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Motivations with optimal transport
Inverse problems in optics

 reflector surfaces R

Collimated source / Far-field target

µ

ν

OT in R2, c(x, y) = ‖x− y‖2
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Semi-discrete optimal transport
µ = probability measure on X ν = prob. measure on finite Y

y

with density ρ, X = manifold =
∑
y∈Y νyδy
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Semi-discrete optimal transport
µ = probability measure on X ν = prob. measure on finite Y
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with density ρ, X = manifold =
∑
y∈Y νyδy
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Semi-discrete optimal transport
µ = probability measure on X ν = prob. measure on finite Y

min{
∫
X
c(x, T (x)) dµ(x);T#µ = ν}

T−1(y)
y

with density ρ, X = manifold =
∑
y∈Y νyδy

Transport map: T : X → Y s.t.

∀y ∈ Y, µ(T−1({y})) = νy
(i.e. T#µ = ν)

Cost function: c : X × Y → R

Monge problem:
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Optimal transport and Laguerre Diagrams

Any function ψ on Y defines a transport map:

Tψ(x) = arg miny∈Y c(x, y) + ψ(y)

We assume (Twist): ∀x ∈ X, the map y ∈ Y 7→ ∇xc(x, y) is injective.

Tψ

Semi-discrete optimal transport
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Optimal transport and Laguerre Diagrams

Any function ψ on Y defines a transport map:

Tψ(x) = arg miny∈Y c(x, y) + ψ(y)

Under (Twist), Tψ is well-defined a.e. and
T−1
ψ (y) = Lagψ(y)

We assume (Twist): ∀x ∈ X, the map y ∈ Y 7→ ∇xc(x, y) is injective.

T−1
ψ (y) = Lagψ(y) Tψ#ρ =

∑
y ρ(Lagψ(y))δy

Lemma: Tψ is an optimal transport map between ρ and Tψ#ρ.

Semi-discrete optimal transport

Optimal transport problem:

Find ψ = (ψy)y such that Tψ#ρ = ν,

source density measure

target discrete constraint
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A damped Newton algorithm
with Jun Kitagawa and Quentin Mérigot
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Damped Newton’s Algorithm

Equation (ρ(Lagy(ψ))− νy) = 0 for all y

cf [Mirebeau ’15]

Admissible domain: Eε := {ψ ∈ Y R; ∀y ∈ Y, ρ(Lagψ(y)) ≥ ε}

ρ(Lagψ(y)) ≥ ε

Damped Newton Algorithm

We put Gy(ψ) = ρ(Lagy(ψ))
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Damped Newton’s Algorithm

Loop: −→ Define ψτk = ψk − τDG(ψk)
−1(G(ψk)− ν)

Damped Newton algorithm: for solving G(ψ) = ν

Equation (ρ(Lagy(ψ))− νy) = 0 for all y

cf [Mirebeau ’15]

−→ τk := max{τ ∈ 2−N | ψτk ∈ Eε and ‖G(ψτk)− ν‖ ≤ (1− τ
2
)‖G(ψk)− ν‖}

Input: ψ0 ∈ Y R s.t. ε := 1
2
miny∈Y min(G(ψ0)y, νy) > 0

Admissible domain: Eε := {ψ ∈ Y R; ∀y ∈ Y, ρ(Lagψ(y)) ≥ ε}

ρ(Lagψ(y)) ≥ ε

−→ ψk+1 := ψ
τk
k

Damped Newton Algorithm

We put Gy(ψ) = ρ(Lagy(ψ))
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Damped Newton’s Algorithm

Loop: −→ Define ψτk = ψk − τDG(ψk)
−1(G(ψk)− ν)

Damped Newton algorithm: for solving G(ψ) = ν

Remark: The damped Newton’s algorithm converges globally provided that:

(Strict monotonicity): ∀ψ ∈ Eε, DG(ψ) is neg. definite on Eε ∩ {cst}⊥
(Smoothness): G is C1 on Eε.

Equation (ρ(Lagy(ψ))− νy) = 0 for all y

cf [Mirebeau ’15]

−→ τk := max{τ ∈ 2−N | ψτk ∈ Eε and ‖G(ψτk)− ν‖ ≤ (1− τ
2
)‖G(ψk)− ν‖}

Input: ψ0 ∈ Y R s.t. ε := 1
2
miny∈Y min(G(ψ0)y, νy) > 0

Admissible domain: Eε := {ψ ∈ Y R; ∀y ∈ Y, ρ(Lagψ(y)) ≥ ε}

ρ(Lagψ(y)) ≥ ε

−→ ψk+1 := ψ
τk
k

Damped Newton Algorithm

⇒ We have to show smoothness and strict monotonicity

We put Gy(ψ) = ρ(Lagy(ψ))
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Goal: prove the CV of the algorithm
I Remarks in the quadratic case, with a measure with density

I CV for cost satisfying MTW

I CV for measure supported on sets with codimension ≥ 1 (and quadratic cost)
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non-(Smoothness) of Kantorovich’s functional

y z

Let ψt := ψ + t1z.

Proposition: For ψ ∈ Eε, and assuming that ρ ∈ C0
c (Rd) one has

(A)
∂Gy
∂z (ψ) = 1

2‖y−z‖
∫

Lagyz(ψ)
ρ(x) dx

we have Gy(ψ) = ρ(Lagψ(y))

Lagyz(ψ) := Lagy(ψ) ∩ Lagz(ψ)

(B)
∂Gy
∂y (ψ) = −

∑
z 6=y

∂Gy
∂z (ψ)

z 6= y

Quadratic cost : smoothness of K
c(x, y) := ‖x− y‖2



8

non-(Smoothness) of Kantorovich’s functional

y z

Let ψt := ψ + t1z.

Proposition: For ψ ∈ Eε, and assuming that ρ ∈ C0
c (Rd) one has

(A)
∂Gy
∂z (ψ) = 1

2‖y−z‖
∫

Lagyz(ψ)
ρ(x) dx

we have Gy(ψ) = ρ(Lagψ(y))

Lagyz(ψ) := Lagy(ψ) ∩ Lagz(ψ)

(B)
∂Gy
∂y (ψ) = −

∑
z 6=y

∂Gy
∂z (ψ)

z 6= y

When t varies,
∂Gy
∂z (ψt) increases ...

Quadratic cost : smoothness of K
c(x, y) := ‖x− y‖2



8

non-(Smoothness) of Kantorovich’s functional

y z

Let ψt := ψ + t1z.

Proposition: For ψ ∈ Eε, and assuming that ρ ∈ C0
c (Rd) one has

(A)
∂Gy
∂z (ψ) = 1

2‖y−z‖
∫

Lagyz(ψ)
ρ(x) dx

we have Gy(ψ) = ρ(Lagψ(y))

Lagyz(ψ) := Lagy(ψ) ∩ Lagz(ψ)

(B)
∂Gy
∂y (ψ) = −

∑
z 6=y

∂Gy
∂z (ψ)

z 6= y

When t varies,
∂Gy
∂z (ψt) increases ...

Quadratic cost : smoothness of K
c(x, y) := ‖x− y‖2



8

non-(Smoothness) of Kantorovich’s functional

y z

Let ψt := ψ + t1z.

and then suddenly vanishes.

Proposition: For ψ ∈ Eε, and assuming that ρ ∈ C0
c (Rd) one has

(A)
∂Gy
∂z (ψ) = 1

2‖y−z‖
∫

Lagyz(ψ)
ρ(x) dx

we have Gy(ψ) = ρ(Lagψ(y))

Lagyz(ψ) := Lagy(ψ) ∩ Lagz(ψ)

(B)
∂Gy
∂y (ψ) = −

∑
z 6=y

∂Gy
∂z (ψ)

z 6= y

When t varies,
∂Gy
∂z (ψt) increases ...

Quadratic cost : smoothness of K
c(x, y) := ‖x− y‖2



8

non-(Smoothness) of Kantorovich’s functional

y z

Let ψt := ψ + t1z.

and then suddenly vanishes.  we require ρ(Lagψ(y)) > 0 at all times
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(Strong concavity) of Kantorovich’s functional

Recall: ∂Gy
∂z (ψ) =

∫
Lagyz(ψ)

ρ(x) d x
2‖y−z‖

∂Gy
∂y (ψ) = −

∑
z 6=y

∂Gy
∂z (ψ)

Lagyz(ψ) := Lagy(ψ) ∩ Lagz(ψ)

Quadratic cost: strict monotonicity of G
we have Gy(ψ) = ρ(Lagψ(y))
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(Strong concavity) of Kantorovich’s functional

Recall: ∂Gy
∂z (ψ) =

∫
Lagyz(ψ)

ρ(x) d x
2‖y−z‖

∂Gy
∂y (ψ) = −

∑
z 6=y

∂Gy
∂z (ψ)

(y, z) ∈ H ⇐⇒ Lzy > 0 ⇐⇒ Lagyz(ψ) ∩ {ρ > 0} 6= ∅.

Lagyz(ψ) := Lagy(ψ) ∩ Lagz(ψ)

I Consider the matrix (Lyz) :=
∂Gy
∂z (ψ) and the graph H:

I If {ρ > 0} is connected and ψ ∈ Eε, then H is connected.

I The second eigenvector of L is strictly negative

Proposition: Assume ρ ∈ C0
c (Rd) and {ρ > 0} connected. Then,

∀ψ ∈ Eε, DG(ψ) is neg. definite on Eε ∩ {cst}⊥

Quadratic cost: strict monotonicity of G
we have Gy(ψ) = ρ(Lagψ(y))

 we require connectedness condtions on ρ
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Ma Trudinger Wang cost
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Loeper’s reformulation of Ma-Trudinger-Wang

→ MTW: non-local 4th order inequality appearing in the regularity theory for OT

→ we rely on a (slightly modified) geometric reformulation due to Loeper.

Cost satisfying Loeper’s MTW condition
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Loeper’s reformulation of Ma-Trudinger-Wang

→ MTW: non-local 4th order inequality appearing in the regularity theory for OT

→ we rely on a (slightly modified) geometric reformulation due to Loeper.

Def: The cost function c : X × Y satisfies Loeper’s condition if for every

y ∈ Y , there exists a diffeomorphism expcy : Xy ⊆ Rd → X s.t.

Lagψ(y) ⊆ X
[expcy]−1(Lagψ(y)) ⊆ Rd

is convex
expcy

Cost satisfying Loeper’s MTW condition

 for all ψ ∈ Y R, [expcy]−1(Lagψ(y)) is convex

v ∈ Xy 7→ c(expcy(v), y)− c(expcy(v), z) is quasi-convex ∀z
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Summary and comments

Theorem: Let X be a (closed) bounded domain of Rd with smooth boundary,

(A) c satisfies (Twist), (MTW) and X is c-convex

(B) ρ ∈ Cα(X) and satisfies a weighted L1-Poincaré inequality, i.e.

∀f ∈ C1(X), ‖f − Eρ(f)‖L1(ρ) ≤ cst · ‖∇f‖L1(ρ)

Y be a finite set and c ∈ C2(X × Y ). Assume:

Then, the damped Newton algorithm for SD-OT converges globally with

linear rate and locally with 1 + α rate.

[Kitagawa, Mérigot, T., JEMS ’17]

MTW cost: Convergence result
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Summary and comments

Theorem: Let X be a (closed) bounded domain of Rd with smooth boundary,

(A) c satisfies (Twist), (MTW) and X is c-convex
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∀f ∈ C1(X), ‖f − Eρ(f)‖L1(ρ) ≤ cst · ‖∇f‖L1(ρ)

Y be a finite set and c ∈ C2(X × Y ). Assume:

Then, the damped Newton algorithm for SD-OT converges globally with

linear rate and locally with 1 + α rate.

[Kitagawa, Mérigot, T., JEMS ’17]

MTW cost: Convergence result

NxK

x

[expcy ]−1(Lagψ(y))

→ convexity

→ transversality

→ connectedness of the graph

Proof:



12

Summary and comments

Theorem: Let X be a (closed) bounded domain of Rd with smooth boundary,

(A) c satisfies (Twist), (MTW) and X is c-convex

(B) ρ ∈ Cα(X) and satisfies a weighted L1-Poincaré inequality, i.e.

∀f ∈ C1(X), ‖f − Eρ(f)‖L1(ρ) ≤ cst · ‖∇f‖L1(ρ)

Y be a finite set and c ∈ C2(X × Y ). Assume:

Then, the damped Newton algorithm for SD-OT converges globally with

linear rate and locally with 1 + α rate.

[Kitagawa, Mérigot, T., JEMS ’17]

I The condition (B) seems to allow vanishing densities on X.

I Condition (A) applies to reflector problems.

MTW cost: Convergence result
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Numerics: vanishing density

ρ = 1

ρ = 0

Source: PL density on X = [0, 3]2

Target: Uniform grid Y in [0, 1]2.

Quadratic cost: numerics
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Numerics: vanishing density

I The damped Newton’s algorithm converges even when ρ vanishes.

ρ = 1

ρ = 0

Source: PL density on X = [0, 3]2

Target: Uniform grid Y in [0, 1]2.

Quadratic cost: numerics
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Numerics: vanishing density

I The damped Newton’s algorithm converges even when ρ vanishes.

ρ = 1

ρ = 0

Source: PL density on X = [0, 3]2

Target: Uniform grid Y in [0, 1]2.

250k100k

210s

70s

|Y |

time

I Computational cost seems nearly linear in number of Diracs.

Quadratic cost: numerics
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Numerics: vanishing density

Quadratic cost: numerics

3D

[Mérigot, SGP 2010]

[Levy 2014]

2D

N = 1 million, even N = 10 millions
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Numerics: vanishing density

Quadratic cost: numerics
targeted image N = 400× 480

Reflector : punctual / Far Field
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Numerics: vanishing density

Quadratic cost: numerics
targeted image N = 400× 480

reflector mesh

rendered image

triangulation of
the reflector

Experiments by Jocelyn Meyron

Reflector : punctual / Far Field
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Reflector problem: Punctual / Far Field
ν =

∑N
i=1 νiδxi obtained by discretizing a picture of G. Monge.

µ = uniform measure on half-sphere S2
+ N = 1000

µ ν

R
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Reflector problem: Punctual / Far Field
ν =

∑N
i=1 νiδxi obtained by discretizing a picture of G. Monge.

µ = uniform measure on half-sphere S2
+ N = 1000

Final Laguerre cells

µ ν

R
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Reflector problem: Punctual / Far Field
ν =

∑N
i=1 νiδxi obtained by discretizing a picture of G. Monge.

µ = uniform measure on half-sphere S2
+ N = 1000

Final Laguerre cellsReflector

µ ν

R



14

Reflector problem: Punctual / Far Field
ν =

∑N
i=1 νiδxi obtained by discretizing a picture of G. Monge.

µ = uniform measure on half-sphere S2
+ N = 1000

Final Laguerre cellsReflector
Rendering

µ ν

R
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Reflector problem: Punctual / Far Field
ν =

∑N
i=1 νiδxi obtained by discretizing a picture of G. Monge.

µ = uniform measure on half-sphere S2
+ N = 1000

Triangulated reflector
Final Laguerre cellsReflector

Rendering

µ ν

R
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Reflector problem: Punctual / Far Field
ν =

∑N
i=1 νiδxi obtained by discretizing a picture of G. Monge.

µ = uniform measure on half-sphere S2
+ N = 90, 000

Initial image
rendered image

Experiments by Jocelyn Meyron
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OT between a simplex soup and a
point cloud

with Quentin Mérigot and Jocelyn Meyron
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Problematic:

Input:

I A (probability) measure on a simplex soup K in Rd

I A (probability) measure on a point cloud Y ⊂ Rd
µ =

∑
σ µσ, with σ simplex of any dimension.

ν =
∑
y νyδy.
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Problematic:

Input:

I A (probability) measure on a simplex soup K in Rd

I A (probability) measure on a point cloud Y ⊂ Rd

Output:

I Transport plan between µ and ν for quadratic cost

µ =
∑
σ µσ, with σ simplex of any dimension.

ν =
∑
y νyδy.

 A family of Laguerre cells Lagy(ψ)
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Problematic:

Input:

I A (probability) measure on a simplex soup K in Rd

I A (probability) measure on a point cloud Y ⊂ Rd

Output:

I Transport plan between µ and ν for quadratic cost

µ =
∑
σ µσ, with σ simplex of any dimension.

ν =
∑
y νyδy.

However does not satisfy MTW:
I Not c-convex in general

I Not connected in general

 A family of Laguerre cells Lagy(ψ)
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Damped Newton’s Algorithm

Loop: −→ Define ψτk = ψk − τDG(ψk)
−1(G(ψk)− ν)

Damped Newton algorithm: for solving G(ψ) = ν

Remark: The damped Newton’s algorithm converges globally provided that:

(Strict concavity): ∀ψ ∈ Eε, D2K(ψ) = DG(ψ) is neg. definite on Eε ∩ {cst}⊥
(Smoothness): ∇K = G− ν is C1 on Eε.

Equation (ρ(Lagy(ψ))− νy) = 0

−→ τk := max{τ ∈ 2−N | ψτk ∈ Eε and ‖G(ψτk)− ν‖ ≤ (1− τ
2
)‖G(ψk)− ν‖}

Input: ψ0 ∈ Y R s.t. ε := 1
2
miny∈Y min(G(ψ0)y, νy) > 0

Admissible domain: Eε := {ψ ∈ Y R; ∀y ∈ Y, ρ(Lagψ(y)) ≥ ε}

ρ(Lagψ(y)) ≥ ε

−→ ψk+1 := ψ
τk
k

Damped Newton Algorithm

⇒ We have to show smoothness and strict monotonicity

We put Gy(ψ) = ρ(Lagy(ψ))
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Convergence

Theorem: [ Mérigot, Meyron, T. ’17]

Then:
I G has class C1 on RN .
I G is strictly monotone

y1, · · · , yN are in generic position
Assume µ is regular simplicial measure

∀ψ ∈ K+,∀v ∈ {cst} ⊥ \{0}, 〈DG(ψ)v|v〉 < 0.
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Convergence

Theorem: [ Mérigot, Meyron, T. ’17]

Then:
I G has class C1 on RN .
I G is strictly monotone

y1, · · · , yN are in generic position
Assume µ is regular simplicial measure

Corollary: [ Mérigot, Meyron, T. ’17]

Then the damped Newton algorithm converges with linear rate globally, i.e.

y1, · · · , yN are in generic position
Assume µ is regular simplicial measure

∀ψ ∈ K+,∀v ∈ {cst} ⊥ \{0}, 〈DG(ψ)v|v〉 < 0.

‖G(ψk)− ν‖ ≤ (1− τ∗

2 )k‖G(ψ0)− ν‖}
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Definition A simplex soup is a finite family Σ of simplices of Rd.
I dσ: dimension of a simplex σ is denoted

I K = ∪σ∈Σσ : support of Σ
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Regular simplicial measure

Definition A simplex soup is a finite family Σ of simplices of Rd.
I dσ: dimension of a simplex σ is denoted

I K = ∪σ∈Σσ : support of Σ

Definition: µ =
∑
σ∈Σ µσ is a regular simplicial measure if

I µσ has density ρσ
I the dimension d is ≥ 2

I ρσ : σ → R is continuous and min ρσ > 0
I K \ S is connected, for every S finite.

e.g. uniform measure on a connected triangulated surface of R3.
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Genericity condition
Definition: {y1, · · · , yN} is in generic position with respect to σ if
∀p < k ∀l ≤ min(d,N − 1)

dim(vect(yi1
− yi0 , . . . , yi` − yi0 )⊥ ∩ vect(xj1

− xj0 , . . . , xjp − xj0 )) = max(p − `, 0)
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Genericity condition
Definition: {y1, · · · , yN} is in generic position with respect to σ if
∀p < k ∀l ≤ min(d,N − 1)

dim(vect(yi1
− yi0 , . . . , yi` − yi0 )⊥ ∩ vect(xj1

− xj0 , . . . , xjp − xj0 )) = max(p − `, 0)

dim d− l dim p
Generically

y1

y2

Not generic

y1

y2

Generic

minimum dimension
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Smoothness of G
Example 1: not a generic case

K union of two triangles

Y = {y1, y2, y3}

y2 y3y1

family of weight φt = (t, 0, 0)

Lag3(ψt)

Lag1(ψt)

∂G2

∂ψ3
(ψt) = H1(K ∩ Lag2,3(ψt))

Lag2(ψt)
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Smoothness of G
Example 1: not a generic case

K union of two triangles

Y = {y1, y2, y3}

y2 y3y1

family of weight φt = (t, 0, 0)

Lag3(ψt)

Lag1(ψt)

If t = 0 ∂G2

∂ψ3
(ψt) = 1

∂G2

∂ψ3
(ψt) = H1(K ∩ Lag2,3(ψt))

Lag2(ψt)

If t decreases, ∂G2

∂ψ3
(ψt) = 1
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Lag3(ψt)

Lag1(ψt)

If t = 0 ∂G2

∂ψ3
(ψt) = 1

∂G2

∂ψ3
(ψt) = H1(K ∩ Lag2,3(ψt))

Lag2(ψt)

If t decreases, ∂G2

∂ψ3
(ψt) = 1

If t still decreases, suddenly ∂G2

∂ψ3
(ψt) = 0



22

Smoothness of G
Example 1: not a generic case

K union of two triangles

Y = {y1, y2, y3}

y2 y3y1

family of weight φt = (t, 0, 0)

Lag3(ψt)

Lag1(ψt)

If t = 0 ∂G2

∂ψ3
(ψt) = 1

∂G2

∂ψ3
(ψt) = H1(K ∩ Lag2,3(ψt))

Lag2(ψt)

If t decreases, ∂G2

∂ψ3
(ψt) = 1

If t still decreases, suddenly ∂G2

∂ψ3
(ψt) = 0

 need genericity G is not continuous
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Smoothness of G

Example 2:

σ is a simplex of dim 1

σ

y1

y2

Lag1,2(ψ)

∂G1

∂ψ2
(ψt) = H0(K ∩ Lag1,2(ψt)) = 1

not a regular measure (dim(σ) = 1)
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σ is a simplex of dim 1

σ

y1

y2

Lag1,2(ψ)

∂G1
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not a regular measure (dim(σ) = 1)
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Smoothness of G

Example 2:

σ is a simplex of dim 1

σ

y1

y2

Lag1,2(ψ)

∂G1

∂ψ2
(ψt) = H0(K ∩ Lag1,2(ψt)) = 0

not a regular measure (dim(σ) = 1)
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Smoothness of G

Example 2:

σ is a simplex of dim 1

σ

y1

y2

Lag1,2(ψ)

∂G1

∂ψ2
(ψt) = H0(K ∩ Lag1,2(ψt)) = 0

 G is not continuous

not a regular measure (dim(σ) = 1)
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Strict monotonicity of G

Y = {y1, y2}
K= union of two triangles

DG(ψ) =

(
a −a
−a a

)
where a = 1

2‖y1−y2‖H
1(Lag1,2(ψ) ∩K).

For every y2 in blue domain, there exists ψ1 and ψ2 s.t. DG(ψ) = 0

Example 3:K connected, but K \ {p} not connected.

p
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Strict monotonicity of G

Y = {y1, y2}
K= union of two triangles

DG(ψ) =

(
a −a
−a a

)
where a = 1

2‖y1−y2‖H
1(Lag1,2(ψ) ∩K).

For every y2 in blue domain, there exists ψ1 and ψ2 s.t. DG(ψ) = 0

 Even generically, DG(ψ) is not strictly monotone

Example 3:K connected, but K \ {p} not connected.

p

 we need this connectedness condition.
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Application

N = 1000, < 60s, less than 9 iterations, error < 10−6.

Uniform measure
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Application

N = 1000, < 60s, less than 9 iterations, error < 10−6.

Target measure not uniform (decreases from left to right)
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Conclusion

A damped Newton algorithm can be used to solve large geometric
instances of optimal transport.

I For cost satisfying MTW and source measure with density

I For measure supported on sets with codimension and quadratic cost.
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near field target)

 Applications to optimal transport beween measures supported on graphs.
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Conclusion

A damped Newton algorithm can be used to solve large geometric
instances of optimal transport.

Thank you!

 Generalization to generated jacobian equations (application to optics,

I For cost satisfying MTW and source measure with density

I For measure supported on sets with codimension and quadratic cost.

near field target)

 Applications to optimal transport beween measures supported on graphs.

Looking for post-docs (French ANR project MAGA)


