € /; such that /11 = [U{v}\{u}
and uv is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

Definition (TS—sequence)]

A TS-sequence I1,..., I, of independent sets is a sequence such

that there exist v € /;11 and u € /; such that /11 = [U{v}\{u}
and uv is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

Definition (TS—sequence)]

A TS-sequence I1,..., I, of independent sets is a sequence such

that there exist v € /;11 and u € /; such that /11 = [U{v}\{u}
and uv is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Token Sliding

Definition (TS—sequence)]

A TS-sequence I1,..., I, of independent sets is a sequence such

that there exist v € /;11 and u € /; such that /11 = [U{v}\{u}
and uv is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an
independent set at any step.

3/17

Main questions

¢ Reachability problem. Given two configurations, is it
possible to transform one into the other?

e Connectivity problem. Given any pair of configurations, is it
possible to transform one into the other?

¢ Minimization. Given two configurations, what is the length
of a shortest sequence ?

4/17

Main questions

Reachability problem. Given two configurations, is it
possible to transform one into the other?

Connectivity problem. Given any pair of configurations, is it
possible to transform one into the other?

Minimization. Given two configurations, what is the length
of a shortest sequence ?

Algorithmics. Can we efficiently solve these questions? (In
polynomial time, FPT-time...).

4/17

Formal definition of the problems
TS-Reachability
Input : A graph G, k € N, two independent sets /, J of size k.
Output : YES iff there exists a TS-sequence from [to J.

TS-Connectivity

Input : A graph G, an integer k.

Output : YES iff it is possible to transform any independent set of
size k into any other via a TS-sequence.

Theorem (Hearn, Demaine '05)]

TS-Reachability is PSPACE-complete on planar graphs.]

Polynomial time algorithms for :

e Demaine et al. Trees.
Kaminski, Medvedev, Milani¢. Cographs.
Bonsma, Kaminski, Wrochna. Claw-free graphs.
Fox-Epstein et al. Bipartite permutation graphs.

5/17

Our results

Question (Demaine et aI.)]

Can the TS-Reachability problem be decided on polynomial time
on interval graphs? on chordal graphs?

6/17

Our results

Question (Demaine et aI.)]

Can the TS-Reachability problem be decided on polynomial time
on interval graphs? on chordal graphs?

Answers

e YES on interval graphs.
Both TS-Reachability and TS-Connectivity can be decided in
polynomial time.

6/17

Our results

Question (Demaine et aI.)]

Can the TS-Reachability problem be decided on polynomial time
on interval graphs? on chordal graphs?

Answers

e YES on interval graphs.
Both TS-Reachability and TS-Connectivity can be decided in
polynomial time.

e Maybe No on split graphs.
Deciding TS-Connectivity is co-NP hard and co-W/[2]-hard.
(split graph = V = V; U V, where V4 induces a clique and V;
a stable set)

6/17

Our results

Question (Demaine et aI.)]

Can the TS-Reachability problem be decided on polynomial time
on interval graphs? on chordal graphs?

Answers
e YES on interval graphs.
Both TS-Reachability and TS-Connectivity can be decided in
polynomial time.
e Maybe No on split graphs.
Deciding TS-Connectivity is co-NP hard and co-W/[2]-hard.
(split graph = V = V; U V, where V4 induces a clique and V;
a stable set)
Remark :
With a similar construction = TS-connectivity is co-NP hard and
co-W(2]-hard on bipartite graphs.

6/17

Hardness result on split graphs

Let G be a graph. Create a graph H :
e Create two copies V4, V5 of V(G).

- o000
-~ o000

7/17

Hardness result on split graphs

Let G be a graph. Create a graph H :
e Create two copies Vi, V; of V(G).

e Vj induces a clique and V5, a stable set.

e

7/17

Hardness result on split graphs

Let G be a graph. Create a graph H :
e Create two copies Vi, V; of V(G).

e Vj induces a clique and V5, a stable set. G

e We create an edge x1y» iff y € N[x].) I:I
[

W Va

7/17

Hardness result on split graphs

Let G be a graph. Create a graph H :
e Create two copies Vi, V; of V(G).

e Vj induces a clique and V5, a stable set. G

e We create an edge x1y» iff y € N[x]. I:I
[

®
W Va

7/17

Hardness result on split graphs

Let G be a graph. Create a graph H :
e Create two copies Vi, V; of V(G).

e Vj induces a clique and V5, a stable set. G

e We create an edge x1y» iff y € N[x]. I:I

W Va

7/17

Hardness result on split graphs

Let G be a graph. Create a graph H :
e Create two copies Vi, V; of V(G).
e Vj induces a clique and V5, a stable set.
e We create an edge x1y» iff y € N[x].

e We add a vertex in V5 universal to V;.

7/17

Hardness result on split graphs

Let G be a graph. Create a graph H :
Create two copies Vi, V; of V(G).

V1 induces a clique and V), a stable set.

We create an edge x1y» iff y € N[x].

We add a vertex in V5 universal to V;.

Add a matching of size k.

7/17

Hardness result on split graphs

Let G be a graph. Create a graph H :
Create two copies Vi, V; of V(G).

V1 induces a clique and V), a stable set.

We create an edge x1y» iff y € N[x].

We add a vertex in V5 universal to V;.

Add a matching of size k.

We can transform any independent set of H of size k + 1 into
any other iff there is no dominating set of size k in G.

7/17

Hardness result on split graphs

Let G be a graph. Create a graph H :
Create two copies Vi, V; of V(G).

V1 induces a clique and V), a stable set.

We create an edge x1y» iff y € N[x].

We add a vertex in V5 universal to V;.

Add a matching of size k.

We can transform any independent set of H of size k + 1 into
any other iff there is no dominating set of size k in G.

= A dominating set plus the universal vertex is a frozen
independent set.

7/17

Hardness result on split graphs

Let G be a graph. Create a graph H :
Create two copies Vi, V; of V(G).

V1 induces a clique and V), a stable set.

We create an edge x1y» iff y € N[x].

We add a vertex in V5 universal to V;.

Add a matching of size k.

We can transform any independent set of H of size k + 1 into
any other iff there is no dominating set of size k in G.

= A dominating set plus the universal vertex is a frozen
independent set.

< Move one by one vertices to the top.
7/17

Hardness result on split graphs

Let G be a graph. Create a graph H :
Create two copies Vi, V; of V(G).

V1 induces a clique and V), a stable set.

We create an edge x1y» iff y € N[x].

We add a vertex in V5 universal to V;.

Add a matching of size k.

We can transform any independent set of H of size k + 1 into
any other iff there is no dominating set of size k in G.

= A dominating set plus the universal vertex is a frozen
independent set.

< Move one by one vertices to the top.
7/17

Hardness result on split graphs

Let G be a graph. Create a graph H :
Create two copies Vi, V; of V(G).

V1 induces a clique and V), a stable set.

We create an edge x1y» iff y € N[x].

We add a vertex in V5 universal to V;.

Add a matching of size k.

We can transform any independent set of H of size k + 1 into
any other iff there is no dominating set of size k in G.

= A dominating set plus the universal vertex is a frozen
independent set.

< Move one by one vertices to the top.
7/17

Hardness result on split graphs

Let G be a graph. Create a graph H :
Create two copies Vi, V; of V(G).

V1 induces a clique and V), a stable set.

We create an edge x1y» iff y € N[x].

We add a vertex in V5 universal to V;.

Add a matching of size k.

Lemma

= A dominating set plus the universal vertex is a frozen
independent set.

< Move one by one vertices to the top. Not Always Possible !
7/17

Fix the problem

8/17

Fix the problem

e y is a private neighbor of x in X if N(y) N X = {x}.
e The set X is j-blocking if | X| =/ and no vertex of X has a
private neighbor.

8/17

Fix the problem

e y is a private neighbor of x in X if N(y) N X = {x}.
e The set X is j-blocking if | X| = and no vertex of X has a
private neighbor.
For every G, we can construct in polynomial time a graph G’ :
e with no blocking set of size j < k+ 1, and
e with a dominating set of size at most k iff G has.

8/17

Fix the problem

e y is a private neighbor of x in X if N(y) N X = {x}.
e The set X is j-blocking if | X| = and no vertex of X has a
private neighbor.
For every G, we can construct in polynomial time a graph G’ :
e with no blocking set of size j < k+ 1, and
e with a dominating set of size at most k iff G has.

We can transform any independent set of H' of size k + 1 into
any other iff there is no dominating set of size k in G'.

8/17

Conclusion

k-Dominating Set is NP-hard and W/[2]-hard.

9/17

Conclusion

k-Dominating Set is NP-hard and W/[2]-hard.
¢

k-Dominating Set with no blocking set of size < k+1
is NP-hard and W|[2]-hard.

9/17

Conclusion

k-Dominating Set is NP-hard and W/[2]-hard.
¢

k-Dominating Set with no blocking set of size < k+1
is NP-hard and W|[2]-hard.

¢
k-TS-Connectivity is co-NP-hard and co-W/[2]-hard.

9/17

Interval graphs

S —— _—— e&sew e

An interval graph is an intersection graph of intervals on the line.
Remark :
A geometric representation can be obtained in polynomial time.

10/17

Interval graphs

S —— _—— e &ses oo

An interval graph is an intersection graph of intervals on the line.

Remark :
A geometric representation can be obtained in polynomial time.

The Leftmost Independent Set (LIS) satisfies :

e The LIS contains the leftmost vertex, i.e. the vertex x with
minimum right-end.

10/17

Interval graphs

S~ ee&seweee

An interval graph is an intersection graph of intervals on the line.

Remark :
A geometric representation can be obtained in polynomial time.

The Leftmost Independent Set (LIS) satisfies :

e The LIS contains the leftmost vertex, i.e. the vertex x with
minimum right-end.

o LIS(G) = x U LIS(G[V \ N[x]]).

10/17

Interval graphs

— e &seseee

An interval graph is an intersection graph of intervals on the line.

Remark :
A geometric representation can be obtained in polynomial time.

The Leftmost Independent Set (LIS) satisfies :

e The LIS contains the leftmost vertex, i.e. the vertex x with
minimum right-end.

o LIS(G) = x U LIS(G[V \ N[x]]).

10/17

Interval graphs

— e &seseee

An interval graph is an intersection graph of intervals on the line.
Remark :

A geometric representation can be obtained in polynomial time.

The Leftmost Independent Set (LIS) satisfies :

e The LIS contains the leftmost vertex, i.e. the vertex x with
minimum right-end.

o LIS(G) = x U LIS(G[V \ N[x]]).

Informal goal

Decide if an Independent Set of size k can be transformed into
the LIS.

10/17

First try : Naive Method

I can be transformed into the LIS iff
e The leftmost vertex of x of | can be pushed to the
leftmost vertex y of LIS(G).

e [\ x can be transformed into LIS(G) \ y in G[V \ N[y]).

11/17

First try : Naive Method

I can be transformed into the LIS iff
e The leftmost vertex of x of | can be pushed to the
leftmost vertex y of LIS(G).

e [\ x can be transformed into LIS(G) \ y in G[V \ N[y]).

Naive algorithm :

e Push the leftmost vertex of the independent set to the left
and check that it can be transformed into the leftmost vertex.

11/17

First try : Naive Method

I can be transformed into the LIS iff
e The leftmost vertex of x of | can be pushed to the
leftmost vertex y of LIS(G).

e [\ x can be transformed into LIS(G) \ y in G[V \ N[y]).

Naive algorithm :

e Push the leftmost vertex of the independent set to the left
and check that it can be transformed into the leftmost vertex.

11/17

First try : Naive Method

I can be transformed into the LIS iff
e The leftmost vertex of x of | can be pushed to the
leftmost vertex y of LIS(G).

e [\ x can be transformed into LIS(G) \ y in G[V \ N[y]).

Naive algorithm :

e Push the leftmost vertex of the independent set to the left
and check that it can be transformed into the leftmost vertex.

11/17

First try : Naive Method

I can be transformed into the LIS iff
e The leftmost vertex of x of | can be pushed to the
leftmost vertex y of LIS(G).

e [\ x can be transformed into LIS(G) \ y in G[V \ N[y]).

Naive algorithm :

e Push the leftmost vertex of the independent set to the left
and check that it can be transformed into the leftmost vertex.
e Repeat in V' \ N[y] for the remaining vertices.

11/17

First try : Naive Method

I can be transformed into the LIS iff
e The leftmost vertex of x of | can be pushed to the
leftmost vertex y of LIS(G).

e [\ x can be transformed into LIS(G) \ y in G[V \ N[y]).

Naive algorithm :

e Push the leftmost vertex of the independent set to the left
and check that it can be transformed into the leftmost vertex.
e Repeat in V' \ N[y] for the remaining vertices.

11/17

First try : Naive Method

I can be transformed into the LIS iff
e The leftmost vertex of x of | can be pushed to the
leftmost vertex y of LIS(G).

e [\ x can be transformed into LIS(G) \ y in G[V \ N[y]).

Naive algorithm :

e Push the leftmost vertex of the independent set to the left
and check that it can be transformed into the leftmost vertex.
e Repeat in V' \ N[y] for the remaining vertices.
Problem :

We might need to move vertices to the right to push the leftmost
vertex to the left.

11/17

First try : Naive Method

I can be transformed into the LIS iff
e The leftmost vertex of x of | can be pushed to the
leftmost vertex y of LIS(G).

e [\ x can be transformed into LIS(G) \ y in G[V \ N[y]).

Naive algorithm :

e Push the leftmost vertex of the independent set to the left
and check that it can be transformed into the leftmost vertex.
e Repeat in V' \ N[y] for the remaining vertices.
Problem :

We might need to move vertices to the right to push the leftmost
vertex to the left.

11/17

Informal algorithm

CO—c >

Repeat the following procedure

12/17

Informal algorithm

Ca=— >

-—

Repeat the following procedure
e Push the first vertex to the left.

12/17

Informal algorithm

o-< —

Repeat the following procedure
e Push the first vertex to the left.

12/17

Informal algorithm

Co—<— >

Repeat the following procedure
e Push the first vertex to the left.

e Push the independent set minus its first vertex to the right.

12/17

Informal algorithm

CO——=>

e

Repeat the following procedure
e Push the first vertex to the left.

e Push the independent set minus its first vertex to the right.

12/17

Informal algorithm

- =

Repeat the following procedure
e Push the first vertex to the left.

e Push the independent set minus its first vertex to the right.

12/17

Informal algorithm

- =

Repeat the following procedure
e Push the first vertex to the left.

e Push the independent set minus its first vertex to the right.

12/17

Informal algorithm

Repeat the following procedure
e Push the first vertex to the left.

e Push the independent set minus its first vertex to the right.

o If the leftmost vertex is the first vertex of the LIS, apply
induction (with k <— k —1).

12/17

Informal algorithm

— >

Repeat the following procedure
e Push the first vertex to the left.

e Push the independent set minus its first vertex to the right.

o If the leftmost vertex is the first vertex of the LIS, apply
induction (with k <— k —1).

12/17

Informal algorithm

— >

Repeat the following procedure
e Push the first vertex to the left.

e Push the independent set minus its first vertex to the right.

o If the leftmost vertex is the first vertex of the LIS, apply
induction (with k <— k —1).

e If no vertices of the independent sets have moved, make a
decision.

12/17

Algorithm for TS-Reachability

Co=—— >

We repeat the following procedure on each independent set /
and J:

e Push the first vertex to the left.

13/17

Algorithm for TS-Reachability

Co——=>

We repeat the following procedure on each independent set /
and J:

e Push the first vertex to the left.

e Push the independent set minus its first vertex to the right.

13/17

Algorithm for TS-Reachability

We repeat the following procedure on each independent set /
and J:

e Push the first vertex to the left.

e Push the independent set minus its first vertex to the right.

e If the leftmost vertex is the first vertex of the LIS, apply
induction (with k <— k —1).

13/17

Algorithm for TS-Reachability

— >

We repeat the following procedure on each independent set /
and J:

e Push the first vertex to the left.

e Push the independent set minus its first vertex to the right.

e If the leftmost vertex is the first vertex of the LIS, apply
induction (with k <— k —1).

13/17

Algorithm for TS-Reachability

— >

We repeat the following procedure on each independent set /
and J:

Push the first vertex to the left.

Push the independent set minus its first vertex to the right.

If the leftmost vertex is the first vertex of the LIS, apply
induction (with k <— k —1).
If no vertices of the independent sets have moved, compare
the first vertices of I’ and J' :

e If they are different : answer NO.

o If they are the same : delete their first vertices and their
neighborhoods and repeat.

13/17

Running time

This sequence might not be polynomial...

14/17

Running time

This sequence might not be polynomial...

Assume that the first vertex of [is the ith vertex.
We might use O(/) times induction to move the first
vertex on the leftmost vertex.

14/17

Running time

This sequence might not be polynomial...

V4 A\ Assume that the first vertex of [is the ith vertex.
y \ We might use O(/) times induction to move the first
vertex on the leftmost vertex.

- . ey k
C(n,k)wrpgaZ((l C(n—ik 1)>~n

14/17

Running time

This sequence might not be polynomial...

Assume that the first vertex of [is the ith vertex.
We might use O(/) times induction to move the first
vertex on the leftmost vertex.

- . ey k
C(n,k)wrpga}(l C(n—ik 1)>~n

= Exponential running time (a priori).

14/17

Running time

This sequence might not be polynomial...

Assume that the first vertex of | is the ith vertex.
We might use O(/) times induction to move the first
vertex on the leftmost vertex.

- . ey k
C(n,k)Nr}?Z((l C(n—ik 1)>~n

= Exponential running time (a priori).

Questions

e Given two independent sets, does there exist a polynomial
P such that a minimum transformation between / and J, if
it exists, has length at most P(n)?

e If yes, is the sequence of this algorithm polynomial ?

14/17

Dynamic programming
G, is the graph at the right of u, i.e. :

o without vertices strictly before v, (F==—¢ D

e without vertices that intersect u.

15/17

Dynamic programming
G, is the graph at the right of u, i.e. :

e without vertices strictly before u, ©
e without vertices that intersect w.

15/17

Dynamic programming
G, is the graph at the right of u, i.e. :

e without vertices strictly before u, ©
e without vertices that intersect u.

Let / = {u1,...,ux} be an independent set.

Definition

R(v,i) : rightmost possible first vertex of an IS we can reach
from {uj,...,ux} in Gy.

15/17

Dynamic programming
G, is the graph at the right of u, i.e. :
e without vertices strictly before u, ©

e without vertices that intersect u.

Let / = {u1,...,ux} be an independent set.

Definition

R(v,i) : rightmost possible first vertex of an IS we can reach
from {uj,...,ux} in Gy.

Lemma : R(v, i) can be computed in polynomial time.

15/17

Dynamic programming
G, is the graph at the right of u, i.e. :
e without vertices strictly before u, ©

e without vertices that intersect u.

Let / = {u1,...,ux} be an independent set.

Definition

R(v,i) : rightmost possible first vertex of an IS we can reach
from {uj,...,ux} in Gy.

Lemma : R(v, i) can be computed in polynomial time.

e R(v, k) can be computed in polynomial time
(rightmost vertex in the component of uy in G,).

15/17

Dynamic programming
G, is the graph at the right of u, i.e. :
e without vertices strictly before u, ©

e without vertices that intersect u.

Let / = {u1,...,ux} be an independent set.

Definition

R(v,i) : rightmost possible first vertex of an IS we can reach
from {uj,...,ux} in Gy.

Lemma : R(v, i) can be computed in polynomial time.

e R(v, k) can be computed in polynomial time
(rightmost vertex in the component of uy in G,).
e Otherwise, repeat :
e Access to y = R(u;, i + 1) (induction).
e 7z : leftmost vertex we can reach from u; in G, \ N(y).
° U4 z.

15/17

Dynamic programming
G, is the graph at the right of u, i.e. :

e without vertices strictly before u, ©
e without vertices that intersect u.

Let / = {u1,...,ux} be an independent set.

Definition

R(v,i) : rightmost possible first vertex of an IS we can reach
from {uj,...,ux} in Gy.

Lemma : R(v, i) can be computed in polynomial time.

e R(v, k) can be computed in polynomial time
(rightmost vertex in the component of uy in G,).
e Otherwise, repeat :
e Access to y = R(u;, i + 1) (induction).
e 7z : leftmost vertex we can reach from u; in G, \ N(y).
° U4 z.

Complexity : O(n- m).

15/17

Algorithm for TS-Connectivity

Co=—— >

We repeat the following procedure on “any” independent set [:
e Push the first vertex to the left.

16/17

Algorithm for TS-Connectivity

Co——=>

We repeat the following procedure on “any” independent set [:
e Push the first vertex to the left.

e Push the independent set minus its first vertex to the right.

16/17

Algorithm for TS-Connectivity

We repeat the following procedure on “any” independent set [:
e Push the first vertex to the left.

e Push the independent set minus its first vertex to the right.

e If the leftmost vertex is the first vertex of the LIS, apply
induction (with k «+ k —1).

16/17

Algorithm for TS-Connectivity

— >

We repeat the following procedure on “any” independent set [:
e Push the first vertex to the left.

e Push the independent set minus its first vertex to the right.

e If the leftmost vertex is the first vertex of the LIS, apply
induction (with k «+ k —1).

16/17

Algorithm for TS-Connectivity

— >

We repeat the following procedure on “any” independent set [:

e Push the first vertex to the left.

e Push the independent set minus its first vertex to the right.

e If the leftmost vertex is the first vertex of the LIS, apply
induction (with k «+ k —1).

e If no vertex of the independent set has moved, answer NO
(we cannot reach the LIS).

16/17

Algorithm for TS-Connectivity

— >

We repeat the following procedure on “any” independent set [:
e Push the first vertex to the left.

e Push the independent set minus its first vertex to the right.

e If the leftmost vertex is the first vertex of the LIS, apply
induction (with k «+ k —1).

e If no vertex of the independent set has moved, answer NO
(we cannot reach the LIS).

Computation ?

Using a slightly more complicated dynamic programming algorithm.

16/17

Conclusion and open problems

e Complexity of the TS-Reachability on split graphs ? on chordal
graphs?

e Complexity of the TS problems on more general intersection
graphs?

e What about the minimum length sequence?

17/17

Conclusion and open problems

e Complexity of the TS-Reachability on split graphs ? on chordal
graphs?

e Complexity of the TS problems on more general intersection
graphs?

e What about the minimum length sequence?

Thanks for your attention!

17/17

