Free form lens design for general radiant fields

Cristian E. Gutiérrez joint work with Ahmad Sabra

Temple University

University of Warsaw, Poland
Banff, April 13, 2017
(1) Background
(2) Statement of the problem
(3) Solution of the problem with energy
(4) Application to an imaging problem
(1) Background

2 Statement of the problem

(3) Solution of the problem with energy
(4) Application to an imaging problem

Background

- Snell law: σ a surface separating two materials with refractive indices $n_{1}, n_{2} ; \kappa=n_{2} / n_{1} ; x=$ incident direction at a point P on σ, v unit normal at $P, m=$ refracted or transmitted direction, then

$$
x-\kappa m=\lambda v
$$

where $\lambda=\Phi(x \cdot v, \kappa)$. If $\kappa<1$ and total reflection occurs; so we need $x \cdot v \geq \sqrt{1-\kappa^{2}}$.

Background

- Snell law: σ a surface separating two materials with refractive indices $n_{1}, n_{2} ; \kappa=n_{2} / n_{1} ; x=$ incident direction at a point P on σ, v unit normal at $P, m=$ refracted or transmitted direction, then

$$
x-\kappa m=\lambda v
$$

where $\lambda=\Phi(x \cdot v, \kappa)$. If $\kappa<1$ and total reflection occurs; so we need $x \cdot v \geq \sqrt{1-\kappa^{2}}$.

- a surface is optically inactive if each incident ray is refracted into the same direction. Examples: sphere around a point source and plane perpendicular to a collimated beam.

Background

- Snell law: σ a surface separating two materials with refractive indices $n_{1}, n_{2} ; \kappa=n_{2} / n_{1} ; x=$ incident direction at a point P on σ, v unit normal at $P, m=$ refracted or transmitted direction, then

$$
x-\kappa m=\lambda v
$$

where $\lambda=\Phi(x \cdot v, \kappa)$. If $\kappa<1$ and total reflection occurs; so we need $x \cdot v \geq \sqrt{1-\kappa^{2}}$.

- a surface is optically inactive if each incident ray is refracted into the same direction. Examples: sphere around a point source and plane perpendicular to a collimated beam.
- A lens is an homogeneous material, tipically glass, sandwiched between two surfaces.
- We introduced and solved the following far field problem (C.E.G. and Q. Huang, ARMA 2009): given two domains in the sphere Ω, Ω^{*}, an integrable function $I(x) \geq 0$ in Ω, a Radon measure η in Ω^{*}, with $\int_{\Omega} I=\eta\left(\Omega^{*}\right)$, one point source surrounded by medium n_{1}, then there exists a surface σ separating n_{1} and n_{2} refracting all rays with directions in Ω into Ω^{*} preserving energy:

$$
\int_{\mathcal{T}_{\sigma}(E)} I(x) d x=\eta(E) \quad \forall E \subset \Omega^{*}
$$

with $\mathcal{T}_{\sigma}(E)=$ directions in Ω refracted into E.

- We introduced and solved the following far field problem (C.E.G. and Q. Huang, ARMA 2009): given two domains in the sphere Ω, Ω^{*}, an integrable function $I(x) \geq 0$ in Ω, a Radon measure η in Ω^{*}, with $\int_{\Omega} I=\eta\left(\Omega^{*}\right)$, one point source surrounded by medium n_{1}, then there exists a surface σ separating n_{1} and n_{2} refracting all rays with directions in Ω into Ω^{*} preserving energy:

$$
\int_{\mathcal{T}_{\sigma}(E)} I(x) d x=\eta(E) \quad \forall E \subset \Omega^{*}
$$

with $\mathcal{T}_{\sigma}(E)=$ directions in Ω refracted into E.

- Similar results also in the near field (CEG and Q. Huang, Ann. Inst. P., 2014) and in the collimated case (CEG and F. Tournier, C. Var. pde, 2015; F. Abedin, CEG and G. Tralli, N.L.A, 2016).
- We introduced and solved the following far field problem (C.E.G. and Q. Huang, ARMA 2009): given two domains in the sphere Ω, Ω^{*}, an integrable function $I(x) \geq 0$ in Ω, a Radon measure η in Ω^{*}, with $\int_{\Omega} I=\eta\left(\Omega^{*}\right)$, one point source surrounded by medium n_{1}, then there exists a surface σ separating n_{1} and n_{2} refracting all rays with directions in Ω into Ω^{*} preserving energy:

$$
\int_{\mathcal{T}_{\sigma}(E)} I(x) d x=\eta(E) \quad \forall E \subset \Omega^{*}
$$

with $\mathcal{T}_{\sigma}(E)=$ directions in Ω refracted into E.

- Similar results also in the near field (CEG and Q. Huang, Ann. Inst. P., 2014) and in the collimated case (CEG and F. Tournier, C. Var. pde, 2015; F. Abedin, CEG and G. Tralli, N.L.A, 2016).
- cutting a spherical region around the source (optically inactive) we obtain a lens
- We introduced and solved the following far field problem (C.E.G. and Q. Huang, ARMA 2009): given two domains in the sphere Ω, Ω^{*}, an integrable function $I(x) \geq 0$ in Ω, a Radon measure η in Ω^{*}, with $\int_{\Omega} I=\eta\left(\Omega^{*}\right)$, one point source surrounded by medium n_{1}, then there exists a surface σ separating n_{1} and n_{2} refracting all rays with directions in Ω into Ω^{*} preserving energy:

$$
\int_{\mathcal{T}_{\sigma}(E)} I(x) d x=\eta(E) \quad \forall E \subset \Omega^{*}
$$

with $\mathcal{T}_{\sigma}(E)=$ directions in Ω refracted into E.

- Similar results also in the near field (CEG and Q. Huang, Ann. Inst. P., 2014) and in the collimated case (CEG and F. Tournier, C. Var. pde, 2015; F. Abedin, CEG and G. Tralli, N.L.A, 2016).
- cutting a spherical region around the source (optically inactive) we obtain a lens
- No control on the region to cut; disadvantages: may lead to a bulky lens. Flexibility with the region cut is useful for imaging.
- QUESTIONS: How to construct lenses with both faces optically active doing a desired refraction job?
- QUESTIONS: How to construct lenses with both faces optically active doing a desired refraction job?
More generally, given a source (point or extended) and given a surface u above the source, can we design a second surface σ such that the lens sandwiched between (u, σ) does a refraction job as before?
- QUESTIONS: How to construct lenses with both faces optically active doing a desired refraction job?
More generally, given a source (point or extended) and given a surface u above the source, can we design a second surface σ such that the lens sandwiched between (u, σ) does a refraction job as before?
- First result in this direction is due to A. Friedman and B. Mc Leod, ARMA 1989 in 2d with u and σ symmetric. Uses functional equations and fixed point theorems, produces analytic solutions.
- QUESTIONS: How to construct lenses with both faces optically active doing a desired refraction job?
More generally, given a source (point or extended) and given a surface u above the source, can we design a second surface σ such that the lens sandwiched between (u, σ) does a refraction job as before?
- First result in this direction is due to A. Friedman and B. Mc Leod, ARMA 1989 in 2d with u and σ symmetric. Uses functional equations and fixed point theorems, produces analytic solutions.
- In 2013, JOSA A, I solved the following problem: given a point source, a polar surface $\rho(x) x$ around the source, $x \in \Omega \subset S^{2}$, and a fixed unit w, there exists a one parameter family of surfaces σ such that the lens sandwiched between ρ and σ refracts all rays into w. Also in the near field. Solve systems of 1st order pdes.
- QUESTIONS: How to construct lenses with both faces optically active doing a desired refraction job?
More generally, given a source (point or extended) and given a surface u above the source, can we design a second surface σ such that the lens sandwiched between (u, σ) does a refraction job as before?
- First result in this direction is due to A. Friedman and B. Mc Leod, ARMA 1989 in 2d with u and σ symmetric. Uses functional equations and fixed point theorems, produces analytic solutions.
- In 2013, JOSA A, I solved the following problem: given a point source, a polar surface $\rho(x) x$ around the source, $x \in \Omega \subset S^{2}$, and a fixed unit w, there exists a one parameter family of surfaces σ such that the lens sandwiched between ρ and σ refracts all rays into w. Also in the near field. Solve systems of 1st order pdes.
- QUESTION: can we do the same for an extended source and when the rays emanate with an arbitrary pattern of directions?

(1) Background

(2) Statement of the problem

(3) Solution of the problem with energy

(4) Application to an imaging problem

Statement of the problem

We are given:

- two domains $\Omega \subset \mathbb{R}^{2}$ and $\Omega^{*} \subset S^{2}$

Statement of the problem

We are given:

- two domains $\Omega \subset \mathbb{R}^{2}$ and $\Omega^{*} \subset S^{2}$
- a C^{1} vector field $e(x)=\left(e^{\prime}(x), e_{3}(x)\right)$ with $|e(x)|=1$, $e^{\prime}(x)=\left(e_{1}(x), e_{2}(x)\right), e_{3}(x)>0, x \in \Omega^{\prime}$

Statement of the problem

We are given:

- two domains $\Omega \subset \mathbb{R}^{2}$ and $\Omega^{*} \subset S^{2}$
- a C^{1} vector field $e(x)=\left(e^{\prime}(x), e_{3}(x)\right)$ with $|e(x)|=1$, $e^{\prime}(x)=\left(e_{1}(x), e_{2}(x)\right), e_{3}(x)>0, x \in \Omega^{\prime}$
- a surface σ_{1} given by a function $u(x) \in C^{2}$, the lower face of the lens to be constructed.

Statement of the problem

We are given:

- two domains $\Omega \subset \mathbb{R}^{2}$ and $\Omega^{*} \subset S^{2}$
- a C^{1} vector field $e(x)=\left(e^{\prime}(x), e_{3}(x)\right)$ with $|e(x)|=1$, $e^{\prime}(x)=\left(e_{1}(x), e_{2}(x)\right), e_{3}(x)>0, x \in \Omega^{\prime}$
- a surface σ_{1} given by a function $u(x) \in C^{2}$, the lower face of the lens to be constructed.
- a function $I(x)$ in Ω and a Radon measure η in Ω^{*} with $\int_{\Omega} I=\eta\left(\Omega^{*}\right)$

The problem is

- From each $x \in \Omega$, a ray emanates with direction $e(x)$ and strikes σ_{1} at $P(x)=(\varphi(x), u(\varphi(x)))$

The problem is

- From each $x \in \Omega$, a ray emanates with direction $e(x)$ and strikes σ_{1} at $P(x)=(\varphi(x), u(\varphi(x)))$
- to find a surface σ_{2}, the top face of the lens, so that all rays emanating from Ω are refracted by the lens sandwiched by σ_{1} and σ_{2} into rays with directions in Ω^{*},

The problem is

- From each $x \in \Omega$, a ray emanates with direction $e(x)$ and strikes σ_{1} at $P(x)=(\varphi(x), u(\varphi(x)))$
- to find a surface σ_{2}, the top face of the lens, so that all rays emanating from Ω are refracted by the lens sandwiched by σ_{1} and σ_{2} into rays with directions in Ω^{*}, and

$$
\int_{\mathcal{T}(E)} I(x) d x=\eta(E) \quad \forall E \subset \Omega^{*}
$$

where $\mathcal{T}(E)=\{x \in \Omega$: the lens refracts the ray from x into $E\}$.
Material configuration:
below σ_{1} the material has refractive index n_{1}, between σ_{1} and σ_{2} the material has refractive index n_{2}, above σ_{2} the material has refractive index n_{3}.

$$
n_{2}>n_{1}, n_{3} \text {, let } \kappa_{1}=n_{2} / n_{1}, \kappa_{2}=n_{3} / n_{2}
$$

Important case: Ω^{*} is only one point w

- For each $x \in \Omega$, the ray with direction $e(x)$ strikes σ_{1} at a point $P(x)=(\varphi(x), u(\varphi(x)))$

Important case: Ω^{*} is only one point w

- For each $x \in \Omega$, the ray with direction $e(x)$ strikes σ_{1} at a point $P(x)=(\varphi(x), u(\varphi(x)))$
- The unit normal vector at $P(x)$ is $v_{1}=\frac{(-\nabla u(\varphi(x)), 1)}{\sqrt{1+|\nabla u(\varphi(x))|^{2}}}$. We assume $v_{1} \cdot e(x) \geq 0$

Important case: Ω^{*} is only one point w

- For each $x \in \Omega$, the ray with direction $e(x)$ strikes σ_{1} at a point $P(x)=(\varphi(x), u(\varphi(x)))$
- The unit normal vector at $P(x)$ is $v_{1}=\frac{(-\nabla u(\varphi(x)), 1)}{\sqrt{1+|\nabla u(\varphi(x))|^{2}}}$. We assume $v_{1} \cdot e(x) \geq 0$
- From the Snell law, the ray is refracted at $P(x)$ into the direction $m_{1}(x)$ with

$$
\begin{gathered}
\qquad e(x)-\kappa_{1} m_{1}(x)=\lambda_{1} v_{1}(x) ; \\
\text { and since } \kappa_{1}>1, \lambda_{1}=e(x) \cdot v_{1}-\kappa_{1} \sqrt{1-\frac{1}{\kappa_{1}^{2}}\left(1-\left(e(x) \cdot v_{1}\right)^{2}\right)}<0
\end{gathered}
$$

Important case: Ω^{*} is only one point w

- For each $x \in \Omega$, the ray with direction $e(x)$ strikes σ_{1} at a point $P(x)=(\varphi(x), u(\varphi(x)))$
- The unit normal vector at $P(x)$ is $v_{1}=\frac{(-\nabla u(\varphi(x)), 1)}{\sqrt{1+|\nabla u(\varphi(x))|^{2}}}$. We assume $v_{1} \cdot e(x) \geq 0$
- From the Snell law, the ray is refracted at $P(x)$ into the direction $m_{1}(x)$ with

$$
e(x)-\kappa_{1} m_{1}(x)=\lambda_{1} v_{1}(x) ;
$$

and since $\kappa_{1}>1, \lambda_{1}=e(x) \cdot v_{1}-\kappa_{1} \sqrt{1-\frac{1}{\kappa_{1}^{2}}\left(1-\left(e(x) \cdot v_{1}\right)^{2}\right)}<0$.

- Next the ray strikes σ_{2} at $Q(x)$ with incident direction $m_{1}(x)$. Since $\kappa_{2}<1$, to avoid total reflection at $Q(x)$, we need $m_{1} \cdot w \geq \kappa_{2}$,

Important case: Ω^{*} is only one point w

- For each $x \in \Omega$, the ray with direction $e(x)$ strikes σ_{1} at a point $P(x)=(\varphi(x), u(\varphi(x)))$
- The unit normal vector at $P(x)$ is $v_{1}=\frac{(-\nabla u(\varphi(x)), 1)}{\sqrt{1+|\nabla u(\varphi(x))|^{2}}}$. We assume $v_{1} \cdot e(x) \geq 0$
- From the Snell law, the ray is refracted at $P(x)$ into the direction $m_{1}(x)$ with

$$
e(x)-\kappa_{1} m_{1}(x)=\lambda_{1} v_{1}(x) ;
$$

and since $\kappa_{1}>1, \lambda_{1}=e(x) \cdot v_{1}-\kappa_{1} \sqrt{1-\frac{1}{\kappa_{1}^{2}}\left(1-\left(e(x) \cdot v_{1}\right)^{2}\right)}<0$.

- Next the ray strikes σ_{2} at $Q(x)$ with incident direction $m_{1}(x)$. Since $\kappa_{2}<1$, to avoid total reflection at $Q(x)$, we need $m_{1} \cdot w \geq \kappa_{2}$, then

$$
\lambda_{1} v_{1} \cdot w \leq e(x) \cdot w-\kappa_{1} \kappa_{2}
$$

Important case: Ω^{*} is only one point w

- For each $x \in \Omega$, the ray with direction $e(x)$ strikes σ_{1} at a point $P(x)=(\varphi(x), u(\varphi(x)))$
- The unit normal vector at $P(x)$ is $v_{1}=\frac{(-\nabla u(\varphi(x)), 1)}{\sqrt{1+|\nabla u(\varphi(x))|^{2}}}$. We assume $v_{1} \cdot e(x) \geq 0$
- From the Snell law, the ray is refracted at $P(x)$ into the direction $m_{1}(x)$ with

$$
e(x)-\kappa_{1} m_{1}(x)=\lambda_{1} v_{1}(x) ;
$$

and since $\kappa_{1}>1, \lambda_{1}=e(x) \cdot v_{1}-\kappa_{1} \sqrt{1-\frac{1}{\kappa_{1}^{2}}\left(1-\left(e(x) \cdot v_{1}\right)^{2}\right)}<0$.

- Next the ray strikes σ_{2} at $Q(x)$ with incident direction $m_{1}(x)$. Since $\kappa_{2}<1$, to avoid total reflection at $Q(x)$, we need $m_{1} \cdot w \geq \kappa_{2}$, then

$$
\lambda_{1} v_{1} \cdot w \leq e(x) \cdot w-\kappa_{1} \kappa_{2}
$$

- For example, if $e(x)=w=(0,0,1), \kappa_{1} \kappa_{2} \leq 1$, this condition holds.

Construction of the top face of the lens

- Introduce the distance function $d(x)=|P(x)-Q(x)|$ representing the distance along the refracted ray inside the lens.

Construction of the top face of the lens

- Introduce the distance function $d(x)=|P(x)-Q(x)|$ representing the distance along the refracted ray inside the lens.
- The point $Q(x)$ is parametrized by the 3-dimensional vector

$$
f(x)=(\varphi(x), u(\varphi(x)))+d(x) m_{1}(x) ; x=\left(x_{1}, x_{2}\right) \in \Omega
$$

- By Snell's law at $Q(x), m_{1}(x)-\left(n_{3} / n_{2}\right) w$ is colinear with v_{2}, the normal at $Q(x)$

Construction of the top face of the lens

- Introduce the distance function $d(x)=|P(x)-Q(x)|$ representing the distance along the refracted ray inside the lens.
- The point $Q(x)$ is parametrized by the 3-dimensional vector

$$
f(x)=(\varphi(x), u(\varphi(x)))+d(x) m_{1}(x) ; x=\left(x_{1}, x_{2}\right) \in \Omega
$$

- By Snell's law at $Q(x), m_{1}(x)-\left(n_{3} / n_{2}\right) w$ is colinear with v_{2}, the normal at $Q(x)$
- By Snell's law at $P(x), e(x)-\left(n_{2} / n_{1}\right) m_{1}(x)=\lambda_{1} v_{1}$

Construction of the top face of the lens

- Introduce the distance function $d(x)=|P(x)-Q(x)|$ representing the distance along the refracted ray inside the lens.
- The point $Q(x)$ is parametrized by the 3-dimensional vector

$$
f(x)=(\varphi(x), u(\varphi(x)))+d(x) m_{1}(x) ; x=\left(x_{1}, x_{2}\right) \in \Omega
$$

- By Snell's law at $Q(x), m_{1}(x)-\left(n_{3} / n_{2}\right) w$ is colinear with v_{2}, the normal at $Q(x)$
- By Snell's law at $P(x), e(x)-\left(n_{2} / n_{1}\right) m_{1}(x)=\lambda_{1} v_{1}$
- Then solving m_{1} and substituting yields

$$
e(x)-\lambda_{1} v_{1}-\left(n_{2} / n_{1}\right)\left(n_{3} / n_{2}\right) w \quad \| \quad v_{2}
$$

Construction of the top face of the lens

- Introduce the distance function $d(x)=|P(x)-Q(x)|$ representing the distance along the refracted ray inside the lens.
- The point $Q(x)$ is parametrized by the 3-dimensional vector

$$
f(x)=(\varphi(x), u(\varphi(x)))+d(x) m_{1}(x) ; x=\left(x_{1}, x_{2}\right) \in \Omega
$$

- By Snell's law at $Q(x), m_{1}(x)-\left(n_{3} / n_{2}\right) w$ is colinear with v_{2}, the normal at $Q(x)$
- By Snell's law at $P(x), e(x)-\left(n_{2} / n_{1}\right) m_{1}(x)=\lambda_{1} v_{1}$
- Then solving m_{1} and substituting yields

$$
e(x)-\lambda_{1} v_{1}-\left(n_{2} / n_{1}\right)\left(n_{3} / n_{2}\right) w \quad \| \quad v_{2}
$$

- Since the tangent vectors to f are $f_{x_{1}}$ and $f_{x_{2}}$, we get the system

$$
\begin{aligned}
& \left(e(x)-\lambda_{1} v_{1}-\left(n_{2} / n_{1}\right)\left(n_{3} / n_{2}\right) w\right) \cdot f_{x_{1}}=0 \\
& \left(e(x)-\lambda_{1} v_{1}-\left(n_{2} / n_{1}\right)\left(n_{3} / n_{2}\right) w\right) \cdot f_{x_{2}}=0
\end{aligned}
$$

- The only unknown in this system is $d(x)$.

By calculation it can be shown that d satisfies the system

$$
\left[\left(\kappa_{1}-\kappa_{2} w \cdot\left(e-\lambda_{1} v_{1}\right)\right) d\right]_{x_{i}}=-\left(e-\kappa_{1} \kappa_{2} w\right) \cdot(\varphi, u(\varphi))_{x_{i}}, \quad i=1,2
$$

The system can be explicitly integrated and an expression for $d(x)$ can be found.
The integration is possible because:

By calculation it can be shown that d satisfies the system

$$
\left[\left(\kappa_{1}-\kappa_{2} w \cdot\left(e-\lambda_{1} v_{1}\right)\right) d\right]_{x_{i}}=-\left(e-\kappa_{1} \kappa_{2} w\right) \cdot(\varphi, u(\varphi))_{x_{i}}, \quad i=1,2
$$

The system can be explicitly integrated and an expression for $d(x)$ can be found.
The integration is possible because:

- the field $e(x)=\left(e^{\prime}(x), e_{3}(x)\right)$ satisfies curl $e^{\prime}=0$

By calculation it can be shown that d satisfies the system

$$
\left[\left(\kappa_{1}-\kappa_{2} w \cdot\left(e-\lambda_{1} v_{1}\right)\right) d\right]_{x_{i}}=-\left(e-\kappa_{1} \kappa_{2} w\right) \cdot(\varphi, u(\varphi))_{x_{i}}, \quad i=1,2
$$

The system can be explicitly integrated and an expression for $d(x)$ can be found.
The integration is possible because:

- the field $e(x)=\left(e^{\prime}(x), e_{3}(x)\right)$ satisfies curl $e^{\prime}=0$
- this condition is natural because the direction of the incoming rays have the direction of ∇S (gradient of the wave front) and $\operatorname{curl} \nabla S=0$

By calculation it can be shown that d satisfies the system

$$
\left[\left(\kappa_{1}-\kappa_{2} w \cdot\left(e-\lambda_{1} v_{1}\right)\right) d\right]_{x_{i}}=-\left(e-\kappa_{1} \kappa_{2} w\right) \cdot(\varphi, u(\varphi))_{x_{i}}, \quad i=1,2
$$

The system can be explicitly integrated and an expression for $d(x)$ can be found.
The integration is possible because:

- the field $e(x)=\left(e^{\prime}(x), e_{3}(x)\right)$ satisfies curl $e^{\prime}=0$
- this condition is natural because the direction of the incoming rays have the direction of ∇S (gradient of the wave front) and curl $\nabla S=0$
- the vector w is constant

Lens refracting into a fixed direction w

Theorem

We are given a C^{2} surface σ_{1} given by $(x, u(x))$, a C^{1} unit field $e(x)=\left(e^{\prime}(x), e_{3}(x)\right)$, and a unit direction w. Then a lens $\left(\sigma_{1}, \sigma_{2}\right), \sigma_{2} \in C^{2}$, refracting rays with direction $e(x)$ into w exists if and only if
(1) $\lambda_{1} v_{1} \cdot w \leq e(x) \cdot w-\kappa_{1} \kappa_{2}\left(i . e ., m_{1} \cdot w \geq \kappa_{2}\right)$ and
(2) $\operatorname{curl} e^{\prime}(x)=0$.

Lens refracting into a fixed direction w

Theorem

We are given a C^{2} surface σ_{1} given by $(x, u(x))$, a C^{1} unit field $e(x)=\left(e^{\prime}(x), e_{3}(x)\right)$, and a unit direction w. Then a lens $\left(\sigma_{1}, \sigma_{2}\right), \sigma_{2} \in C^{2}$, refracting rays with direction $e(x)$ into w exists if and only if
(1) $\lambda_{1} v_{1} \cdot w \leq e(x) \cdot w-\kappa_{1} \kappa_{2}\left(i . e ., m_{1} \cdot w \geq \kappa_{2}\right)$ and
(2) $\operatorname{curl} e^{\prime}(x)=0$.

Moreover, $\nabla h(x)=e^{\prime}(x)$ for some h, and σ_{2} is parametrized by

$$
f(x, C, w)=(\varphi(x), u(\varphi(x)))+d(x, C, w) m_{1}(x)
$$

where $m_{1}(x)=\frac{1}{\kappa_{1}}\left(e(x)-\lambda_{1} v_{1}\right)$ and

$$
d(x, C, w)=\frac{C-h(x)+e(x) \cdot(x, 0)-\left(e(x)-\kappa_{1} \kappa_{2} w\right) \cdot(\varphi(x), u(\varphi(x)))}{\kappa_{1}-\kappa_{2} w \cdot\left(e(x)-\lambda_{1} v_{1}(x)\right)}
$$

Comments

- we then obtain a one parameter family of surfaces $f(x, C, w)$ as the top surface of the desired lens

Comments

- we then obtain a one parameter family of surfaces $f(x, C, w)$ as the top surface of the desired lens
- $d(x, C, w)>0$ for $C \geq C^{*}\left(\kappa_{1}, \kappa_{2}, \Omega, h\right)$.

Comments

- we then obtain a one parameter family of surfaces $f(x, C, w)$ as the top surface of the desired lens
- $d(x, C, w)>0$ for $C \geq C^{*}\left(\kappa_{1}, \kappa_{2}, \Omega, h\right)$.
- since σ_{2} is given parametrically it might have singular points and self intersections. Therefore for some values of C it might not be physically realizable.

- if the Lipschitz constants of $u, D u, e$ are appropriately chosen, then the constant C can be chosen so that the surface $f(x, C, w)$ has no self intersections.
- if the Lipschitz constants of $u, D u, e$ are appropriately chosen, then the constant C can be chosen so that the surface $f(x, C, w)$ has no self intersections.
- the values of $D^{2} u$ influence whether or not the surface $f(x, C, w)$ has singular points, i.e., has a normal vector.
- if the Lipschitz constants of $u, D u, e$ are appropriately chosen, then the constant C can be chosen so that the surface $f(x, C, w)$ has no self intersections.
- the values of $D^{2} u$ influence whether or not the surface $f(x, C, w)$ has singular points, i.e., has a normal vector.
- For example, if u is concave and $e^{\prime}=\nabla h$ with h convex, then $f(x, C, w)$ has no singular points.
- if the Lipschitz constants of $u, D u, e$ are appropriately chosen, then the constant C can be chosen so that the surface $f(x, C, w)$ has no self intersections.
- the values of $D^{2} u$ influence whether or not the surface $f(x, C, w)$ has singular points, i.e., has a normal vector.
- For example, if u is concave and $e^{\prime}=\nabla h$ with h convex, then $f(x, C, w)$ has no singular points.
- more precisely, assuming for simplicity we are in the collimated case, i.e., $e(x)=(0,0,1)$, we have the following two theorems.

Theorem

Suppose e $e(x)=e_{3}=(0,0,1), w=\left(w^{\prime}, w_{3}\right)$. If the Lipschitz constants of u and $D u$, and $\left|w^{\prime}\right|$ are all sufficiently small, then there is an interval $[-\alpha, \alpha]$ depending only on these values and κ_{1} and κ_{2} such that the parametric surface $f(x, C, w)$ has no self-intersections for all $C \in[-\alpha, \alpha]$.

Theorem

Let $C>\max _{\Omega}\left\{\left(e_{3}-\kappa_{1} \kappa_{2} w\right) \cdot(x, u(x))\right\}$ and let $\mu(y)$ be the maximum eigenvalue of $D^{2} u(y)$. If $\mu(y) \leq 0$ or if $\mu(y)>0$ and
$C<\frac{\kappa_{1}^{2}\left(1-\kappa_{2}\right) \sqrt{1+|D u(y)|^{2}}}{\mu(y) \sqrt{\kappa_{1}^{2}-1}}+\min _{\Omega}\left\{\left(e_{3}-\kappa_{1} \kappa_{2} w\right) \cdot(c, u(x))\right\}$, then the
point y is a regular point for the surface $f(x, C, w)$.

As a conclusion, when the Lipschitz constants of $u, D u$ and $\left|w^{\prime}\right|$ are all sufficiently small, there is an interval

$$
J=\left[\tau_{1}, \tau_{2}\right]
$$

such that the surface parametrized by $f(x, C, w)$ with $C \in J$ has normal for each $x \in \Omega$ and has no self intersections.

As a conclusion, when the Lipschitz constants of $u, D u$ and $\left|w^{\prime}\right|$ are all sufficiently small, there is an interval

$$
J=\left[\tau_{1}, \tau_{2}\right]
$$

such that the surface parametrized by $f(x, C, w)$ with $C \in J$ has normal for each $x \in \Omega$ and has no self intersections.
This is consequence of the following Lipschitz estimate of the distance function $d(x, \mathrm{C}, w)$:

$$
\begin{aligned}
|d(x, C, w)-d(y, C, w)| \leq(|C|+ & \left.M_{1}\right)\left(L_{e}+L_{D u} L_{\varphi}\right)|x-y| \\
+ & \left\|e^{\prime}\right\|_{\infty}|x-y| \\
& +\max \left|e^{\prime}(x)-\kappa_{1} \kappa_{2} w^{\prime}\right| L_{\varphi}|x-y| \\
& +L_{u} L_{\varphi}|x-y|
\end{aligned}
$$

modulo a multiplicative constant $C\left(\kappa_{1}, \kappa_{2}\right)$ and with M_{1} depending only on $\Omega, \kappa_{1}, \kappa_{2},\|e\|_{\infty}$, and $\|u\|_{\infty}$.

(1) Background

(2) Statement of the problem

(3) Solution of the problem with energy

(4) Application to an imaging problem

- We seek a surface solution σ parametrized by

$$
F(x)=(\varphi(x), u(\varphi(x)))+d(x) m(x)
$$

where u is given, $m(x)$ is determined by the normal to u at ($\varphi(x), u(\varphi(x))$) and the function $d(x)$ is the unknown.

- We seek a surface solution σ parametrized by

$$
F(x)=(\varphi(x), u(\varphi(x)))+d(x) m(x)
$$

where u is given, $m(x)$ is determined by the normal to u at $(\varphi(x), u(\varphi(x)))$ and the function $d(x)$ is the unknown.

- We use the surfaces $f(x, C, w)$ depending on the parameters C and $w \in \Omega^{*}$ as supporting surfaces of our solution, and where C is chosen in a range so that $f(x, C, w)$ has normal and has no self intersections.
- We seek a surface solution σ parametrized by

$$
F(x)=(\varphi(x), u(\varphi(x)))+d(x) m(x)
$$

where u is given, $m(x)$ is determined by the normal to u at $(\varphi(x), u(\varphi(x)))$ and the function $d(x)$ is the unknown.

- We use the surfaces $f(x, C, w)$ depending on the parameters C and $w \in \Omega^{*}$ as supporting surfaces of our solution, and where C is chosen in a range so that $f(x, C, w)$ has normal and has no self intersections.
- For each $f(x, C, w)$ there is $d(x, C, w)$ the corresponding distance function.
- We seek a surface solution σ parametrized by

$$
F(x)=(\varphi(x), u(\varphi(x)))+d(x) m(x)
$$

where u is given, $m(x)$ is determined by the normal to u at ($\varphi(x), u(\varphi(x))$) and the function $d(x)$ is the unknown.

- We use the surfaces $f(x, C, w)$ depending on the parameters C and $w \in \Omega^{*}$ as supporting surfaces of our solution, and where C is chosen in a range so that $f(x, C, w)$ has normal and has no self intersections.
- For each $f(x, C, w)$ there is $d(x, C, w)$ the corresponding distance function.
- The function $d(x)$ is so that at each point $x_{0} \in \Omega$ there are $C \in J$ and $w \in \Omega^{*}$ such that $d(x) \leq d(x, C, w)$ for all $x \in \Omega$ with equality at $x=x_{0}$.
- We seek a surface solution σ parametrized by

$$
F(x)=(\varphi(x), u(\varphi(x)))+d(x) m(x)
$$

where u is given, $m(x)$ is determined by the normal to u at ($\varphi(x), u(\varphi(x))$) and the function $d(x)$ is the unknown.

- We use the surfaces $f(x, C, w)$ depending on the parameters C and $w \in \Omega^{*}$ as supporting surfaces of our solution, and where C is chosen in a range so that $f(x, C, w)$ has normal and has no self intersections.
- For each $f(x, C, w)$ there is $d(x, C, w)$ the corresponding distance function.
- The function $d(x)$ is so that at each point $x_{0} \in \Omega$ there are $C \in J$ and $w \in \Omega^{*}$ such that $d(x) \leq d(x, C, w)$ for all $x \in \Omega$ with equality at $x=x_{0}$.
- Therefore the normal mapping of σ is given by
$\mathcal{N}_{\sigma}\left(x_{0}\right)=\left\{w \in \Omega^{*}: \exists C \in J\right.$ such that $d(x, C, w)$ supports d at $\left.x=x_{0}\right\}$ and the tracing mapping

$$
\mathcal{T}_{\sigma}(w)=\left\{x \in \Omega: w \in \mathcal{N}_{\sigma}(x)\right\}
$$

If σ is defined as above, then we say that the lens (u, σ) refracts Ω into Ω^{*}. It can be proved that
(1) d and F are both uniformly Lipschitz continuous in Ω
(2) the surface σ has no self intersections
(3) σ has normal at $x \in \Omega \backslash N$ with $|N|=0$
(4) $\mathcal{N}_{\sigma}(x)$ is singled valued for $x \in \Omega \backslash N$

If the intensity $I(x) \in L^{1}(\Omega)$, then

$$
\mu_{\sigma}(E)=\int_{\mathcal{T}_{\sigma}(E)} I(x) d x
$$

is a Borel measure in Ω^{*}.
Given η Radon measure in Ω^{*}, the lens problem is to find a surface σ such that the lens (u, σ) refracts Ω into Ω^{*} and $\mu_{\sigma}=\eta$.

Theorem

If w_{1}, \cdots, w_{N} are distinct points in $\Omega^{*}, g_{1}, \cdots, g_{N}>0$ and $\eta=\sum g_{i} \delta_{w_{i}}$ with the conservation of energy $\int_{\Omega} I(x) d x=\sum g_{i}$, then there are constants $C_{1}, \cdots, C_{N} \in J$ such that the surface σ parametrized by $F(x)=(\varphi(x), u(\varphi(x)))+d(x) m(x)$ with

$$
d(x)=\min _{1 \leq i \leq N} d\left(x, C_{i}, w_{i}\right)
$$

is such that the lens (u, σ) refracts Ω into Ω^{*} and

$$
\int_{\mathcal{T}_{\sigma}\left(w_{i}\right)} I(x) d x=g_{i}, \quad 1 \leq i \leq N .
$$

Theorem

If η is a Radon measure in Ω^{*} with $\int_{\Omega} I(x) d x=\eta\left(\Omega^{*}\right)$, then there is a lens (u, σ) refracting Ω into Ω^{*} with $\mu_{\sigma}=\eta$.

Differential equation

Assume the lower surface (given) is parametrized by

$$
v(x)=(x, 0)+\rho(x) e(x)
$$

Differential equation

Assume the lower surface (given) is parametrized by

$$
v(x)=(x, 0)+\rho(x) e(x)
$$

and the upper surface by

$$
f(x)=v(x)+d(x) m(x) .
$$

Differential equation

Assume the lower surface (given) is parametrized by

$$
v(x)=(x, 0)+\rho(x) e(x)
$$

and the upper surface by

$$
f(x)=v(x)+d(x) m(x) .
$$

The intensities are $I(x)$ and $\mathcal{G}(x)$. The equation is

$$
\operatorname{det}\left(\mathcal{A} D^{2} d+\mathcal{B}\right)=\mathcal{F}
$$

Differential equation

Assume the lower surface (given) is parametrized by

$$
v(x)=(x, 0)+\rho(x) e(x)
$$

and the upper surface by

$$
f(x)=v(x)+d(x) m(x) .
$$

The intensities are $I(x)$ and $\mathcal{G}(x)$. The equation is

$$
\operatorname{det}\left(\mathcal{A} D^{2} d+\mathcal{B}\right)=\mathcal{F}
$$

\mathcal{A} depends on ρ, e^{\prime} and their der. up to order two, d and ∇d

Differential equation

Assume the lower surface (given) is parametrized by

$$
v(x)=(x, 0)+\rho(x) e(x)
$$

and the upper surface by

$$
f(x)=v(x)+d(x) m(x) .
$$

The intensities are $I(x)$ and $\mathcal{G}(x)$. The equation is

$$
\operatorname{det}\left(\mathcal{A} D^{2} d+\mathcal{B}\right)=\mathcal{F}
$$

\mathcal{A} depends on ρ, e^{\prime} and their der. up to order two, d and ∇d
\mathcal{B} depends on ρ, e^{\prime} and their der. up to order three, d and ∇d

Differential equation

Assume the lower surface (given) is parametrized by

$$
v(x)=(x, 0)+\rho(x) e(x)
$$

and the upper surface by

$$
f(x)=v(x)+d(x) m(x) .
$$

The intensities are $I(x)$ and $\mathcal{G}(x)$. The equation is

$$
\operatorname{det}\left(\mathcal{A} D^{2} d+\mathcal{B}\right)=\mathcal{F}
$$

\mathcal{A} depends on ρ, e^{\prime} and their der. up to order two, d and ∇d
\mathcal{B} depends on ρ, e^{\prime} and their der. up to order three, d and ∇d
\mathcal{F} depends on ρ, e^{\prime} and their der. up to order two, I, \mathcal{G}, and d and ∇d

Differential equation

Assume the lower surface (given) is parametrized by

$$
v(x)=(x, 0)+\rho(x) e(x)
$$

and the upper surface by

$$
f(x)=v(x)+d(x) m(x) .
$$

The intensities are $I(x)$ and $\mathcal{G}(x)$. The equation is

$$
\operatorname{det}\left(\mathcal{A} D^{2} d+\mathcal{B}\right)=\mathcal{F}
$$

\mathcal{A} depends on ρ, e^{\prime} and their der. up to order two, d and ∇d
\mathcal{B} depends on ρ, e^{\prime} and their der. up to order three, d and ∇d
\mathcal{F} depends on ρ, e^{\prime} and their der. up to order two, I, \mathcal{G}, and d and ∇d In the collimated case $\rho=u, \mathcal{A}$ depends only u and its der. up to order two and \mathcal{B} depends only on der. of u up to order three but not on u.

(1) Background

(2) Statement of the problem

(3) Solution of the problem with energy
4. Application to an imaging problem

Imaging problem

Using the previous construction we solve the following:

- We are given a bijective map $T: \Omega \rightarrow \Omega^{*}$.

Imaging problem

Using the previous construction we solve the following:

- We are given a bijective map $T: \Omega \rightarrow \Omega^{*}$.
- Rays emanate from $(x, 0), x \in \Omega$, with vertical direction $e_{3}=(0,0,1)$.

Imaging problem

Using the previous construction we solve the following:

- We are given a bijective map $T: \Omega \rightarrow \Omega^{*}$.
- Rays emanate from $(x, 0), x \in \Omega$, with vertical direction $e_{3}=(0,0,1)$.
- Find a lens $\left(\sigma_{1}, \sigma_{2}\right)$ (both surfaces unknown), all rays are refracted into the point $(T x, a)$ with $a>0$, and such all rays leave σ_{2} with direction e_{3}.

Imaging problem

Using the previous construction we solve the following:

- We are given a bijective map $T: \Omega \rightarrow \Omega^{*}$.
- Rays emanate from $(x, 0), x \in \Omega$, with vertical direction $e_{3}=(0,0,1)$.
- Find a lens (σ_{1}, σ_{2}) (both surfaces unknown), all rays are refracted into the point $(T x, a)$ with $a>0$, and such all rays leave σ_{2} with direction e_{3}.

Notice that

- The rays will strike σ_{1} at the point $(x, u(x))$, and are then refracted with direction m_{1} into the point $f(x)=(x, u(x))+d(x) m_{1} \in \sigma_{2}$.

Notice that

- The rays will strike σ_{1} at the point $(x, u(x))$, and are then refracted with direction m_{1} into the point $f(x)=(x, u(x))+d(x) m_{1} \in \sigma_{2}$.
- Each ray leaves $f(x)$ with direction e_{3} and strikes into the point (Tx,a).

Notice that

- The rays will strike σ_{1} at the point $(x, u(x))$, and are then refracted with direction m_{1} into the point $f(x)=(x, u(x))+d(x) m_{1} \in \sigma_{2}$.
- Each ray leaves $f(x)$ with direction e_{3} and strikes into the point (Tx,a).
- Then $T x=\left(f_{1}(x), f_{2}(x)\right)$.

Figure: $T x=2 x, a=6, n_{1}=n_{3}=1, n_{2}=1.52$

PDE satisfied by $u(x)$

The explicit formula obtained for distance function $d(x)$ allows to write the surface σ_{2} in terms of u and its gradient.

PDE satisfied by $u(x)$

The explicit formula obtained for distance function $d(x)$ allows to write the surface σ_{2} in terms of u and its gradient. After calculation with the formula obtained for f, we get that u satisfies the following 1st order system:

$$
\frac{\left(1-\kappa_{1} \kappa_{2}\right) u(x)+C}{\left(\kappa_{1}^{2}-\kappa_{1} \kappa_{2}\right) \sqrt{\kappa_{1}^{2}+\left(\kappa_{1}^{2}-1\right)|\nabla u(x)|^{2}}+\kappa_{1}^{2}\left(1-\kappa_{1} \kappa_{2}\right)} \nabla u(x)=\frac{T x-x}{\kappa_{1}^{2}-1}
$$

recall $\kappa_{1}=\frac{n_{2}}{n_{1}}$ and $\kappa_{2}=\frac{n_{3}}{n_{2}}$

Case $n_{1}=n_{3}$

The corresponding PDE is

$$
\frac{\nabla u(x)}{\sqrt{\kappa_{1}^{2}+\left(\kappa_{1}^{2}-1\right)|\nabla u(x)|^{2}}}=\frac{T x-x}{C}
$$

Case $n_{1}=n_{3}$

The corresponding PDE is

$$
\frac{\nabla u(x)}{\sqrt{\kappa_{1}^{2}+\left(\kappa_{1}^{2}-1\right)|\nabla u(x)|^{2}}}=\frac{T x-x}{C}
$$

- $|T x-x|<\frac{|C|}{\kappa_{1}^{2}-1}$.

Case $n_{1}=n_{3}$

The corresponding PDE is

$$
\frac{\nabla u(x)}{\sqrt{\kappa_{1}^{2}+\left(\kappa_{1}^{2}-1\right)|\nabla u(x)|^{2}}}=\frac{T x-x}{C}
$$

- $|T x-x|<\frac{|C|}{\kappa_{1}^{2}-1}$.
- Taking absolute values in the pde, squaring both sides, and solving yields $|\nabla u(x)|=\frac{\kappa_{1}|T x-x|}{\sqrt{C^{2}-\left(\kappa_{1}^{2}-1\right)|T x-x|^{2}}}$

Case $n_{1}=n_{3}$

The corresponding PDE is

$$
\frac{\nabla u(x)}{\sqrt{\kappa_{1}^{2}+\left(\kappa_{1}^{2}-1\right)|\nabla u(x)|^{2}}}=\frac{T x-x}{C}
$$

- $|T x-x|<\frac{|C|}{\kappa_{1}^{2}-1}$.
- Taking absolute values in the pde, squaring both sides, and solving yields $|\nabla u(x)|=\frac{\kappa_{1}|T x-x|}{\sqrt{C^{2}-\left(\kappa_{1}^{2}-1\right)|T x-x|^{2}}}$
- We replace $|\nabla u(x)|$ in the PDE obtaining

$$
\begin{equation*}
\nabla u(x)=-\frac{\kappa_{1}(T x-x)}{\sqrt{\mathrm{C}^{2}-\left(\kappa_{1}^{2}-1\right)|T x-x|^{2}}}:=F(x)=\left(F_{1}(x), F_{2}(x)\right) \tag{1}
\end{equation*}
$$

If $u \in C^{2}$ solves the PDE then $\partial_{x_{2}} F_{1}=\partial_{x_{1}} F_{2}$

$$
\begin{equation*}
\nabla u(x)=-\frac{\kappa_{1}(T x-x)}{\sqrt{C^{2}-\left(\kappa_{1}^{2}-1\right)|T x-x|^{2}}}:=F(x)=\left(F_{1}(x), F_{2}(x)\right) \tag{1}
\end{equation*}
$$

If $u \in C^{2}$ solves the PDE then $\partial_{x_{2}} F_{1}=\partial_{x_{1}} F_{2}$ and therefore

$$
u(x)=u\left(x_{0}\right)+\int_{\gamma} F(x) \cdot d r \quad \gamma \text { joins } x_{0} \text { and } x
$$

$$
\begin{equation*}
\nabla u(x)=-\frac{\kappa_{1}(T x-x)}{\sqrt{C^{2}-\left(\kappa_{1}^{2}-1\right)|T x-x|^{2}}}:=F(x)=\left(F_{1}(x), F_{2}(x)\right) \tag{1}
\end{equation*}
$$

If $u \in C^{2}$ solves the PDE then $\partial_{x_{2}} F_{1}=\partial_{x_{1}} F_{2}$ and therefore

$$
u(x)=u\left(x_{0}\right)+\int_{\gamma} F(x) \cdot d r \quad \gamma \text { joins } x_{0} \text { and } x
$$

Theorem

Letting $S x=\left(S_{1} x, S_{2} x\right)=T x-x$, we have that (1) has a solution if and only if

$$
C^{2}\left(\frac{\partial S_{2}}{\partial x_{1}}-\frac{\partial S_{1}}{\partial x_{2}}\right)+\left(\kappa_{1}^{2}-1\right)\left(S_{1} S_{2}\left(\frac{\partial S_{1}}{\partial x_{1}}-\frac{\partial S_{2}}{\partial x_{2}}\right)+S_{2}^{2} \frac{\partial S_{1}}{\partial x_{2}}-S_{1}^{2} \frac{\partial S_{2}}{\partial x_{1}}\right)=0
$$

Once u is found, we obtain the top face of the lens from the construction in the first part.

Example: $T x=(1+\alpha) x$

$$
\nabla u(x)=-\frac{\kappa_{1} \alpha x}{\sqrt{C^{2}-\left(\kappa_{1}^{2}-1\right) \alpha^{2}|x|^{2}}}
$$

Example: $T x=(1+\alpha) x$

$$
\nabla u(x)=-\frac{\kappa_{1} \alpha x}{\sqrt{C^{2}-\left(\kappa_{1}^{2}-1\right) \alpha^{2}|x|^{2}}}
$$

Then

$$
u(x)=\frac{\kappa_{1}}{\alpha\left(\kappa_{1}^{2}-1\right)} \sqrt{C^{2}-\left(\kappa_{1}^{2}-1\right) \alpha^{2}|x|^{2}}+A
$$

Example: $T x=(1+\alpha) x$

$$
\nabla u(x)=-\frac{\kappa_{1} \alpha x}{\sqrt{C^{2}-\left(\kappa_{1}^{2}-1\right) \alpha^{2}|x|^{2}}}
$$

Then

$$
u(x)=\frac{\kappa_{1}}{\alpha\left(\kappa_{1}^{2}-1\right)} \sqrt{C^{2}-\left(\kappa_{1}^{2}-1\right) \alpha^{2}|x|^{2}}+A
$$

Note that the graph of u is then contained in the ellipsoid of equation

$$
(z-A)^{2}+\kappa_{1}^{2}|x|^{2}=\left(\frac{C \kappa_{1}}{\alpha\left(\kappa_{1}^{2}-1\right)}\right)^{2} .
$$

Case $n_{3}<n_{1}$

The pde in this case is more complicated because $\kappa_{1} \kappa_{2} \neq 1$

$$
\frac{\left(1-\kappa_{1} \kappa_{2}\right) u(x)+C}{\left(\kappa_{1}^{2}-\kappa_{1} \kappa_{2}\right) \sqrt{\kappa_{1}^{2}+\left(\kappa_{1}^{2}-1\right)|\nabla u(x)|^{2}}+\kappa_{1}^{2}\left(1-\kappa_{1} \kappa_{2}\right)} \nabla u(x)=\frac{T x-x}{\kappa_{1}^{2}-1}
$$

Case $n_{3}<n_{1}$

The pde in this case is more complicated because $\kappa_{1} \kappa_{2} \neq 1$

$$
\frac{\left(1-\kappa_{1} \kappa_{2}\right) u(x)+C}{\left(\kappa_{1}^{2}-\kappa_{1} \kappa_{2}\right) \sqrt{\kappa_{1}^{2}+\left(\kappa_{1}^{2}-1\right)|\nabla u(x)|^{2}}+\kappa_{1}^{2}\left(1-\kappa_{1} \kappa_{2}\right)} \nabla u(x)=\frac{T x-x}{\kappa_{1}^{2}-1}
$$

Set

$$
\text { - } v(x)=\left(u(x)+\frac{C}{1-\kappa_{1} \kappa_{2}}\right)\left(\kappa_{1}-\kappa_{2}\right) \sqrt{\kappa_{1}^{2}-1}<0
$$

Case $n_{3}<n_{1}$

The pde in this case is more complicated because $\kappa_{1} \kappa_{2} \neq 1$

$$
\frac{\left(1-\kappa_{1} \kappa_{2}\right) u(x)+C}{\left(\kappa_{1}^{2}-\kappa_{1} \kappa_{2}\right) \sqrt{\kappa_{1}^{2}+\left(\kappa_{1}^{2}-1\right)|\nabla u(x)|^{2}}+\kappa_{1}^{2}\left(1-\kappa_{1} \kappa_{2}\right)} \nabla u(x)=\frac{T x-x}{\kappa_{1}^{2}-1}
$$

Set

- $v(x)=\left(u(x)+\frac{C}{1-\kappa_{1} \kappa_{2}}\right)\left(\kappa_{1}-\kappa_{2}\right) \sqrt{\kappa_{1}^{2}-1}<0$
- $S x=\frac{\kappa_{1}\left(\kappa_{1}-\kappa_{2}\right)^{2}(T x-x)}{1-\kappa_{1} \kappa_{2}}$

Case $n_{3}<n_{1}$ continued

So the equation can be rewritten as

$$
\frac{v(x) \nabla v(x)}{\sqrt{\kappa_{1}^{2}\left(\kappa_{1}-\kappa_{2}\right)^{2}+|\nabla v(x)|^{2}}+\kappa_{1}\left(1-\kappa_{1} \kappa_{2}\right)}=S x .
$$

Case $n_{3}<n_{1}$ continued

So the equation can be rewritten as

$$
\begin{equation*}
\frac{v(x) \nabla v(x)}{\sqrt{\kappa_{1}^{2}\left(\kappa_{1}-\kappa_{2}\right)^{2}+|\nabla v(x)|^{2}}+\kappa_{1}\left(1-\kappa_{1} \kappa_{2}\right)}=S x . \tag{2}
\end{equation*}
$$

- $|S x|<|v(x)|$

Case $n_{3}<n_{1}$ continued

So the equation can be rewritten as

$$
\begin{equation*}
\frac{v(x) \nabla v(x)}{\sqrt{\kappa_{1}^{2}\left(\kappa_{1}-\kappa_{2}\right)^{2}+|\nabla v(x)|^{2}}+\kappa_{1}\left(1-\kappa_{1} \kappa_{2}\right)}=S x . \tag{2}
\end{equation*}
$$

- $|S x|<|v(x)|$
- We let $t(x)=\sqrt{\kappa_{1}^{2}\left(\kappa_{1}-\kappa_{2}\right)^{2}+|\nabla v(x)|^{2}},|\nabla v(x)|^{2}=t^{2}(x)-\kappa_{1}^{2}\left(\kappa_{1}-\kappa_{2}\right)^{2}$.

Case $n_{3}<n_{1}$ continued

So the equation can be rewritten as

$$
\begin{equation*}
\frac{v(x) \nabla v(x)}{\sqrt{\kappa_{1}^{2}\left(\kappa_{1}-\kappa_{2}\right)^{2}+|\nabla v(x)|^{2}}+\kappa_{1}\left(1-\kappa_{1} \kappa_{2}\right)}=S x . \tag{2}
\end{equation*}
$$

- $|S x|<|v(x)|$
- We let $t(x)=\sqrt{\kappa_{1}^{2}\left(\kappa_{1}-\kappa_{2}\right)^{2}+|\nabla v(x)|^{2}},|\nabla v(x)|^{2}=t^{2}(x)-\kappa_{1}^{2}\left(\kappa_{1}-\kappa_{2}\right)^{2}$.
- Take absolute values in (2), square, solve for $t(x)$ obtaining a function of v and S, and replace back in (2) to obtain

$$
\begin{equation*}
\nabla v(x)=F(x, v(x))=\left(F_{1}(x, v(x)), F_{2}(x, v(x))\right) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\nabla v(x)=F(x, v(x))=\left(F_{1}(x, v(x)), F_{2}(x, v(x))\right) \tag{3}
\end{equation*}
$$

where

- $F(x, v(x))=G\left(\frac{S x}{v(x)}\right)$

$$
\begin{equation*}
\nabla v(x)=F(x, v(x))=\left(F_{1}(x, v(x)), F_{2}(x, v(x))\right) \tag{3}
\end{equation*}
$$

where

- $F(x, v(x))=G\left(\frac{S x}{v(x)}\right)$
- $G(x)=\left(\frac{\kappa_{1}\left(1-\kappa_{1} \kappa_{2}\right)|x|^{2}+\kappa_{1} \sqrt{\left(\kappa_{1}-\kappa_{2}\right)^{2}-\left(1-\kappa_{2}^{2}\right)\left(\kappa_{1}^{2}-1\right)|x|^{2}}}{1-|x|^{2}}+\kappa_{1}\left(1-\kappa_{1} \kappa_{2}\right)\right) x$

$$
\begin{equation*}
\nabla v(x)=F(x, v(x))=\left(F_{1}(x, v(x)), F_{2}(x, v(x))\right) \tag{3}
\end{equation*}
$$

where

- $F(x, v(x))=G\left(\frac{S x}{v(x)}\right)$
- $G(x)=\left(\frac{\kappa_{1}\left(1-\kappa_{1} \kappa_{2}\right)|x|^{2}+\kappa_{1} \sqrt{\left(\kappa_{1}-\kappa_{2}\right)^{2}-\left(1-\kappa_{2}^{2}\right)\left(\kappa_{1}^{2}-1\right)|x|^{2}}}{1-|x|^{2}}+\kappa_{1}\left(1-\kappa_{1} \kappa_{2}\right)\right) x$
- if (3) has a C^{2} solution, then

$$
\partial_{x_{2}} F_{1}\left(x, v_{1}(x)\right)+\partial_{z} F(x, v(x)) F_{2}(x, v(x))=\partial_{x_{1}} F_{2}(x, v(x))+\partial_{z} F_{2}(x, v(x)) F_{1}(x, v(x)) .
$$

$$
\begin{equation*}
\nabla v(x)=F(x, v(x))=\left(F_{1}(x, v(x)), F_{2}(x, v(x))\right) \tag{3}
\end{equation*}
$$

where

- $F(x, v(x))=G\left(\frac{S x}{v(x)}\right)$
- $G(x)=\left(\frac{\kappa_{1}\left(1-\kappa_{1} \kappa_{2}\right)|x|^{2}+\kappa_{1} \sqrt{\left(\kappa_{1}-\kappa_{2}\right)^{2}-\left(1-\kappa_{2}^{2}\right)\left(\kappa_{1}^{2}-1\right)|x|^{2}}}{1-|x|^{2}}+\kappa_{1}\left(1-\kappa_{1} \kappa_{2}\right)\right) x$
- if (3) has a C^{2} solution, then
$\partial_{x_{2}} F_{1}\left(x, v_{1}(x)\right)+\partial_{z} F(x, v(x)) F_{2}(x, v(x))=\partial_{x_{1}} F_{2}(x, v(x))+\partial_{z} F_{2}(x, v(x)) F_{1}(x, v(x))$.
- Conversely, from existence results for solutions of 1st order systems of pdes: if

$$
\left.\partial_{x_{2}} F_{1}(x, z)+\partial_{z} F_{1}(x, z)\right) F_{2}(x, z)=\partial_{x_{1}} F_{2}(x, z)+\partial_{z} F_{2}(x, z) F_{1}(x, z) .
$$

on an open set O then for every $\left(x_{0}, z_{0}\right) \in O$, there exists a unique solution v to (3) satisfying $v\left(x_{0}\right)=z_{0}$ defined on a neighborhood of x_{0}.

Case $n_{3}<n_{1}$ continued

By calculation using the form of F_{1} and F_{2}, it can be shown:
Theorem
The partial differential equation (3) has a local solution if

$$
\begin{aligned}
\operatorname{curl} S & =0 \\
S \times \nabla|S|^{2} & =0 .
\end{aligned}
$$

Case $n_{3}<n_{1}$ continued

By calculation using the form of F_{1} and F_{2}, it can be shown:

Theorem

The partial differential equation (3) has a local solution if

$$
\begin{aligned}
\operatorname{curl} S & =0 \\
S \times \nabla|S|^{2} & =0
\end{aligned}
$$

- these conditions mean $\exists w$ such that $S=\left(w_{x_{1}}, w_{x_{2}}\right)$ and

$$
w_{x_{1} x_{2}}\left(\left(w_{x_{1}}\right)^{2}-\left(w_{x_{2}}\right)^{2}\right)+w_{x_{1}} w_{x_{2}}\left(w_{x_{2} x_{2}}-w_{x_{1} x_{1}}\right)=0
$$

Case $n_{3}<n_{1}$ continued

By calculation using the form of F_{1} and F_{2}, it can be shown:

Theorem

The partial differential equation (3) has a local solution if

$$
\begin{aligned}
\operatorname{curl} S & =0 \\
S \times \nabla|S|^{2} & =0 .
\end{aligned}
$$

- these conditions mean $\exists w$ such that $S=\left(w_{x_{1}}, w_{x_{2}}\right)$ and

$$
w_{x_{1} x_{2}}\left(\left(w_{x_{1}}\right)^{2}-\left(w_{x_{2}}\right)^{2}\right)+w_{x_{1}} w_{x_{2}}\left(w_{x_{2} x_{2}}-w_{x_{1} x_{1}}\right)=0
$$

- This equation can be solved for a large class of initial data, for example, given two plane analytic curves $\gamma(s)$ and $\Gamma(s)$, satisfying a non characteristic condition, and a function $z(s) \exists$! w solving the equation with $w(\gamma)=z$, and $D w(\gamma)=\Gamma$. So we can construct, S satisfying the conditions in the theorem and mapping γ into Γ.
- This gives local existence of lenses.
- By reversibility of optical paths, if $\kappa_{1} \kappa_{2}>1$, then the problem has a local solution when T^{-1} verifies the condition in the above theorem.
- Similar results also hold for systems of two reflectors (simpler).

References

C. E. G., Aspherical lens design, JOSA A 30 (2013), no. 9, 1719-1726.
C. E. G. and A. Sabra, Design of pairs of reflectors, JOSA A 31 (2014), no. 4, 891-899.
C. E. G. and A. Sabra, Aspherical lens design and imaging, SIAM Journal on Imaging Sciences, Vol. 9, No.1, pp. 386-411, 2016.
C. E. G. and A. Sabra, Freeform Lens Design for Scattering Data With General Radiant Fields, preprint (2017).
C. E. G. and Qingbo Huang, The refractor problem in reshaping light beams, Arch. Rational Mech. Anal. 193 (2009), no. 2, 423-443.
, The near field refractor, Annales de l'Institut Henri Poincaré (C) Analyse Non Linéaire 31 (2014), no. 4, 655-684.
C. E. G. and H. Mawi, The far field refractor with loss of energy, Nonlinear Analysis: Theory, Methods \& Applications 82 (2013), 12-46.
C. E. G. and F. Tournier, Regularity for the near field parallel refractor and reflector problems, Calc. Var. PDEs (2015).
C. E. G. and A. Sabra, The reflector problem and the inverse square law, Nonlinear Analysis: Theory, Methods \& Applications 96 (2014), 109-133.
R. De Leo, C. E. G. and H. Mawi, On the Numerical Solution of the Far Field Refractor Problem, Nonlinear Analysis: Theory, Methods \& Applications, to appear.

Thank you!

