Optimal transport between unequal dimensions

Brendan Pass (joint work R. McCann and partially with P.-A. Chiappori)

University of Alberta
April 11, 2017

Optimal transport

- Setting: probability measures $d \mu=f d x$ on $X \subset \mathbb{R}^{m}$ and $d \nu=g d y$ on $Y \subseteq \mathbb{R}^{n}$ and a surplus $s(x, y)$.
- $\Pi(\mu, \nu)$ is the set of probability measures on $X \times Y$ which project to μ and ν; that is $\gamma(B \times Y)=\mu(B)$, $\gamma(X \times A)=\nu(A)$ for all $B \subset X, A \subset Y$.
- Monge-Kantorovich problem: maximize the linear functional

$$
\int_{X \times Y} s(x, y) d \gamma(x, y)
$$

over the convex set $\gamma \in \Pi(\mu, \nu)$.

- Usually, take $m=n$.

Motivation for unequal dimensional problem

- Matching in economics: X and Y might parameterize:
- Buyers and sellers.
- Firms and employees in a labour market
- Women and men and in a marriage market.

Motivation for unequal dimensional problem

- Matching in economics: X and Y might parameterize:
- Buyers and sellers.
- Firms and employees in a labour market
- Women and men and in a marriage market.
- m and n are the number of characteristics used to distinguish between agents on two sides of the market.

Motivation for unequal dimensional problem

- Matching in economics: X and Y might parameterize:
- Buyers and sellers.
- Firms and employees in a labour market
- Women and men and in a marriage market.
- m and n are the number of characteristics used to distinguish between agents on two sides of the market.
- These may well be different.

Motivation for unequal dimensional problem

- Matching in economics: X and Y might parameterize:
- Buyers and sellers.
- Firms and employees in a labour market
- Women and men and in a marriage market.
- m and n are the number of characteristics used to distinguish between agents on two sides of the market.
- These may well be different.
- Other applications?

Duality

- The problem is dual to minimizing

$$
\int_{X} u(x) d \mu(x)+\int_{Y} v(y) d \nu(y)
$$

among $u \in L^{1}(\mu), v \in L^{1}(\nu)$ such that $u(x)+v(y) \geq s(x, y)$.

- Under mild conditions, solutions to both the primal and dual problems exist.

Duality

- The problem is dual to minimizing

$$
\int_{X} u(x) d \mu(x)+\int_{Y} v(y) d \nu(y)
$$

among $u \in L^{1}(\mu), v \in L^{1}(\nu)$ such that $u(x)+v(y) \geq s(x, y)$.

- Under mild conditions, solutions to both the primal and dual problems exist.
- The solution to the dual problem can be chosen to satisfy $(u, v)=\left(v^{s}, u^{s}\right)$, with

$$
u^{s}(y):=\sup _{x \in X} s(x, y)-u(x)
$$

Such functions are semi-convex (twice differentiable almost everywhere).

Duality

- The problem is dual to minimizing

$$
\int_{X} u(x) d \mu(x)+\int_{Y} v(y) d \nu(y)
$$

among $u \in L^{1}(\mu), v \in L^{1}(\nu)$ such that $u(x)+v(y) \geq s(x, y)$.

- Under mild conditions, solutions to both the primal and dual problems exist.
- The solution to the dual problem can be chosen to satisfy $(u, v)=\left(v^{s}, u^{s}\right)$, with

$$
u^{s}(y):=\sup _{x \in X} s(x, y)-u(x)
$$

Such functions are semi-convex (twice differentiable almost everywhere).

- We have $u(x)+v(y)-s(x, y)=0 \gamma$ a.e. and so

$$
\begin{aligned}
D u(x)=D_{x} s(x, y), & D v(y)
\end{aligned}=D_{y} s(x, y), ~=D_{x x}^{2} s(x, y), \quad D^{2} v(y) \geq D_{y y}^{2} s(x, y) .
$$

Optimal transport preliminaries

- We will assume:

Twist: $y \mapsto D_{x} s(x, y)$ is injective (for each fixed x); therefore $m \geq n$.
Non-degeneracy: $D_{x y}^{2} s(x, y)$ has full rank at each (x, y); that is, the rank is n.

Optimal transport preliminaries

- We will assume:

Twist: $y \mapsto D_{x} s(x, y)$ is injective (for each fixed x); therefore $m \geq n$.
Non-degeneracy: $D_{x y}^{2} s(x, y)$ has full rank at each (x, y); that is, the rank is n.

- Brenier '87, Gangbo-McCann '96, Caffarelli '96... twist ensures unique, graphical solutions, $\gamma=(I D, T)_{\#} \mu$.

Optimal transport preliminaries

- We will assume:

Twist: $y \mapsto D_{x} s(x, y)$ is injective (for each fixed x); therefore $m \geq n$.
Non-degeneracy: $D_{x y}^{2} s(x, y)$ has full rank at each (x, y); that is, the rank is n.

- Brenier '87, Gangbo-McCann '96, Caffarelli '96... twist ensures unique, graphical solutions, $\gamma=(I D, T)_{\#} \mu$.
- When $\mathbf{m}=\mathbf{n}$, the map solves the change of variables equation $|\operatorname{det} D T(x)|=f(x) / g(T(x))$, which leads to a second order partial differential equation for u.

Optimal transport preliminaries

- We will assume:

Twist: $y \mapsto D_{x} s(x, y)$ is injective (for each fixed x); therefore $m \geq n$.
Non-degeneracy: $D_{x y}^{2} s(x, y)$ has full rank at each (x, y); that is, the rank is n.

- Brenier '87, Gangbo-McCann '96, Caffarelli '96... twist ensures unique, graphical solutions, $\gamma=(I D, T)_{\#} \mu$.
- When $\mathbf{m}=\mathbf{n}$, the map solves the change of variables equation $|\operatorname{det} D T(x)|=f(x) / g(T(x))$, which leads to a second order partial differential equation for u.
- Ex. When $s(x, y)=x \cdot y, u$ solves the elliptic Monge-Ampere equation, $\operatorname{det} D^{2} u(x)=f(x) / g(D u(x))$.

Optimal transport preliminaries

- We will assume:

Twist: $y \mapsto D_{x} s(x, y)$ is injective (for each fixed x); therefore $m \geq n$.
Non-degeneracy: $D_{x y}^{2} s(x, y)$ has full rank at each (x, y); that is, the rank is n.

- Brenier '87, Gangbo-McCann '96, Caffarelli '96... twist ensures unique, graphical solutions, $\gamma=(I D, T)_{\#} \mu$.
- When $\mathbf{m}=\mathbf{n}$, the map solves the change of variables equation $|\operatorname{det} D T(x)|=f(x) / g(T(x))$, which leads to a second order partial differential equation for u.
- Ex. When $s(x, y)=x \cdot y, u$ solves the elliptic Monge-Ampere equation, $\operatorname{det} D^{2} u(x)=f(x) / g(D u(x))$.
- Caffarelli '92: For $s(x, y)=x \cdot y$, regularity holds for convex target Y and good f, g.
- Ma-Trudinger-Wang '05, Loeper '10...: Same holds for other $s(x, y)$ satisfying a deep structural condition. If not, one can find densities for which the optimal map is discontinuous.

Unequal dimensions

When $m>n$, the twist condition still implies unique, graphical solutions.

Unequal dimensions

When $m>n$, the twist condition still implies unique, graphical solutions.

- Can they be characterized by a PDE?
- Do we expect smoothness?

Smoothness fails

Theorem (P^{\prime} '12)

There exists smooth densities f, g, bounded above and below, for which the optimal map is discontinuous, UNLESS s is of index form; that is,

$$
s(x, y)=b(I(x), y)+\alpha(x)
$$

where $I: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.

Smoothness fails

Theorem (P^{\prime} '12)

There exists smooth densities f, g, bounded above and below, for which the optimal map is discontinuous, UNLESS s is of index form; that is,

$$
s(x, y)=b(I(x), y)+\alpha(x)
$$

where $I: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.

- In this case, the problem reduces to equal dimensional optimal transport between $I_{\#} \mu$ on $I(X) \subseteq \mathbb{R}^{n}$ and ν on $Y \subseteq \mathbb{R}^{n}$.

Smoothness fails

Theorem (P^{\prime} '12)

There exists smooth densities f, g, bounded above and below, for which the optimal map is discontinuous, UNLESS s is of index form; that is,

$$
s(x, y)=b(I(x), y)+\alpha(x)
$$

where $I: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.

- In this case, the problem reduces to equal dimensional optimal transport between $I_{\#} \mu$ on $I(X) \subseteq \mathbb{R}^{n}$ and ν on $Y \subseteq \mathbb{R}^{n}$.
- Reason: s-convexity of the target Y is very restrictive here.

Smoothness fails

Theorem (P '12)

There exists smooth densities f, g, bounded above and below, for which the optimal map is discontinuous, UNLESS s is of index form; that is,

$$
s(x, y)=b(I(x), y)+\alpha(x)
$$

where $I: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.

- In this case, the problem reduces to equal dimensional optimal transport between $I_{\#} \mu$ on $I(X) \subseteq \mathbb{R}^{n}$ and ν on $Y \subseteq \mathbb{R}^{n}$.
- Reason: s-convexity of the target Y is very restrictive here.
- Example: If Y is an n-dimensional submanifold of \mathbb{R}^{m}, and $s(x, y)=x \cdot y$, regularity theory requires Y to be convex, which can only happen if Y is affine. In this case, $x \cdot y=x_{Y} \cdot y$, where $x_{Y} \in \mathbb{R}^{n}$ is the projection of x onto Y.

Smoothness fails

Theorem (P '12)

There exists smooth densities f, g, bounded above and below, for which the optimal map is discontinuous, UNLESS s is of index form; that is,

$$
s(x, y)=b(I(x), y)+\alpha(x)
$$

where $I: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.

- In this case, the problem reduces to equal dimensional optimal transport between $I_{\#} \mu$ on $I(X) \subseteq \mathbb{R}^{n}$ and ν on $Y \subseteq \mathbb{R}^{n}$.
- Reason: s-convexity of the target Y is very restrictive here.
- Example: If Y is an n-dimensional submanifold of \mathbb{R}^{m}, and $s(x, y)=x \cdot y$, regularity theory requires Y to be convex, which can only happen if Y is affine. In this case, $x \cdot y=x_{Y} \cdot y$, where $x_{Y} \in \mathbb{R}^{n}$ is the projection of x onto Y.
- Consequence: any regularity result will have to depend on the interaction between s and μ, ν.

A partial differential equation for unequal dimensions

- When $m>n$, we guess:

$$
g(y)=\int_{T^{-1}(y)} \frac{f(x)}{\sqrt{\operatorname{det}\left[D T(x) D T(x)^{T}\right]}} d \mathcal{H}^{m-n}(x)
$$

A partial differential equation for unequal dimensions

- When $m>n$, we guess:

$$
g(y)=\int_{T^{-1}(y)} \frac{f(x)}{\sqrt{\operatorname{det}\left[D T(x) D T(x)^{T}\right]}} d \mathcal{H}^{m-n}(x)
$$

- Envelope condition: $\operatorname{Dv}(T(x))=D_{y} s(x, T(x))$.

A partial differential equation for unequal dimensions

- When $m>n$, we guess:

$$
g(y)=\int_{T^{-1}(y)} \frac{f(x)}{\sqrt{\operatorname{det}\left[D T(x) D T(x)^{T}\right]}} d \mathcal{H}^{m-n}(x)
$$

- Envelope condition: $\operatorname{Dv}(T(x))=D_{y} s(x, T(x))$.
- Differentiating (formally), we get

$$
\left[D^{2} v(T(x))-D_{y y}^{2} s(x, T(x))\right] D T(x)=D_{y x}^{2} s(x, T(x))
$$

A partial differential equation for unequal dimensions

- When $m>n$, we guess:

$$
g(y)=\int_{T^{-1}(y)} \frac{f(x)}{\sqrt{\operatorname{det}\left[D T(x) D T(x)^{T}\right]}} d \mathcal{H}^{m-n}(x)
$$

- Envelope condition: $\operatorname{Dv}(T(x))=D_{y} s(x, T(x))$.
- Differentiating (formally), we get

$$
\left[D^{2} v(T(x))-D_{y y}^{2} s(x, T(x))\right] D T(x)=D_{y x}^{2} s(x, T(x))
$$

- So $\sqrt{\operatorname{det}\left[D T(x) D T(x)^{T}\right]}=\frac{\sqrt{\operatorname{det}\left[D_{y x}^{2} s(x, T(x)) D_{y x}^{2} s(x, T(x))^{T}\right]}}{\operatorname{det}\left[D^{2} v(T(x))-D_{y y}^{2} s(x, T(x))\right]}$ and we get:

$$
g(y)=\int_{T-1(y)} \frac{f(x) \operatorname{det}\left[D^{2} v(y)-D_{y y}^{2} s(x, y)\right]}{\sqrt{\operatorname{det}\left[D_{y x}^{2} s(x, y) D_{y x}^{2} s(x, y)^{T}\right]}} d \mathcal{H}^{m-n}(x)
$$

A partial differential equation for unequal dimensions

- When $m>n$, we guess:

$$
g(y)=\int_{T^{-1}(y)} \frac{f(x)}{\sqrt{\operatorname{det}\left[D T(x) D T(x)^{T}\right]}} d \mathcal{H}^{m-n}(x)
$$

- Envelope condition: $\operatorname{Dv}(T(x))=D_{y} s(x, T(x))$.
- Differentiating (formally), we get

$$
\left[D^{2} v(T(x))-D_{y y}^{2} s(x, T(x))\right] D T(x)=D_{y x}^{2} s(x, T(x))
$$

- So $\sqrt{\operatorname{det}\left[D T(x) D T(x)^{T}\right]}=\frac{\sqrt{\operatorname{det}\left[D_{y x}^{2} s(x, T(x)) D_{y x}^{2} s(x, T(x))^{T}\right]}}{\operatorname{det}\left[D^{2} v(T(x))-D_{y y}^{2} s(x, T(x))\right]}$ and we get:

$$
g(y)=\int_{T-1(y)} \frac{f(x) \operatorname{det}\left[D^{2} v(y)-D_{y y}^{2} s(x, y)\right]}{\sqrt{\operatorname{det}\left[D_{y x}^{2} s(x, y) D_{y x}^{2} s(x, y)^{T}\right]}} d \mathcal{H}^{m-n}(x)
$$

- Except for the domain of integration, T is eliminated, (almost) leaving a PDE for v.

Partial differential equation cont.

- Neglecting null sets

$$
T^{-1}(y) \subseteq \partial_{s} v(y):=\left\{x: v^{s}(x)+v(y)=s(x, y)\right\}
$$

Partial differential equation cont.

- Neglecting null sets

$$
\begin{aligned}
T^{-1}(y) & \subseteq \partial_{s} v(y):=\left\{x: v^{s}(x)+v(y)=s(x, y)\right\} \\
& \subseteq X_{1}(y, p):=\left\{x: D_{y} s(x, y)=p\right\} \\
\text { for } p= & D v(y), Q=D^{2} v(y)
\end{aligned}
$$

Partial differential equation cont.

- Neglecting null sets

$$
\begin{aligned}
T^{-1}(y) & \subseteq \partial_{s} v(y):=\left\{x: v^{s}(x)+v(y)=s(x, y)\right\} \\
& \subseteq X_{2}(y, p, Q):=\left\{x \in X_{1}(y, p), D_{y y}^{2} s(x, y) \leq Q\right\} \\
& \subseteq X_{1}(y, p):=\left\{x: D_{y} s(x, y)=p\right\} \\
\text { for } p= & D v(y), Q=D^{2} v(y) .
\end{aligned}
$$

- Neglecting null sets

$$
\begin{aligned}
T^{-1}(y) & \subseteq \partial_{s} v(y):=\left\{x: v^{s}(x)+v(y)=s(x, y)\right\} \\
& \subseteq X_{2}(y, p, Q):=\left\{x \in X_{1}(y, p), D_{y y}^{2} s(x, y) \leq Q\right\} \\
& \subseteq X_{1}(y, p):=\left\{x: D_{y} s(x, y)=p\right\}
\end{aligned}
$$

for $p=D v(y), Q=D^{2} v(y)$.

- Non-degeneracy implies that $X_{1}(y, p)$ is a smooth, $m-n$ dimensional submanifold of X.
- Neglecting null sets

$$
\begin{aligned}
T^{-1}(y) & \subseteq \partial_{s} v(y):=\left\{x: v^{s}(x)+v(y)=s(x, y)\right\} \\
& \subseteq X_{2}(y, p, Q):=\left\{x \in X_{1}(y, p), D_{y y}^{2} s(x, y) \leq Q\right\} \\
& \subseteq X_{1}(y, p):=\left\{x: D_{y} s(x, y)=p\right\}
\end{aligned}
$$

for $p=D v(y), Q=D^{2} v(y)$.

- Non-degeneracy implies that $X_{1}(y, p)$ is a smooth, $m-n$ dimensional submanifold of X.
- Replacing $T^{-1}(y)$ with $\partial_{s} v(y)$ yields a non-local PDE:

$$
g(y)=\int_{\partial_{s} v(y)} \frac{f(x) \operatorname{det}\left[D^{2} v(y)-D_{y y}^{2} s(x, y)\right]}{\sqrt{\operatorname{det}\left[D_{y x}^{2} s(x, y) D_{y x}^{2} s(x, y)^{T}\right]}} d \mathcal{H}^{m-n}(x)
$$

- Neglecting null sets

$$
\begin{aligned}
T^{-1}(y) & \subseteq \partial_{s} v(y):=\left\{x: v^{s}(x)+v(y)=s(x, y)\right\} \\
& \subseteq X_{2}(y, p, Q):=\left\{x \in X_{1}(y, p), D_{y y}^{2} s(x, y) \leq Q\right\} \\
& \subseteq X_{1}(y, p):=\left\{x: D_{y} s(x, y)=p\right\}
\end{aligned}
$$

for $p=D v(y), Q=D^{2} v(y)$.

- Non-degeneracy implies that $X_{1}(y, p)$ is a smooth, $m-n$ dimensional submanifold of X.
- Replacing $T^{-1}(y)$ with $\partial_{s} v(y)$ yields a non-local PDE:

$$
g(y)=\int_{\partial_{s} v(y)} \frac{f(x) \operatorname{det}\left[D^{2} v(y)-D_{y y}^{2} s(x, y)\right]}{\sqrt{\operatorname{det}\left[D_{y x}^{2} s(x, y) D_{y x}^{2} s(x, y)^{T}\right]}} d \mathcal{H}^{m-n}(x)
$$

- Replacing $T^{-1}(y)$ with either X_{i} results in a local PDE.

Characterizing solutions via a non-local PDE

Theorem (McCann -P. '17)

If $(u, v)=\left(v^{s}, u^{s}\right)$ are s-conjugate functions, then they maximize the dual problem if and only if v solves the non-local equation

$$
g(y)=\int_{\partial_{s} v(y)} \frac{f(x) \operatorname{det}\left[D^{2} v(y)-D_{y y}^{2} s(x, y)\right]}{\sqrt{\operatorname{det}\left[D_{y x}^{2} s(x, y) D_{y x}^{2} s(x, y)^{T}\right]}} d \mathcal{H}^{m-n}(x)
$$

\mathcal{H}^{n} almost everywhere.

Solving via local PDE

Local equation: $g(y)=G_{i}\left(y, D v(y), D^{2} v(y)\right)$, where

$$
G_{i}(y, p, Q)=\int_{X_{i}(y, p, Q)} \frac{f(x) \operatorname{det}\left[Q-D_{y y}^{2} s(x, y)\right]}{\sqrt{\operatorname{det}\left[D_{y x}^{2} s(x, y) D_{y x}^{2} s(x, y)^{T}\right]}} d \mathcal{H}^{m-n}(x)
$$

for $i=1,2$.

Theorem (McCann -P. '17)

Solving via local PDE

Local equation: $g(y)=G_{i}\left(y, D v(y), D^{2} v(y)\right)$, where

$$
G_{i}(y, p, Q)=\int_{X_{i}(y, p, Q)} \frac{f(x) \operatorname{det}\left[Q-D_{y y}^{2} s(x, y)\right]}{\sqrt{\operatorname{det}\left[D_{y x}^{2} s(x, y) D_{y x}^{2} s(x, y)^{T}\right]}} d \mathcal{H}^{m-n}(x)
$$

for $i=1,2$.

Theorem (McCann -P. '17)

Assume $(u, v)=\left(v^{s}, u^{s}\right)$ with $v \in C^{2}(Y)$. If v solves the local equation with $i=2$, then (u, v) solves the dual problem.

Solving via local PDE

Local equation: $g(y)=G_{i}\left(y, D v(y), D^{2} v(y)\right)$, where

$$
G_{i}(y, p, Q)=\int_{X_{i}(y, p, Q)} \frac{f(x) \operatorname{det}\left[Q-D_{y y}^{2} s(x, y)\right]}{\sqrt{\operatorname{det}\left[D_{y x}^{2} s(x, y) D_{y x}^{2} s(x, y)^{T}\right]}} d \mathcal{H}^{m-n}(x)
$$

for $i=1,2$.

Theorem (McCann -P. '17)

Assume $(u, v)=\left(v^{s}, u^{s}\right)$ with $v \in C^{2}(Y)$. If v solves the local equation with $i=2$, then (u, v) solves the dual problem.
Conversely, assume also that $u \in C^{2}(X)$, and that each $X_{i}\left(y, \operatorname{Dv}(y), D^{2} v(y)\right)$ is connected. Then, if (u, v) solves the dual problem, v solves the local equation a.e.

Solving via local PDE

Local equation: $g(y)=G_{i}\left(y, D v(y), D^{2} v(y)\right)$, where

$$
G_{i}(y, p, Q)=\int_{X_{i}(y, p, Q)} \frac{f(x) \operatorname{det}\left[Q-D_{y y}^{2} s(x, y)\right]}{\sqrt{\operatorname{det}\left[D_{y x}^{2} s(x, y) D_{y x}^{2} s(x, y)^{T}\right]}} d \mathcal{H}^{m-n}(x)
$$

for $i=1,2$.

Theorem (McCann -P. '17)

Assume $(u, v)=\left(v^{s}, u^{s}\right)$ with $v \in C^{2}(Y)$. If v solves the local equation with $i=2$, then (u, v) solves the dual problem.
Conversely, assume also that $u \in C^{2}(X)$, and that each $X_{i}\left(y, \operatorname{Dv}(y), D^{2} v(y)\right)$ is connected. Then, if (u, v) solves the dual problem, v solves the local equation a.e.

Remark: G_{2} is elliptic, so if $v \in C^{2, \alpha}$ one can bootstrap and get that v is as smooth as G_{2} and g.

One dimensional targets (joint with McCann and Chiappori)

- Take $m>n=1$. We (try to) construct the optimal map explicitly one level set at a time, assuming $T^{-1}(y)=X_{1}(y, p)$ for some p.

One dimensional targets (joint with McCann and Chiappori)

- Take $m>n=1$. We (try to) construct the optimal map explicitly one level set at a time, assuming $T^{-1}(y)=X_{1}(y, p)$ for some p.
- For fixed y, let $k(y)$ be the (unique) $k \in \mathbb{R}$ which splits the population proportionately at y; that is,

$$
\mu\left(X_{\leq}(y, p)\right)=\nu((-\infty, y))
$$

with

$$
X_{\leq}(y, p)=\left\{x \in X: \frac{\partial s}{\partial y}(x, y) \leq p\right\}
$$

One dimensional targets (joint with McCann and Chiappori)

- Take $m>n=1$. We (try to) construct the optimal map explicitly one level set at a time, assuming $T^{-1}(y)=X_{1}(y, p)$ for some p.
- For fixed y, let $k(y)$ be the (unique) $k \in \mathbb{R}$ which splits the population proportionately at y; that is,

$$
\mu\left(X_{\leq}(y, p)\right)=\nu((-\infty, y))
$$

with

$$
X_{\leq}(y, p)=\left\{x \in X: \frac{\partial s}{\partial y}(x, y) \leq p\right\}
$$

- We say (s, μ, ν) is nested if, whenever $y_{0}<y_{1}$,

$$
X_{\leq}\left(y_{0}, p\left(y_{0}\right)\right) \subseteq X_{<}\left(y_{1}, p\left(y_{1}\right)\right)
$$

Solution Theorem (roughly stated)

Theorem (Chiappori-McCann-P ('16))

If (s, μ, ν) is nested, then the map that assigns each $x \in X_{1}(y, p(y))$ to $y=T(x)$ is the unique optimizer.

Solution Theorem (roughly stated)

Theorem (Chiappori-McCann-P ('16))

If (s, μ, ν) is nested, then the map that assigns each $x \in X_{1}(y, p(y))$ to $y=T(x)$ is the unique optimizer.

- In this case, the $i=1$ version of the local equation holds:

$$
g(y)=\int_{X_{1}(y, p(y))} \frac{p^{\prime}(y)-s_{y y}(x, y)}{\left|D_{x} s_{y}\right|} f(x) d \mathcal{H}^{m-1}(x)
$$

(Note that $\left.p(y)=v^{\prime}(y).\right)$

Solution Theorem (roughly stated)

Theorem (Chiappori-McCann-P ('16))

If (s, μ, ν) is nested, then the map that assigns each $x \in X_{1}(y, p(y))$ to $y=T(x)$ is the unique optimizer.

- In this case, the $i=1$ version of the local equation holds:

$$
g(y)=\int_{X_{1}(y, p(y))} \frac{p^{\prime}(y)-s_{y y}(x, y)}{\left|D_{x} s_{y}\right|} f(x) d \mathcal{H}^{m-1}(x)
$$

(Note that $\left.p(y)=v^{\prime}(y).\right)$

- The velocity of $X_{1}(y, p(y))$ is given by $\frac{p^{\prime}-s_{y y}}{\left|D_{x} s_{y}\right|^{2}} D_{x} s_{y}$. If the speed $\left(p^{\prime}(y)-s_{y y}(y, x)\right) /\left|D_{x} s_{y}\right|$ is positive for each $x \in X_{1}(y, p(y))$ and each y, the model is nested. Conversely, if nestedeness holds, the speed is always nonnegative, and positive for at least one $x \in X_{1}(y, p(y))$ for each y.

Regularity for nested data when $n=1$

- In the nested case, T is continuous, and u is C^{1} (as $D u(x)=D_{x} s(x, T(x))$.)

Regularity for nested data when $n=1$

- In the nested case, T is continuous, and u is C^{1} (as $D u(x)=D_{x} s(x, T(x))$.)
- $p(y)=v^{\prime}(y)$ solves $h(y, p):=\mu\left(X_{\leq}(y, p)\right)-\nu((-\infty, y))=0$. As $h_{p}(y, p(y))>0, p$ is as smooth as h via the implicit function theorem.

Regularity for nested data when $n=1$

- In the nested case, T is continuous, and u is C^{1} (as $D u(x)=D_{x} s(x, T(x))$.)
- $p(y)=v^{\prime}(y)$ solves $h(y, p):=\mu\left(X_{\leq}(y, p)\right)-\nu((-\infty, y))=0$. As $h_{p}(y, p(y))>0, p$ is as smooth as h via the implicit function theorem.
- To ensure smoothness of h, we need smoothness and bounds on $f, g, s, \partial X$, as well as nondegeneracy, and transversality of the intersection of ∂X and the $X_{1}(y, p(y))$ (or at least $H^{m-1}\left(\partial X \cap X_{1}(y, p(y))\right)=0$ locally). We can differentiate these using a generalized divergence theorem and the coarea formula.

Sample derivatives

Example:

$$
\begin{aligned}
h_{p}(y, p(y))= & \int_{X_{1}(y, p)} f(x) \frac{d \mathcal{H}^{m-1}(x)}{\left|D_{x} s_{y}(x, y)\right|} \\
= & \int_{X_{\leq}(y, p)} \nabla \cdot\left(f(x) \frac{D_{x} s_{y}(x, y)}{\left|D_{x} s_{y}(x, y)\right|^{2}}\right) d \mathcal{H}^{m}(x) \\
& -\int_{\partial x \cup \bar{x}_{\leq}(y, p)} f(x) \frac{D_{x} s_{y}(x, y) \cdot \hat{n}_{X}}{\left|D_{x} s_{y}(x, y)\right|^{2}} d \mathcal{H}^{m-1}(x) \\
h_{y}(y, p(y))= & \int_{X_{1}(y, p)} f(x) \frac{-s_{y y}(x, y) d \mathcal{H}^{m-1}(x)}{\left|D_{x} s_{y}(x, y)\right|}-g(y) .
\end{aligned}
$$

Regularity of husband's payoff v

Theorem (Chiappori-McCann-P ('16))

Fix an integer $r \geq 1$. Suppose there is an interval $Y^{\prime}=\left(y_{0}, y_{1}\right) \subset Y$ such that $X^{\prime} \cap \partial X \in C^{1}$ intersects $\overline{X(y, k(y))}$ transversally for all $y \in \overline{Y^{\prime}}$, where $X^{\prime}=\bigcup_{y \in Y^{\prime}} \overline{X_{1}(y, p(y))}$. Then $\|p\|_{C^{r, 1}\left(Y^{\prime}\right)}$ is controlled by the following quantities, all assumed positive and finite: $\|\log f\|_{C^{r-1,1}\left(X^{\prime}\right)},\|\log g\|_{C^{r-1,1}\left(Y^{\prime}\right)}$, $\left\|s_{y}\right\|_{C^{r, 1}\left(X^{\prime} \times Y^{\prime}\right)},\left\|\hat{n}_{X}\right\|_{\left(C^{r-2,1} \cap W^{1,1}\right)\left(X^{\prime} \cap \partial X\right)}, \mathcal{H}^{m-1}\left[\partial^{*} X\right]$,

$$
\begin{array}{ll}
\inf _{y \in Y^{\prime}} \mathcal{H}^{m-1}[X(y, k(y))] & \text { (proximity to ends of } Y)(1) \\
\inf _{x \in X^{\prime}, y \in Y^{\prime}}\left|D_{x} s_{y}(x, y)\right| & \text { (non-degeneracy), } \\
\inf _{x \in X^{\prime} \cap \partial X, y \in Y^{\prime}} 1-\left(\hat{n}_{X} \cdot \hat{n}_{X_{=}}\right)^{2} & \text { (transversality) } \\
\text { where } \hat{n}_{X=}(x, y)=D_{x} s_{y} /\left|D_{x} s_{y}\right|, \text { and } \mathcal{H}^{m-2}\left[\overline{X\left(y_{0}, k\left(y_{0}\right)\right)} \cap \partial X\right] .
\end{array}
$$

Regularity cont'd

- The optimal map T satisfies $\frac{\partial s}{\partial y}(x, T(x))=p(T(x))=v^{\prime}(T(x))$. With a speed limit condition, $p^{\prime}(y)-s_{y y}(x, y)>0$, this is as smooth as $\frac{\partial s}{\partial y}$ and $v^{\prime}=p$ via the implicit function theorem.

Regularity cont'd

- The optimal map T satisfies $\frac{\partial s}{\partial y}(x, T(x))=p(T(x))=v^{\prime}(T(x))$. With a speed limit condition, $p^{\prime}(y)-s_{y y}(x, y)>0$, this is as smooth as $\frac{\partial s}{\partial y}$ and $v^{\prime}=p$ via the implicit function theorem.
- The potential u is then one derivative smoother than T via $D u(x)=D_{x} s(x, T(x))$.
- Thank you!

