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Optimal transport

Setting: probability measures dµ = fdx on X ⊂ Rm and
dν = gdy on Y ⊆ Rn and a surplus s(x , y).

Π(µ, ν) is the set of probability measures on X × Y which
project to µ and ν; that is γ(B × Y ) = µ(B),
γ(X × A) = ν(A) for all B ⊂ X ,A ⊂ Y .

Monge-Kantorovich problem: maximize the linear functional∫
X×Y

s(x , y)dγ(x , y)

over the convex set γ ∈ Π(µ, ν).

Usually, take m = n.
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Motivation for unequal dimensional problem

Matching in economics: X and Y might parameterize:

Buyers and sellers.
Firms and employees in a labour market
Women and men and in a marriage market.

m and n are the number of characteristics used to distinguish
between agents on two sides of the market.

These may well be different.

Other applications?
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Duality

The problem is dual to minimizing∫
X
u(x)dµ(x) +

∫
Y
v(y)dν(y)

among u ∈ L1(µ), v ∈ L1(ν) such that u(x) + v(y) ≥ s(x , y).
Under mild conditions, solutions to both the primal and dual
problems exist.

The solution to the dual problem can be chosen to satisfy
(u, v) = (v s , us), with

us(y) := sup
x∈X

s(x , y)− u(x)

Such functions are semi-convex (twice differentiable almost
everywhere).
We have u(x) + v(y)− s(x , y) = 0 γ a.e. and so

Du(x) = Dxs(x , y), Dv(y) = Dy s(x , y)

D2u(x) ≥ D2
xxs(x , y), D2v(y) ≥ D2

yy s(x , y)

Brendan Pass (joint work R. McCann and partially with P.-A. Chiappori)Optimal transport between unequal dimensions



Duality

The problem is dual to minimizing∫
X
u(x)dµ(x) +

∫
Y
v(y)dν(y)

among u ∈ L1(µ), v ∈ L1(ν) such that u(x) + v(y) ≥ s(x , y).
Under mild conditions, solutions to both the primal and dual
problems exist.
The solution to the dual problem can be chosen to satisfy
(u, v) = (v s , us), with

us(y) := sup
x∈X

s(x , y)− u(x)

Such functions are semi-convex (twice differentiable almost
everywhere).

We have u(x) + v(y)− s(x , y) = 0 γ a.e. and so

Du(x) = Dxs(x , y), Dv(y) = Dy s(x , y)

D2u(x) ≥ D2
xxs(x , y), D2v(y) ≥ D2

yy s(x , y)

Brendan Pass (joint work R. McCann and partially with P.-A. Chiappori)Optimal transport between unequal dimensions



Duality

The problem is dual to minimizing∫
X
u(x)dµ(x) +

∫
Y
v(y)dν(y)

among u ∈ L1(µ), v ∈ L1(ν) such that u(x) + v(y) ≥ s(x , y).
Under mild conditions, solutions to both the primal and dual
problems exist.
The solution to the dual problem can be chosen to satisfy
(u, v) = (v s , us), with

us(y) := sup
x∈X

s(x , y)− u(x)

Such functions are semi-convex (twice differentiable almost
everywhere).
We have u(x) + v(y)− s(x , y) = 0 γ a.e. and so

Du(x) = Dxs(x , y), Dv(y) = Dy s(x , y)

D2u(x) ≥ D2
xxs(x , y), D2v(y) ≥ D2

yy s(x , y)

Brendan Pass (joint work R. McCann and partially with P.-A. Chiappori)Optimal transport between unequal dimensions



Optimal transport preliminaries

We will assume:
Twist: y 7→ Dxs(x , y) is injective (for each fixed x); therefore
m ≥ n.
Non-degeneracy: D2

xy s(x , y) has full rank at each (x , y); that
is, the rank is n.

Brenier ’87, Gangbo-McCann ’96, Caffarelli ’96... twist
ensures unique, graphical solutions, γ = (ID,T )#µ.
When m = n, the map solves the change of variables
equation | detDT (x)| = f (x)/g(T (x)), which leads to a
second order partial differential equation for u.
Ex. When s(x , y) = x · y , u solves the elliptic Monge-Ampere
equation, detD2u(x) = f (x)/g(Du(x)).
Caffarelli ’92: For s(x , y) = x · y , regularity holds for convex
target Y and good f , g .
Ma-Trudinger-Wang ’05, Loeper ’10...: Same holds for other
s(x , y) satisfying a deep structural condition. If not, one
can find densities for which the optimal map is discontinuous.
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Unequal dimensions

When m > n, the twist condition still implies unique, graphical
solutions.

Can they be characterized by a PDE?

Do we expect smoothness?
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Smoothness fails

Theorem (P ’12)

There exists smooth densities f , g , bounded above and below, for
which the optimal map is discontinuous, UNLESS s is of index
form; that is,

s(x , y) = b(I (x), y) + α(x)

where I : Rm → Rn.

In this case, the problem reduces to equal dimensional optimal
transport between I#µ on I (X ) ⊆ Rn and ν on Y ⊆ Rn.

Reason: s-convexity of the target Y is very restrictive here.

Example: If Y is an n-dimensional submanifold of Rm, and
s(x , y) = x · y , regularity theory requires Y to be convex,
which can only happen if Y is affine. In this case,
x · y = xY · y , where xY ∈ Rn is the projection of x onto Y .

Consequence: any regularity result will have to depend on the
interaction between s and µ, ν.
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A partial differential equation for unequal dimensions

When m > n, we guess:

g(y) =

∫
T−1(y)

f (x)√
det[DT (x)DT (x)T ]

dHm−n(x)

Envelope condition: Dv(T (x)) = Dy s(x ,T (x)).

Differentiating (formally), we get
[D2v(T (x))− D2

yy s(x ,T (x))]DT (x) = D2
yxs(x ,T (x)).

So
√

det[DT (x)DT (x)T ] =

√
det[D2

yx s(x ,T (x))D2
yx s(x ,T (x))T ]

det[D2v(T (x))−D2
yy s(x ,T (x))]

and
we get:

g(y) =

∫
T−1(y)

f (x) det[D2v(y)− D2
yy s(x , y)]√

det[D2
yxs(x , y)D2

yxs(x , y)T ]
dHm−n(x)

Except for the domain of integration, T is eliminated,
(almost) leaving a PDE for v .
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Partial differential equation cont.

Neglecting null sets

T−1(y) ⊆ ∂sv(y) := {x : v s(x) + v(y) = s(x , y)}

⊆ X2(y , p,Q) := {x ∈ X1(y , p), D2
yy s(x , y) ≤ Q}

⊆ X1(y , p) := {x : Dy s(x , y) = p}

for p = Dv(y), Q = D2v(y).

Non-degeneracy implies that X1(y , p) is a smooth, m − n
dimensional submanifold of X .

Replacing T−1(y) with ∂sv(y) yields a non-local PDE:

g(y) =

∫
∂sv(y)

f (x) det[D2v(y)− D2
yy s(x , y)]√

det[D2
yxs(x , y)D2

yxs(x , y)T ]
dHm−n(x)

Replacing T−1(y) with either Xi results in a local PDE.
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Replacing T−1(y) with either Xi results in a local PDE.
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Partial differential equation cont.

Neglecting null sets

T−1(y) ⊆ ∂sv(y) := {x : v s(x) + v(y) = s(x , y)}
⊆ X2(y , p,Q) := {x ∈ X1(y , p), D2

yy s(x , y) ≤ Q}
⊆ X1(y , p) := {x : Dy s(x , y) = p}

for p = Dv(y), Q = D2v(y).
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f (x) det[D2v(y)− D2
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Characterizing solutions via a non-local PDE

Theorem (McCann -P. ’17)

If (u, v) = (v s , us) are s-conjugate functions, then they maximize
the dual problem if and only if v solves the non-local equation

g(y) =

∫
∂sv(y)

f (x) det[D2v(y)− D2
yy s(x , y)]√

det[D2
yxs(x , y)D2

yxs(x , y)T ]
dHm−n(x)

Hn almost everywhere.
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Solving via local PDE

Local equation: g(y) = Gi (y ,Dv(y),D2v(y)), where

Gi (y , p,Q) =

∫
Xi (y ,p,Q)

f (x) det[Q − D2
yy s(x , y)]√

det[D2
yxs(x , y)D2

yxs(x , y)T ]
dHm−n(x)

for i = 1, 2.

Theorem (McCann -P. ’17)

Assume (u, v) = (v s , us) with v ∈ C 2(Y ). If v solves the local
equation with i = 2, then (u, v) solves the dual problem.
Conversely, assume also that u ∈ C 2(X ), and that each
Xi (y ,Dv(y),D2v(y)) is connected. Then, if (u, v) solves the dual
problem, v solves the local equation a.e.

Remark: G2 is elliptic, so if v ∈ C 2,α one can bootstrap and get
that v is as smooth as G2 and g .
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One dimensional targets (joint with McCann and
Chiappori)

Take m > n = 1. We (try to) construct the optimal map
explicitly one level set at a time, assuming T−1(y) = X1(y , p)
for some p.

For fixed y , let k(y) be the (unique) k ∈ R which splits the
population proportionately at y ; that is,

µ(X≤(y , p)) = ν((−∞, y))

with

X≤(y , p) = {x ∈ X :
∂s

∂y
(x , y)≤p}

We say (s, µ, ν) is nested if, whenever y0 < y1,

X≤(y0, p(y0)) ⊆ X<(y1, p(y1)).
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Solution Theorem (roughly stated)

Theorem (Chiappori-McCann-P (’16))

If (s, µ, ν) is nested, then the map that assigns each
x ∈ X1(y , p(y)) to y = T (x) is the unique optimizer.

In this case, the i = 1 version of the local equation holds:

g(y) =

∫
X1(y ,p(y))

p′(y)− syy (x , y)

|Dxsy |
f (x)dHm−1(x)

(Note that p(y) = v ′(y).)

The velocity of X1(y , p(y)) is given by
p′−syy
|Dx sy |2Dxsy . If the

speed (p′(y)− syy (y , x))/|Dxsy | is positive for each
x ∈ X1(y , p(y)) and each y , the model is nested. Conversely,
if nestedeness holds, the speed is always nonnegative, and
positive for at least one x ∈ X1(y , p(y)) for each y.
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Regularity for nested data when n = 1

In the nested case, T is continuous, and u is C 1 (as
Du(x) = Dxs(x ,T (x)).)

p(y) = v ′(y) solves h(y , p) := µ(X≤(y , p))− ν((−∞, y)) = 0.
As hp(y , p(y)) > 0, p is as smooth as h via the implicit
function theorem.

To ensure smoothness of h, we need smoothness and bounds
on f , g , s, ∂X , as well as nondegeneracy, and transversality of
the intersection of ∂X and the X1(y , p(y)) (or at least
Hm−1(∂X ∩ X1(y , p(y))) = 0 locally). We can differentiate
these using a generalized divergence theorem and the coarea
formula.
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Sample derivatives

Example:

hp(y , p(y)) =

∫
X1(y ,p)

f (x)
dHm−1(x)

|Dxsy (x , y)|

=

∫
X≤(y ,p)

∇ ·
(
f (x)

Dxsy (x , y)

|Dxsy (x , y)|2
)
dHm(x)

−
∫
∂X∪X̄≤(y ,p)

f (x)
Dxsy (x , y) · n̂X
|Dxsy (x , y)|2

dHm−1(x)

hy (y , p(y)) =

∫
X1(y ,p)

f (x)
−syy (x , y)dHm−1(x)

|Dxsy (x , y)|
− g(y).
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Regularity of husband’s payoff v

Theorem (Chiappori-McCann-P (’16))

Fix an integer r ≥ 1. Suppose there is an interval
Y ′ = (y0, y1) ⊂ Y such that X ′ ∩ ∂X ∈ C 1 intersects X (y , k(y))
transversally for all y ∈ Y ′, where X ′ =

⋃
y∈Y ′ X1(y , p(y)). Then

‖p‖C r,1(Y ′) is controlled by the following quantities, all assumed
positive and finite: ‖ log f ‖C r−1,1(X ′), ‖ log g‖C r−1,1(Y ′),

‖sy‖C r,1(X ′×Y ′), ‖n̂X‖(C r−2,1∩W 1,1)(X ′∩∂X ), Hm−1[∂∗X ],

inf
y∈Y ′

Hm−1 [X (y , k(y))] (proximity to ends of Y ),(1)

inf
x∈X ′,y∈Y ′

|Dxsy (x , y)| (non-degeneracy), (2)

inf
x∈X ′∩∂X ,y∈Y ′

1− (n̂X · n̂X=)2 (transversality) (3)

where n̂X=(x , y) = Dxsy/|Dxsy |, and Hm−2
[
X (y0, k(y0)) ∩ ∂X

]
.
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Regularity cont’d

The optimal map T satisfies
∂s
∂y (x ,T (x)) = p(T (x)) = v ′(T (x)). With a speed limit

condition, p′(y)− syy (x , y) > 0, this is as smooth as ∂s
∂y and

v ′ = p via the implicit function theorem.

The potential u is then one derivative smoother than T via
Du(x) = Dxs(x ,T (x)).
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Thanks

Thank you!
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