The Implementation Duality

Georg Nöldeke and Larry Samuelson

Universität Basel and Yale University

April 11, 2017

1. Introduction

- We examine an abstract implementation problem, with matching and principal-agent problems as leading special cases.
- Duality plays an important role in studying implementation with quasilinear (transferable) utility.
- In the absence of quasilinearity much of the relevant structure is lost, but not all
- Our analysis centers around a pair of maps that we refer to as implementation maps. We show that
- these maps constitute a duality, that
- under natural conditions exhibits particulary nice properties.
- The result is a characterization of implementability. We show how this characterization can be used in matching and principal-agent problems.

2. Model

Basic Ingredients

- Compact metric spaces X and Y.
- $\phi: X \times Y \times \mathbb{R} \rightarrow \mathbb{R}$, which is
- continuous,
- strictly decreasing in its third argument,
- and satisfies $\phi(x, y, \mathbb{R})=\mathbb{R}$.

2. Model

Looking from the Other Side

- Compact metric spaces X and Y.
- $\phi: X \times Y \times \mathbb{R} \rightarrow \mathbb{R}$, which is
- continuous,
- strictly decreasing in its third argument,
- and satisfies $\phi(x, y, \mathbb{R})=\mathbb{R}$.
- $\psi: Y \times X \times \mathbb{R} \rightarrow \mathbb{R}$ is defined as the inverse of ϕ with respect to the third argument,

$$
u=\phi(x, y, \psi(y, x, u)),
$$

and inherits its properties: ψ is

- continuous,
- strictly decreasing in its third argument,
- satisfies $\psi(y, x, \mathbb{R})=\mathbb{R}$.

2. Model

Interpretation

- In the matching context
- $\phi(x, y, v)$ is the maximal utility an agent of type $x \in X$ can obtain when matched with an agent of type $y \in Y$ who obtains utility v.
- $\psi(y, x, u)$ is the maximal utility an agent of type $y \in Y$ can obtain when matched with an agent of type $x \in X$ who obtains utility u.
- We later specify measures of X and Y and reservation utilities for all agents.
- In the principal-agent context
- $\phi(x, y, v)$ is the utility of an agent of type $x \in X$ when choosing decision $y \in Y$ and making transfer $v \in \mathbb{R}$ to the principal.
- $\psi(y, x, u)$ specifies the transfer that provides utility u to an agent of type x who chooses decision y.
- We later specify a utility function for the principal, a measure over X, describing the distribution of agent types, and reservation utilities for the agent.

2. Model

A Return to the Assumptions

- Compact metric spaces X and Y.
- $\phi: X \times Y \times \mathbb{R} \rightarrow \mathbb{R}$, which is
- continuous,
- strictly decreasing in its third argument,
- and satisfies $\phi(x, y, \mathbb{R})=\mathbb{R}$.

2. Model

Profiles and Assignments

- Let
- $\mathbf{B}(X)$ be the set of bounded functions $X \rightarrow \mathbb{R}$ and $\mathbf{B}(Y)$ the set of bounded functions $Y \rightarrow \mathbb{R}$;
- Y^{X} be the set of functions $X \rightarrow Y$ and X^{Y} the set of functions $Y \rightarrow X$
- $\boldsymbol{u} \in \mathbf{B}(X)$ and $\boldsymbol{v} \in \mathbf{B}(Y)$ are profiles.
- $\boldsymbol{y} \in Y^{X}$ and $\boldsymbol{x} \in X^{Y}$ are assignments.
- We endow the sets $\mathbf{B}(X)$ and $\mathbf{B}(Y)$ with the pointwise partial order and the sup norm $\|\cdot\|$
- We show in the paper that the restriction to bounded profiles is without loss of generality.

2. Model

Interpretation

- In the matching model, \boldsymbol{u} and \boldsymbol{v} are profiles of utilities for the buyers and sellers.
- In the principal-agent model, \boldsymbol{u} is a rent function for the agent, giving a utility $\boldsymbol{u}(x)$ for each type x of agent, and \boldsymbol{v} is a tariff function giving the tariff $\boldsymbol{v}(y)$ at which any agent can buy decision y.
- In the matching model, $y=\boldsymbol{y}(x)$ identifies the seller y with whom buyer x matches, and $x=\boldsymbol{x}(y)$ identifies the buyer x with whom seller y matches.
- In the principal-agent model, \boldsymbol{y} is decision assignment; $y=\boldsymbol{y}(x)$ identifies the decision y for agent type x. The function x is a type assignment; $x=\boldsymbol{x}(y)$ identifies the agent x to whom the principal assigns decision y.

2. Model

Implementation

- A profile $\boldsymbol{v} \in \mathbf{B}(Y)$ implements $(\boldsymbol{u}, \boldsymbol{y}) \in \mathbf{B}(X) \times Y^{X}$ if

$$
\begin{aligned}
\boldsymbol{u}(x) & =\max _{y \in Y} \boldsymbol{\phi}(x, y, \boldsymbol{v}(y)) \\
\boldsymbol{y}(x) & \in \underset{y \in Y}{\arg \max \boldsymbol{\phi}(x, y, \boldsymbol{v}(y)) .}
\end{aligned}
$$

- Similarly, a profile $\boldsymbol{u} \in \mathbf{B}(X)$ implements $(\boldsymbol{v}, \boldsymbol{x}) \in \mathbf{B}(Y) \times X^{Y}$ if

$$
\begin{aligned}
\boldsymbol{v}(y) & =\max _{x \in X} \psi(y, x, \boldsymbol{u}(x)) \\
\boldsymbol{x}(y) & \in \arg \max _{x \in X} \psi(y, x, \boldsymbol{u}(x)) .
\end{aligned}
$$

- We let $\boldsymbol{I}(X) \subset \mathbf{B}(X)$ and $\boldsymbol{I}(Y) \subset \mathbf{B}(Y)$ denote the sets of implementable profiles.

2. Model

Interpretation

- Matching interpretation: \boldsymbol{v} implements $(\boldsymbol{u}, \boldsymbol{y})$ if, given the seller utility prices given by v, every buyer x finds it optimal to select seller $\boldsymbol{y}(x)$ and thereby achieves utility $\boldsymbol{u}(x)$.
- Similarly, \boldsymbol{u} implements $(\boldsymbol{v}, \boldsymbol{x})$ if, given the buyer utility prices given by \boldsymbol{u}, every seller y finds it optimal to select seller $\boldsymbol{x}(y)$ and thereby achieves utility $\boldsymbol{v}(y)$.
- Principal-agent interpretation: \boldsymbol{v} implements $(\boldsymbol{u}, \boldsymbol{y})$ if, given the tariff \boldsymbol{v}, every buyer x finds it optimal to select decision $\boldsymbol{y}(x)$ and thereby achieves utility $\boldsymbol{u}(x)$.
- uimplements $(\boldsymbol{v}, \boldsymbol{x})$ if, given the rent function \boldsymbol{u}, for every decision y agent $\boldsymbol{x}(y)$ is the one who can pay the most for decision y and $\boldsymbol{v}(y)$ is the corresponding willingness to pay.

3. Duality

Implementation Maps

- The implementation maps $\Phi: \mathbf{B}(Y) \rightarrow \mathbf{B}(X)$ and $\Psi: \mathbf{B}(X) \rightarrow \mathbf{B}(Y)$ are defined by setting

$$
\begin{aligned}
& \Phi \boldsymbol{v}(x)=\sup _{y \in Y} \phi(x, y, \boldsymbol{v}(y)) \forall x \in X \\
& \Psi \boldsymbol{u}(y)=\sup _{x \in X} \psi(y, x, \boldsymbol{u}(x)) \forall y \in Y .
\end{aligned}
$$

Some Properties of Implementation Maps

Proposition 1

The implementation maps Φ and Ψ

- are continuous,
- map bounded sets into bounded sets,
- implement continuous profiles, and
- have images that coincide with the set of implementable profiles:

$$
\boldsymbol{I}(X)=\Phi \boldsymbol{B}(X) \subset \boldsymbol{C}(X) \text { and } \boldsymbol{I}(Y)=\Psi \boldsymbol{B}(Y) \subset \boldsymbol{C}(Y) .
$$

- It is immediate from the definitions that implementable profiles are contained in the images of the implementation maps.
- The other direction requires an argument using our assumptions on (X, Y, ϕ).

3. Duality
 Duality

The implementation maps Φ and Ψ are dualities (in the sense of Penot (2010)), i.e., maps with the property that the image of the infimum of a set is the supremum of the image of the set).

This property is a straightforward implication of:

3. Duality

Galois Connection

Proposition 2

The implementation maps Φ and Ψ are a Galois connection. That is,

$$
\boldsymbol{u} \geq \Phi \boldsymbol{v} \Longleftrightarrow \boldsymbol{v} \geq \Psi \boldsymbol{u}
$$

holds for all $\boldsymbol{u} \in \mathbf{B}(X)$ and $\boldsymbol{v} \in \mathbf{B}(Y)$.

Proof:

$$
\begin{aligned}
\boldsymbol{u} \geq \Phi \boldsymbol{v} & \Longleftrightarrow \boldsymbol{u}(x) \geq \sup _{y \in Y} \boldsymbol{\phi}(x, y, \boldsymbol{v}(y)) \text { for all } x \in X \\
& \Longleftrightarrow \boldsymbol{u}(x) \geq \boldsymbol{\phi}(x, y, \boldsymbol{v}(y)) \text { for all } x \in X \text { and } y \in Y \\
& \Longleftrightarrow \boldsymbol{\psi}(y, x, \boldsymbol{u}(x)) \leq \boldsymbol{v}(y) \text { for all } x \in X \text { and } y \in Y \\
& \Longleftrightarrow \boldsymbol{v}(y) \geq \sup _{x \in X} \psi(y, x, \boldsymbol{u}(x)) \text { for all } y \in Y \\
& \Longleftrightarrow \boldsymbol{v} \geq \Psi \boldsymbol{u} .
\end{aligned}
$$

3. Duality

Galois Connection

Galois connections have many nice properties. For instance:

Corollary 1

The implementation maps Φ and Ψ
[1.1] satisfy the cancellation rule, that is, for all $\boldsymbol{u} \in \mathbf{B}(X)$ and $\boldsymbol{v} \in \mathbf{B}(Y)$:

$$
\boldsymbol{v} \geq \Psi \Phi \boldsymbol{v} \text { and } \boldsymbol{u} \geq \Phi \Psi \boldsymbol{u}
$$

[1.2] are order reversing, that is, for all $\boldsymbol{u}_{1}, \boldsymbol{u}_{2} \in \mathbf{B}(X)$ and $\boldsymbol{v}_{1}, \boldsymbol{v}_{2} \in \mathbf{B}(Y)$:

$$
\boldsymbol{v}_{1} \geq \boldsymbol{v}_{2} \Rightarrow \Phi \boldsymbol{v}_{2} \geq \Phi \boldsymbol{v}_{1} \text { and } \boldsymbol{u}_{1} \geq \boldsymbol{u}_{2} \Rightarrow \Psi \boldsymbol{u}_{2} \geq \Psi \boldsymbol{u}_{1} ;
$$

[1.3] and satisfy the semi-inverse rule, that is, for all $\boldsymbol{u} \in \mathbf{B}(X)$ and $\boldsymbol{v} \in \mathbf{B}(Y)$:

$$
\Phi \Psi \Phi \boldsymbol{v}=\Phi \boldsymbol{v} \text { and } \Psi \Phi \Psi \boldsymbol{u}=\Psi \boldsymbol{u} .
$$

3. Duality

Characterizing Implementability: Profiles

Proposition 3

[3.1] $\boldsymbol{u} \in \boldsymbol{B}(X)$ is implementable if and only if $\boldsymbol{u}=\Phi \Psi \boldsymbol{u}$. [3.2] $\boldsymbol{v} \in \boldsymbol{B}(Y)$ is implementable if and only if $\boldsymbol{v}=\Psi \Phi \boldsymbol{v}$.

The semi-inverse property of a Galois connection ensures that the image of the implementation maps have such a fixed point characterization. Our assumptions ensure that these images are the implementable profiles. Some implications include:

$$
\begin{gathered}
\boldsymbol{I}(X)=\Phi \boldsymbol{I}(Y) \text { and } \boldsymbol{I}(Y)=\Psi \boldsymbol{I}(X) \\
\boldsymbol{u}=\Phi \boldsymbol{v} \Longleftrightarrow \boldsymbol{v}=\Psi \boldsymbol{u}, \quad \text { for all } \boldsymbol{u} \in \boldsymbol{I}(X) \text { and } \boldsymbol{v} \in \boldsymbol{I}(Y)
\end{gathered}
$$

3. Duality

Characterizing Implementability: Illustration

3. Duality

Characterizing Implementability: Assignments

$$
\Gamma_{\boldsymbol{u}, \boldsymbol{v}}=\{(x, y) \in X \times Y \mid \boldsymbol{u}(x)=\phi(x, y, \boldsymbol{v}(y))\}
$$

Corollary 2

[2.1] An assignment $\boldsymbol{y} \in Y^{X}$ is implementable if and only if there exist profiles u and v that implement each other with $\Gamma_{u, v}$ containing the graph of \boldsymbol{y}, i.e.,

$$
(x, \boldsymbol{y}(x)) \in \Gamma_{u, v} \quad \text { for all } x \in X .
$$

[2.2] The argmax correspondences \boldsymbol{X}_{u} and \boldsymbol{Y}_{v} are then inverses and their graphs coincide with $\Gamma_{u, v}$, i.e., they satisfy

$$
\hat{x} \in \boldsymbol{X}_{\boldsymbol{u}}(\hat{y}) \Longleftrightarrow \hat{y} \in \boldsymbol{Y}_{\boldsymbol{v}}(\hat{x}) \Longleftrightarrow(\hat{x}, \hat{y}) \in \Gamma_{u, v} .
$$

Corollary 3

- The sets of implementable profiles $\boldsymbol{I}(X)$ and $\mathbf{I}(Y)$ are closed subsets of $\boldsymbol{B}(X)$ and $\boldsymbol{B}(Y)$.
- Bounded sets of implementable profiles are equicontinuous.
- Closed and bounded sets of implementable profiles are compact.

4. Matching

Matching Problems

- A matching problem is given by $(X, Y, \phi, \mu, v, \underline{u}, \underline{v})$, where
- (X, Y, ϕ) are as before,
- μ and v are measures on X and Y with full support, and
- \underline{u} and \underline{v} are continuous reservation utilities.
- A match for a matching problem is a measure λ on $X \times Y$ satisfying the conditions

$$
\begin{align*}
& \lambda(\tilde{X} \times Y) \leq \mu(\tilde{X}) \tag{1}\\
& \lambda(X \times \tilde{Y}) \leq v(\tilde{Y}) \tag{2}
\end{align*}
$$

- An outcome is a triple $(\lambda, \boldsymbol{u}, \boldsymbol{v})$.

4. Matching

Pairwise Stable and Stable Outcomes

- An outcome $(\boldsymbol{\lambda}, \boldsymbol{u}, \boldsymbol{v})$ outcome is feasible if

$$
\begin{aligned}
\boldsymbol{u}(x) & =\phi(x, y, \boldsymbol{v}(y)) \quad \forall(x, y) \in \operatorname{supp}(\lambda) \\
\boldsymbol{u}(x) & =\underline{\boldsymbol{u}}(x) \quad \forall x \in \operatorname{supp}\left(\mu-\lambda_{X}\right) \\
\boldsymbol{v}(y) & =\underline{\boldsymbol{v}}(y) \quad \forall y \in \operatorname{supp}\left(v-\lambda_{Y}\right)
\end{aligned}
$$

- A feasible outcome is pairwise stable if it satisfies the incentive constraints

$$
\boldsymbol{u}(x) \geq \boldsymbol{\phi}(x, y, \boldsymbol{v}(y)) \quad \forall(x, y) \in X \times Y
$$

and is individually rational if it satisfies

$$
\begin{aligned}
\boldsymbol{u}(x) & \geq \underline{\boldsymbol{u}}(x) \quad \forall x \in X \\
\boldsymbol{v}(y) & \geq \underline{\boldsymbol{v}}(y) \quad \forall y \in Y,
\end{aligned}
$$

- and it is stable if it is both pairwise stable and individually rational.

4. Matching

Pairwise Stable Outcomes

We can connect pairwise stability and implementation:

Lemma 1

Let the matching problem $(X, Y, \phi, \mu, v, \underline{\boldsymbol{u}}, \underline{\boldsymbol{v}})$ be balanced, and let λ be a full match.
[1.1] The outcome $(\lambda, \boldsymbol{u}, \boldsymbol{v})$ is feasible if and only if $\operatorname{supp} \lambda \subset \Gamma_{u, v}$.
[1.2] If the outcome $(\lambda, \boldsymbol{u}, \boldsymbol{v})$ is feasible, then the following statements are equivalent: (i) $(\boldsymbol{\lambda}, \boldsymbol{u}, \boldsymbol{v})$ is pairwise stable, (ii) \boldsymbol{v} implements \boldsymbol{u}, (iii) \boldsymbol{u} implements \boldsymbol{v}, (iv) \boldsymbol{u} and \boldsymbol{v} implement each other.

4. Matching

Existence of Pairwise Stable Outcomes

Proposition 4

Let the matching problem $(X, Y, \phi, \mu, v, \underline{\boldsymbol{u}}, \underline{\boldsymbol{v}})$ be balanced. Then the set of pairwise stable full outcomes satisfying initial condition $\left(y_{1}, v_{1}\right)$ is nonempty and closed.

The proof follows the same pattern as proof for existence of solutions to an optimal transportation problem:
(1) Matching problems with finite numbers of agents have pairwise stable outcomes (e.g., Demange and Gale (1985))
(2) Construct sequence of finite matching problems $\left(X_{n}, Y_{n}, \phi_{n}, \mu_{n}, v_{n}, \underline{\boldsymbol{u}}, \underline{\boldsymbol{v}}\right)$ converging to ($\left.X, Y, \phi, \mu, \boldsymbol{v}, \underline{\boldsymbol{u}}, \underline{\boldsymbol{v}}\right)$
(3) Construct an associated bounded sequence of pairwise stable outcomes $\left(\lambda_{n}, \boldsymbol{u}_{n}, \boldsymbol{v}_{n}\right)$
(4) Extract converging subsequence and show that limit $(\lambda, \boldsymbol{u}, \boldsymbol{v})$ is pairwise stable for $(X, Y, \phi, \mu, v, \underline{\boldsymbol{u}}, \underline{\boldsymbol{v}})$.

4. Matching

Existence of Stable Outcomes

Proposition 5

There exists a stable outcome ($\lambda, \boldsymbol{u}, \boldsymbol{v}$) for the matching problem $(X, Y, \phi, \mu, v, \underline{\boldsymbol{u}}, \underline{\boldsymbol{v}})$.

- Pairwise stable outcomes can be constructed for any initial condition of the form $\boldsymbol{u}\left(x_{1}\right)=u_{1}$ for some $x_{1} \in X$ and $u_{1} \in \mathbb{R}$.
- Existence of stable outcomes then is an easy corollary to Proposition 4

4. Matching

Deterministic Outcomes

We are often interested in deterministic matches:

Corollary 4

Let the matching problem ($X, Y, \phi, \mu, \boldsymbol{v}, \underline{\boldsymbol{u}}, \underline{\boldsymbol{v}}$) be balanced, and let $\boldsymbol{y} \in Y^{X}$ be a measure-preserving assignment. Then the associated deterministic match λ_{y} is pairwise stable if and only if y is implementable.

4. Matching

Lattice Results

The set of pairwise stable outcomes forms a lattice:

Proposition 6

Let the matching problem $(X, Y, \phi, \mu, \boldsymbol{v}, \underline{\boldsymbol{u}}, \underline{\boldsymbol{v}})$ be balanced. Let $\left(\lambda_{1}, \boldsymbol{u}_{1}, \boldsymbol{v}_{1}\right)$ and $\left(\lambda_{2}, \boldsymbol{u}_{2}, \boldsymbol{v}_{2}\right)$ be pairwise stable full outcomes. Then there exist pairwise stable full outcomes $\left(\lambda_{3}, \boldsymbol{u}_{1} \vee \boldsymbol{u}_{2}, \boldsymbol{v}_{1} \wedge \boldsymbol{v}_{2}\right)$ and $\left(\lambda_{4}, \boldsymbol{u}_{1} \wedge \boldsymbol{u}_{2}, \boldsymbol{v}_{1} \vee \boldsymbol{v}_{2}\right)$.

The proof uses the duality property of the implementation maps and the connection between implementability and pairwise stability.

4. Matching

Complete Lattices

It then follows easily that:

Corollary 5

The set of stable profiles of the matching problem $(X, Y, \phi, \mu, v, \underline{\boldsymbol{u}}, \underline{\boldsymbol{v}})$ form a complete lattice. In the minimal outcome, the equality $\boldsymbol{u}(x)=\underline{\boldsymbol{u}}(x)$ holds for some $x \in X$.

5. Principal-Agent Problems

Setting the Stage

We have:

- Agent with utility function $\phi(x, y, v)$.
- Principal with utility function $\pi(x, y, v)$.
- $\pi: X \times Y \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous, strictly increasing in v and satisfies $\pi(x, y, \mathbb{R})=\mathbb{R}$.
- Agent's type distributed on X according to μ.
- $\underline{\boldsymbol{u}} \in \boldsymbol{C}(X)$: reservation utility profile for the agent.

5. Principal-Agent Problems

The Principal's Problem

The principal's problem can be formulated as:

$$
\max _{\{\boldsymbol{v} \in \boldsymbol{I}(Y): \boldsymbol{v} \leq \Psi \underline{u}\}} \int_{x \in X} \max _{y \in \boldsymbol{Y}_{\boldsymbol{v}}} \pi(x, y, \boldsymbol{v}(y)) d \mu(x)=\max _{\{\boldsymbol{v} \in \boldsymbol{I}(Y): \boldsymbol{v} \leq \Psi \underline{\boldsymbol{u}}\}} \Pi(\boldsymbol{v}) .
$$

Straightforward arguments ensure that the integral exists.

5. Principal-Agent Problems

Existence Result

Proposition 7

A solution to the principal's problem exist.

Proof:

- Check that Π is upper semicontinuous.
- Show that there is no loss of generality in imposing a lower bound on the feasible tariffs to obtain a compact choice set.
- Apply Weierstrass.

5. Principal-Agent Problems

Participation Constraint

Will the participation constraint bind?

- This is a triviality with quasilinear utility.
- In general, a solution to the principal's problem need not cause the participation constraint to bind. We offer three sufficient conditions:
- Private values.
- "Uniform" income effects.
- Single crossing.
- The last two are special cases of a "strong implementability" condition.

6. Further Results

Single Crossing

With $X=[\underline{x}, \bar{x}] \subset \mathbb{R}, Y=[\underline{y}, \bar{y}] \subset \mathbb{R}$ the single-crossing condition

$$
\phi\left(x_{1}, y_{2}, v_{2}\right) \geq \phi\left(x_{1}, y_{1}, v_{1}\right) \Rightarrow \phi\left(x_{2}, y_{2}, v_{2}\right)>\phi\left(x_{2}, y_{1}, v_{1}\right)
$$

for all $x_{1}<x_{2} \in X, y_{1}<y_{2} \in Y$, and $v_{1}, v_{2} \in \mathbb{R}$ implies

- all increasing decision functions are implementable, and
- stable outcomes with deterministic matchings exist.

6. Further Results

Extensions

We can extend the analysis to incorporate stochastic contracts and moral hazard in the principal-agent problem.

7. Discussion

THANK YOU

