Damped Newton Algorithm for Semi-discrete optimal transport

Boris Thibert
with Jun Kitagawa, Jocelyn Meyron and Quentin Mérigot

Banff - April 10-14, 2017

Motivations with optimal transport

Inverse problems in optics
\rightsquigarrow reflector surfaces \mathcal{R}
target sphere

Collimated source / Far-field target OT in $\mathbb{R}^{2}, c(x, y)=\|x-y\|^{2}$

Motivations with optimal transport

Inverse problems in optics
\rightsquigarrow reflector surfaces \mathcal{R}

Collimated source / Far-field target OT in $\mathbb{R}^{2}, c(x, y)=\|x-y\|^{2}$

Punctual source / Far-field target OT in $\mathcal{S}^{2}, c(x, y)=-\ln (1-\langle x \mid y\rangle)$

Motivations with optimal transport

Inverse problems in optics
\rightsquigarrow reflector surfaces \mathcal{R}

Collimated source / Far-field target OT in $\mathbb{R}^{2}, c(x, y)=\|x-y\|^{2}$
\rightsquigarrow refractor surfaces \mathcal{R}

Punctual source / Far-field target OT in $\mathcal{S}^{2}, c(x, y)=-\ln (1-\langle x \mid y\rangle)$

Semi-discrete optimal transport

$\mu=$ probability measure on X with density $\rho, X=$ manifold

$\nu=$ prob. measure on finite Y
$=\sum_{y \in Y} \nu_{y} \delta_{y}$

0

Semi-discrete optimal transport

$\mu=$ probability measure on X with density $\rho, X=$ manifold

$\nu=$ prob. measure on finite Y

$$
=\sum_{y \in Y} \nu_{y} \delta_{y}
$$

0

Transport map: $T: X \rightarrow Y$ s.t.
$\forall y \in Y, \mu\left(T^{-1}(\{y\})\right)=\nu_{y}$
(i.e. $T_{\#} \mu=\nu$)

Semi-discrete optimal transport

$\mu=$ probability measure on X with density $\rho, X=$ manifold

Transport map: $T: X \rightarrow Y$ s.t.
$\forall y \in Y, \mu\left(T^{-1}(\{y\})\right)=\nu_{y}$
(i.e. $T_{\#} \mu=\nu$)
$\nu=$ prob. measure on finite Y

$$
=\sum_{y \in Y} \nu_{y} \delta_{y}
$$

∞

0

Cost function: $c: X \times Y \rightarrow \mathbb{R}$

Semi-discrete optimal transport

$\mu=$ probability measure on X with density $\rho, X=$ manifold

Transport map: $T: X \rightarrow Y$ s.t.
Cost function: $c: X \times Y \rightarrow \mathbb{R}$
(i.e. $T_{\#} \mu=\nu$)

Monge problem:

$$
\min \left\{\int_{X} c(x, T(x)) \mathrm{d} \mu(x) ; T_{\#} \mu=\nu\right\}
$$

Semi-discrete optimal transport

We assume (Twist): $\forall x \in X$, the map $y \in Y \mapsto \nabla_{x} c(x, y)$ is injective.

Any function ψ on Y defines a transport map:

$$
\mathrm{T}_{\psi}(x)=\arg \min _{y \in Y} c(x, y)+\psi(y)
$$

Semi-discrete optimal transport

We assume (Twist): $\forall x \in X$, the map $y \in Y \mapsto \nabla_{x} c(x, y)$ is injective.

Any function ψ on Y defines a transport map:

$$
\mathrm{T}_{\psi}(x)=\arg \min _{y \in Y} c(x, y)+\psi(y)
$$

Under (Twist), T_{ψ} is well-defined a.e. and

$$
\mathrm{T}_{\psi}^{-1}(y)=\operatorname{Lag}_{\psi}(y) T_{\psi \#} \rho=\sum_{y} \rho\left(\operatorname{Lag}_{\psi}(y)\right) \delta_{y}
$$

Semi-discrete optimal transport

We assume (Twist): $\forall x \in X$, the map $y \in Y \mapsto \nabla_{x} c(x, y)$ is injective.

Any function ψ on Y defines a transport map:

$$
\mathrm{T}_{\psi}(x)=\arg \min _{y \in Y} c(x, y)+\psi(y)
$$

Under (Twist), T_{ψ} is well-defined a.e. and

$$
\mathrm{T}_{\psi}^{-1}(y)=\operatorname{Lag}_{\psi}(y) T_{\psi \#} \rho=\sum_{y} \rho\left(\operatorname{Lag}_{\psi}(y)\right) \delta_{y}
$$

Lemma: T_{ψ} is an optimal transport map between ρ and $T_{\psi \#} \rho$,

Semi-discrete optimal transport

We assume (Twist): $\forall x \in X$, the map $y \in Y \mapsto \nabla_{x} c(x, y)$ is injective.

Any function ψ on Y defines a transport map:

$$
\mathrm{T}_{\psi}(x)=\arg \min _{y \in Y} c(x, y)+\psi(y)
$$

Under (Twist), T_{ψ} is well-defined a.e. and

$$
\mathrm{T}_{\psi}^{-1}(y)=\operatorname{Lag}_{\psi}(y) T_{\psi \#} \rho=\sum_{y} \rho\left(\operatorname{Lag}_{\psi}(y)\right) \delta_{y}
$$

Optimal transport problem:
Find $\psi=\left(\psi_{y}\right)_{y}$ such that $T_{\psi \# P}=(1)$
target discrete constraint

A damped Newton algorithm with Jun Kitagawa and Quentin Mérigot

Damped Newton Algorithm $_{\text {cf } \text { Mirebeau ' } 151}$

Equation $\left(\rho\left(\operatorname{Lag}_{y}(\psi)\right)-\nu_{y}\right)=0$ for all y Admissible domain: $E_{\varepsilon}:=\left\{\psi \in Y^{\mathbb{R}} ; \forall y \in Y, \rho\left(\operatorname{Lag}_{\psi}(y)\right) \geq \varepsilon\right\}$

We put $G_{y}(\psi)=\rho\left(\operatorname{Lag}_{y}(\psi)\right)$

Damped Newton Algorithm $_{\text {cf } \text { (Mirebeau '15) }}$

Equation $\left(\rho\left(\operatorname{Lag}_{y}(\psi)\right)-\nu_{y}\right)=0$ for all y
Admissible domain: $E_{\varepsilon}:=\left\{\psi \in Y^{\mathbb{R}} ; \forall y \in Y, \rho\left(\operatorname{Lag}_{\psi}(y)\right) \geq \varepsilon\right\}$ We put $G_{y}(\psi)=\rho\left(\operatorname{Lag}_{y}(\psi)\right)$

Damped Newton algorithm: for solving $G(\psi)=\nu$
Input: $\psi_{0} \in Y^{\mathbb{R}}$ s.t. $\varepsilon:=\frac{1}{2} \min _{y \in Y} \min \left(G\left(\psi_{0}\right)_{y}, \nu_{y}\right)>0$
Loop: \longrightarrow Define $\psi_{k}^{\tau}=\psi_{k}-\tau \mathrm{D} G\left(\psi_{k}\right)^{-1}\left(G\left(\psi_{k}\right)-\nu\right)$

$$
\longrightarrow \tau_{k}:=\max \left\{\tau \in 2^{-\mathbb{N}} \mid \psi_{k}^{\tau} \in E_{\varepsilon} \text { and }\left\|G\left(\psi_{k}^{\tau}\right)-\nu\right\| \leq\left(1-\frac{\tau}{2}\right)\left\|G\left(\psi_{k}\right)-\nu\right\|\right.
$$

$$
\longrightarrow \psi_{k+1}:=\psi_{k}^{\tau_{k}}
$$

Damped Newton Algorithm $_{\text {cf } \text { (Mirebeau '15) }}$

Equation $\left(\rho\left(\operatorname{Lag}_{y}(\psi)\right)-\nu_{y}\right)=0$ for all y
Admissible domain: $E_{\varepsilon}:=\left\{\psi \in Y^{\mathbb{R}} ; \forall y \in Y, \rho\left(\operatorname{Lag}_{\psi}(y)\right) \geq \varepsilon\right\}$
We put $G_{y}(\psi)=\rho\left(\operatorname{Lag}_{y}(\psi)\right)$
Damped Newton algorithm: for solving $G(\psi)=\nu$
Input: $\psi_{0} \in Y^{\mathbb{R}}$ s.t. $\varepsilon:=\frac{1}{2} \min _{y \in Y} \min \left(G\left(\psi_{0}\right)_{y}, \nu_{y}\right)>0$
Loop: \longrightarrow Define $\psi_{k}^{\tau}=\psi_{k}-\tau \mathrm{D} G\left(\psi_{k}\right)^{-1}\left(G\left(\psi_{k}\right)-\nu\right)$

$$
\longrightarrow \tau_{k}:=\max \left\{\tau \in 2^{-\mathbb{N}} \mid \psi_{k}^{\tau} \in E_{\varepsilon} \text { and }\left\|G\left(\psi_{k}^{\tau}\right)-\nu\right\| \leq\left(1-\frac{\tau}{2}\right)\left\|G\left(\psi_{k}\right)-\nu\right\|\right.
$$

$$
\longrightarrow \psi_{k+1}:=\psi_{k}^{\tau_{k}}
$$

Remark: The damped Newton's algorithm converges globally provided that:
(Smoothness): G is \mathcal{C}^{1} on E_{ε}.

Damped Newton Algorithm $_{\text {cf Mirebeau '155 }}$

Equation $\left(\rho\left(\operatorname{Lag}_{y}(\psi)\right)-\nu_{y}\right)=0$ for all y
Admissible domain: $E_{\varepsilon}:=\left\{\psi \in Y^{\mathbb{R}} ; \forall y \in Y, \rho\left(\operatorname{Lag}_{\psi}(y)\right) \geq \varepsilon\right\}$
We put $G_{y}(\psi)=\rho\left(\operatorname{Lag}_{y}(\psi)\right)$
Damped Newton algorithm: for solving $G(\psi)=\nu$
Input: $\psi_{0} \in Y^{\mathbb{R}}$ s.t. $\varepsilon:=\frac{1}{2} \min _{y \in Y} \min \left(G\left(\psi_{0}\right)_{y}, \nu_{y}\right)>0$
Loop: \longrightarrow Define $\psi_{k}^{\tau}=\psi_{k}-\tau \mathrm{D} G\left(\psi_{k}\right)^{-1}\left(G\left(\psi_{k}\right)-\nu\right)$

$$
\longrightarrow \tau_{k}:=\max \left\{\tau \in 2^{-\mathbb{N}} \mid \psi_{k}^{\tau} \in E_{\varepsilon} \text { and }\left\|G\left(\psi_{k}^{\tau}\right)-\nu\right\| \leq\left(1-\frac{\tau}{2}\right)\left\|G\left(\psi_{k}\right)-\nu\right\|\right\}
$$

$$
\longrightarrow \psi_{k+1}:=\psi_{k}^{\tau_{k}}
$$

Remark: The damped Newton's algorithm converges globally provided that:
(Smoothness): G is \mathcal{C}^{1} on E_{ε}.
(Strict monotonicity): $\forall \psi \in E_{\varepsilon}, D G(\psi)$ is neg. definite on $E_{\varepsilon} \cap\{c s t\}^{\perp}$

Damped Newton Algorithm $_{\text {cf Mirebeau '155 }}$

Equation $\left(\rho\left(\operatorname{Lag}_{y}(\psi)\right)-\nu_{y}\right)=0$ for all y
Admissible domain: $E_{\varepsilon}:=\left\{\psi \in Y^{\mathbb{R}} ; \forall y \in Y, \rho\left(\operatorname{Lag}_{\psi}(y)\right) \geq \varepsilon\right\}$
We put $G_{y}(\psi)=\rho\left(\operatorname{Lag}_{y}(\psi)\right)$
Damped Newton algorithm: for solving $G(\psi)=\nu$
Input: $\psi_{0} \in Y^{\mathbb{R}}$ s.t. $\varepsilon:=\frac{1}{2} \min _{y \in Y} \min \left(G\left(\psi_{0}\right)_{y}, \nu_{y}\right)>0$
Loop: \longrightarrow Define $\psi_{k}^{\tau}=\psi_{k}-\tau \mathrm{D} G\left(\psi_{k}\right)^{-1}\left(G\left(\psi_{k}\right)-\nu\right)$

$$
\longrightarrow \tau_{k}:=\max \left\{\tau \in 2^{-\mathbb{N}} \mid \psi_{k}^{\tau} \in E_{\varepsilon} \text { and }\left\|G\left(\psi_{k}^{\tau}\right)-\nu\right\| \leq\left(1-\frac{\tau}{2}\right)\left\|G\left(\psi_{k}\right)-\nu\right\|\right\}
$$

$$
\longrightarrow \psi_{k+1}:=\psi_{k}^{\tau_{k}}
$$

Remark: The damped Newton's algorithm converges globally provided that:
(Smoothness): G is \mathcal{C}^{1} on E_{ε}.
(Strict monotonicity): $\forall \psi \in E_{\varepsilon}, D G(\psi)$ is neg. definite on $E_{\varepsilon} \cap\{c s t\}^{\perp}$

$$
\Rightarrow \text { We have to show smoothness and strict monotonicity }
$$

Goal: prove the CV of the algorithm

- Remarks in the quadratic case, with a measure with density
- CV for cost satisfying MTW
- CV for measure supported on sets with codimension ≥ 1 (and quadratic cost)

Quadratic cost: smoothness of \mathcal{K}

we have $G_{y}(\psi)=\rho\left(\operatorname{Lag}_{\psi}(y)\right) \quad c(x, y):=\|x-y\|^{2}$
Proposition: For $\psi \in E_{\varepsilon}$, and assuming that $\rho \in \mathcal{C}_{c}^{0}\left(\mathbb{R}^{d}\right)$ one has

$$
\begin{aligned}
& \text { (A) } \frac{\partial G_{y}}{\partial z}(\psi)=\frac{1}{2\|y-z\|} \int_{\operatorname{Lag}_{y z}(\psi)} \rho(x) \mathrm{d} x(\mathrm{~B}) \quad \frac{\partial G_{y}}{\partial y}(\psi)=-\sum_{z \neq y} \frac{\partial G_{y}}{\partial z}(\psi) \\
& z \neq y \\
& \operatorname{Lag}_{y z}(\psi):=\operatorname{Lag}_{y}(\psi) \cap \operatorname{Lag}_{z}(\psi)
\end{aligned}
$$

Let $\psi_{t}:=\psi+t \mathbf{1}_{z}$.

Quadratic cost: smoothness of \mathcal{K}

we have $G_{y}(\psi)=\rho\left(\operatorname{Lag}_{\psi}(y)\right) \quad c(x, y):=\|x-y\|^{2}$
Proposition: For $\psi \in E_{\varepsilon}$, and assuming that $\rho \in \mathcal{C}_{c}^{0}\left(\mathbb{R}^{d}\right)$ one has

$$
\text { (A) } \frac{\partial G_{y}}{\partial z}(\psi)=\frac{1}{2\|y-z\|} \int_{\operatorname{Lag}_{y z}(\psi)} \rho(x) \mathrm{d} x(\mathrm{~B}) \quad \frac{\partial G_{y}}{\partial y}(\psi)=-\sum_{z \neq y} \frac{\partial G_{y}}{\partial z}(\psi)
$$

Let $\psi_{t}:=\psi+t \mathbf{1}_{z}$. When t varies, $\frac{\partial G_{y}}{\partial z}\left(\psi_{t}\right)$ increases \ldots

Quadratic cost: smoothness of \mathcal{K}

we have $G_{y}(\psi)=\rho\left(\operatorname{Lag}_{\psi}(y)\right) \quad c(x, y):=\|x-y\|^{2}$
Proposition: For $\psi \in E_{\varepsilon}$, and assuming that $\rho \in \mathcal{C}_{c}^{0}\left(\mathbb{R}^{d}\right)$ one has

$$
\begin{aligned}
& \text { (A) } \frac{\partial G_{y}}{\partial z}(\psi)=\frac{1}{2\|y-z\|} \int_{\operatorname{Lag}_{y z}(\psi)} \rho(x) \mathrm{d} x(\mathrm{~B}) \quad \frac{\partial G_{y}}{\partial y}(\psi)=-\sum_{z \neq y} \frac{\partial G_{y}}{\partial z}(\psi) \\
& z \neq y \\
& \operatorname{Lag}_{y z}(\psi):=\operatorname{Lag}_{y}(\psi) \cap \operatorname{Lag}_{z}(\psi)
\end{aligned}
$$

Let $\psi_{t}:=\psi+t \mathbf{1}_{z}$. When t varies, $\frac{\partial G_{y}}{\partial z}\left(\psi_{t}\right)$ increases \ldots

Quadratic cost: smoothness of \mathcal{K}

we have $G_{y}(\psi)=\rho\left(\operatorname{Lag}_{\psi}(y)\right) \quad c(x, y):=\|x-y\|^{2}$
Proposition: For $\psi \in E_{\varepsilon}$, and assuming that $\rho \in \mathcal{C}_{c}^{0}\left(\mathbb{R}^{d}\right)$ one has

$$
\begin{aligned}
& \text { (A) } \frac{\partial G_{y}}{\partial z}(\psi)=\frac{1}{2\|y-z\|} \int_{\operatorname{Lag}_{y z}(\psi)} \rho(x) \mathrm{d} x(\mathrm{~B}) \quad \frac{\partial G_{y}}{\partial y}(\psi)=-\sum_{z \neq y} \frac{\partial G_{y}}{\partial z}(\psi) \\
& \quad z \neq y \\
& \operatorname{Lag}_{y z}(\psi):=\operatorname{Lag}_{y}(\psi) \cap \operatorname{Lag}_{z}(\psi)
\end{aligned}
$$

Let $\psi_{t}:=\psi+t \mathbf{1}_{z}$. When t varies, $\frac{\partial G_{y}}{\partial z}\left(\psi_{t}\right)$ increases \ldots and then suddenly vanishes.

Quadratic cost: smoothness of \mathcal{K}

we have $G_{y}(\psi)=\rho\left(\operatorname{Lag}_{\psi}(y)\right) \quad c(x, y):=\|x-y\|^{2}$
Proposition: For $\psi \in E_{\varepsilon}$, and assuming that $\rho \in \mathcal{C}_{c}^{0}\left(\mathbb{R}^{d}\right)$ one has

$$
\begin{aligned}
& \text { (A) } \frac{\partial G_{y}}{\partial z}(\psi)=\frac{1}{2\|y-z\| \int_{\operatorname{Lag}_{y z}(\psi)}} \rho(x) \mathrm{d} x(\mathrm{~B}) \quad \frac{\partial G_{y}}{\partial y}(\psi)=-\sum_{z \neq y} \frac{\partial G_{y}}{\partial z}(\psi) \\
& z \neq y
\end{aligned}
$$

Let $\psi_{t}:=\psi+t \mathbf{1}_{z}$. When t varies, $\frac{\partial G_{y}}{\partial z}\left(\psi_{t}\right)$ increases \ldots and then suddenly vanishes. \rightsquigarrow we require $\rho\left(\operatorname{Lag}_{\psi}(y)\right)>0$ at all times

Quadratic cost: strict monotonicity of G

we have $G_{y}(\psi)=\rho\left(\operatorname{Lag}_{\psi}(y)\right)$

Recall: $\frac{\partial G_{y}}{\partial z}(\psi)=\int_{\operatorname{Lag}_{y z}(\psi)} \frac{\rho(x) \mathrm{d} x}{2\|y-z\|} \quad \frac{\partial G_{y}}{\partial y}(\psi)=-\sum_{z \neq y} \frac{\partial G_{y}}{\partial z}(\psi)$

Quadratic cost: strict monotonicity of G

we have $G_{y}(\psi)=\rho\left(\operatorname{Lag}_{\psi}(y)\right)$

Recall: $\frac{\partial G_{y}}{\partial z}(\psi)=\int_{\operatorname{Lag}_{y z}(\psi)} \frac{\rho(x) \mathrm{d} x}{2\|y-z\|} \quad \frac{\partial G_{y}}{\partial y}(\psi)=-\sum_{z \neq y} \frac{\partial G_{y}}{\partial z}(\psi)$

- Consider the matrix $\left(L_{y z}\right):=\frac{\partial G_{y}}{\partial z}(\psi)$ and the graph H :

$$
(y, z) \in H \Longleftrightarrow L_{z y}>0 \Longleftrightarrow \operatorname{Lag}_{y z}(\psi) \cap\{\rho>0\} \neq \emptyset
$$

Quadratic cost: strict monotonicity of G

we have $G_{y}(\psi)=\rho\left(\operatorname{Lag}_{\psi}(y)\right)$
Recall: $\frac{\partial G_{y}}{\partial z}(\psi)=\int_{\operatorname{Lag}_{y z}(\psi)} \frac{\rho(x) \mathrm{d} x}{2\|y-z\|} \quad \frac{\partial G_{y}}{\partial y}(\psi)=-\sum_{z \neq y} \frac{\partial G_{y}}{\partial z}(\psi)$

- Consider the matrix $\left(L_{y z}\right):=\frac{\partial G_{y}}{\partial z}(\psi)$ and the graph H :

$$
(y, z) \in H \Longleftrightarrow L_{z y}>0 \Longleftrightarrow \operatorname{Lag}_{y z}(\psi) \cap\{\rho>0\} \neq \emptyset
$$

- If $\{\rho>0\}$ is connected and $\psi \in E_{\varepsilon}$, then H is connected.

Quadratic cost: strict monotonicity of G

we have $G_{y}(\psi)=\rho\left(\operatorname{Lag}_{\psi}(y)\right)$

Recall: $\frac{\partial G_{y}}{\partial z}(\psi)=\int_{\operatorname{Lag}_{y z}(\psi)} \frac{\rho(x) \mathrm{d} x}{2\|y-z\|} \quad \frac{\partial G_{y}}{\partial y}(\psi)=-\sum_{z \neq y} \frac{\partial G_{y}}{\partial z}(\psi)$

- If $\{\rho>0\}$ is connected and $\psi \in E_{\varepsilon}$, then H is connected.
- The second eigenvector of L is strictly negative

Quadratic cost: strict monotonicity of G

we have $G_{y}(\psi)=\rho\left(\operatorname{Lag}_{\psi}(y)\right)$
Recall: $\frac{\partial G_{y}}{\partial z}(\psi)=\int_{\operatorname{Lag}_{y z}(\psi)} \frac{\rho(x) \mathrm{d} x}{2\|y-z\|} \quad \frac{\partial G_{y}}{\partial y}(\psi)=-\sum_{z \neq y} \frac{\partial G_{y}}{\partial z}(\psi)$

$$
\operatorname{Lag}_{y z}(\psi):=\operatorname{Lag}_{y}(\psi) \cap \operatorname{Lag}_{z}(\psi)
$$

- Consider the matrix $\left(L_{y z}\right):=\frac{\partial G_{y}}{\partial z}(\psi)$ and the graph H :

$$
(y, z) \in H \Longleftrightarrow L_{z y}>0 \Longleftrightarrow \operatorname{Lag}_{y z}(\psi) \cap\{\rho>0\} \neq \emptyset
$$

- If $\{\rho>0\}$ is connected and $\psi \in E_{\varepsilon}$, then H is connected
- The second eigenvector of L is strictly negative

Proposition: Assume $\rho \in \mathcal{C}_{c}^{0}\left(\mathbb{R}^{d}\right)$ and $\{\rho>0\}$ connected. Then, $\forall \psi \in E_{\varepsilon}, D G(\psi)$ is neg. definite on $E_{\varepsilon} \cap\{c s t\}^{\perp}$
\rightsquigarrow we require connectedness condtions on ρ

Ma Trudinger Wang cost

Cost satisfying Loeper's MTW condition

\rightarrow MTW: non-local 4th order inequality appearing in the regularity theory for OT \rightarrow we rely on a (slightly modified) geometric reformulation due to Loeper.

Cost satisfying Loeper's MTW condition

\rightarrow MTW: non-local 4th order inequality appearing in the regularity theory for OT
\rightarrow we rely on a (slightly modified) geometric reformulation due to Loeper.

Def: The cost function $c: X \times Y$ satisfies Loeper's condition if for every $y \in Y$, there exists a diffeomorphism $\exp _{y}^{c}: X_{y} \subseteq \mathbb{R}^{d} \rightarrow X$ s.t.

$$
v \in X_{y} \mapsto c\left(\exp _{y}^{c}(v), y\right)-c\left(\exp _{y}^{c}(v), z\right) \text { is quasi-convex } \forall z
$$

\rightsquigarrow for all $\psi \in Y^{\mathbb{R}},\left[\exp _{y}^{c}\right]^{-1}\left(\operatorname{Lag}_{\psi}(y)\right)$ is convex

MTW cost: Convergence result

Theorem: Let X be a (closed) bounded domain of \mathbb{R}^{d} with smooth boundary Y be a finite set and $c \in \mathcal{C}^{2}(X \times Y)$. Assume:
(A) c satisfies (Twist), (MTW) and X is c-convex
(B) $\rho \in \mathcal{C}^{\alpha}(X)$ and satisfies a weighted L^{1}-Poincaré inequality, i.e.

$$
\forall f \in \mathcal{C}^{1}(X), \quad\left\|f-\mathbb{E}_{\rho}(f)\right\|_{\mathrm{L}^{1}(\rho)} \leq \operatorname{cst} \cdot\|\nabla f\|_{\mathrm{L}^{1}(\rho)}
$$

Then, the damped Newton algorithm for SD-OT converges globally with linear rate and locally with $1+\alpha$ rate.
[Kitagawa, Mérigot, T., JEMS '17]

MTW cost: Convergence result

Theorem: Let X be a (closed) bounded domain of \mathbb{R}^{d} with smooth boundary Y be a finite set and $c \in \mathcal{C}^{2}(X \times Y)$. Assume:
(A) c satisfies (Twist), (MTW) and X is c-convex
(B) $\rho \in \mathcal{C}^{\alpha}(X)$ and satisfies a weighted L^{1}-Poincaré inequality, i.e.

$$
\forall f \in \mathcal{C}^{1}(X), \quad\left\|f-\mathbb{E}_{\rho}(f)\right\|_{\mathrm{L}^{1}(\rho)} \leq \operatorname{cst} \cdot\|\nabla f\|_{\mathrm{L}^{1}(\rho)}
$$

Then, the damped Newton algorithm for SD-OT converges globally with linear rate and locally with $1+\alpha$ rate.
[Kitagawa, Mérigot, T., JEMS '17]

Proof:

\rightarrow convexity
\rightarrow transversality
\rightarrow connectedness of the graph

MTW cost: Convergence result

Theorem: Let X be a (closed) bounded domain of \mathbb{R}^{d} with smooth boundary Y be a finite set and $c \in \mathcal{C}^{2}(X \times Y)$. Assume:
(A) c satisfies (Twist), (MTW) and X is c-convex
(B) $\rho \in \mathcal{C}^{\alpha}(X)$ and satisfies a weighted L^{1}-Poincaré inequality, i.e.

$$
\forall f \in \mathcal{C}^{1}(X), \quad\left\|f-\mathbb{E}_{\rho}(f)\right\|_{\mathrm{L}^{1}(\rho)} \leq \operatorname{cst} \cdot\|\nabla f\|_{\mathrm{L}^{1}(\rho)}
$$

Then, the damped Newton algorithm for SD-OT converges globally with linear rate and locally with $1+\alpha$ rate.
[Kitagawa, Mérigot, T., JEMS '17]

- The condition (B) seems to allow vanishing densities on X.
- Condition (A) applies to reflector problems.

Quadratic cost: numerics

Source: PL density on $X=[0,3]^{2}$
Target: Uniform grid Y in $[0,1]^{2}$.

Quadratic cost: numerics

Source: PL density on $X=[0,3]^{2}$
Target: Uniform grid Y in $[0,1]^{2}$.

- The damped Newton's algorithm converges even when ρ vanishes.

Quadratic cost: numerics

Source: PL density on $X=[0,3]^{2}$
Target: Uniform grid Y in $[0,1]^{2}$.

- The damped Newton's algorithm converges even when ρ vanishes.
- Computational cost seems nearly linear in number of Diracs.

Quadratic cost: numerics

2D

3D

Quadratic cost: numerics

Reflector: punctual / Far Field

Quadratic cost: numerics

Reflector problem: Punctual / Far Field

$\nu=\sum_{i=1}^{N} \nu_{i} \delta_{x_{i}}$ obtained by discretizing a picture of G. Monge.
$\mu=$ uniform measure on half-sphere \mathcal{S}_{+}^{2}
$N=1000$

Reflector problem: Punctual / Far Field

$\nu=\sum_{i=1}^{N} \nu_{i} \delta_{x_{i}}$ obtained by discretizing a picture of G. Monge.
$\mu=$ uniform measure on half-sphere $\mathcal{S}_{+}^{2} \quad N=1000$

Final Laguerre cells

Reflector problem: Punctual / Far Field

$\nu=\sum_{i=1}^{N} \nu_{i} \delta_{x_{i}}$ obtained by discretizing a picture of G. Monge.
$\mu=$ uniform measure on half-sphere $\mathcal{S}_{+}^{2} \quad N=1000$

Final Laguerre cells

Reflector problem: Punctual / Far Field

$\nu=\sum_{i=1}^{N} \nu_{i} \delta_{x_{i}}$ obtained by discretizing a picture of G. Monge.
$\mu=$ uniform measure on half-sphere $\mathcal{S}_{+}^{2} \quad N=1000$

Reflector problem: Punctual / Far Field

$\nu=\sum_{i=1}^{N} \nu_{i} \delta_{x_{i}}$ obtained by discretizing a picture of G. Monge.
$\mu=$ uniform measure on half-sphere $\mathcal{S}_{+}^{2} \quad N=1000$

Reflector problem: Punctual / Far Field

$\nu=\sum_{i=1}^{N} \nu_{i} \delta_{x_{i}}$ obtained by discretizing a picture of G. Monge.
$\mu=$ uniform measure on half-sphere \mathcal{S}_{+}^{2}
$N=90,000$

Initial image

Experiments by Jocelyn Meyron

OT between a simplex soup and a point cloud

with Quentin Mérigot and Jocelyn Meyron

Problematic:

Input:

- A (probability) measure on a simplex soup K in \mathbb{R}^{d} $\mu=\sum_{\sigma} \mu_{\sigma}$, with σ simplex of any dimension.
- A (probability) measure on a point cloud $Y \subset \mathbb{R}^{d}$

$$
\nu=\sum_{y} \nu_{y} \delta_{y}
$$

Problematic:

Input:

- A (probability) measure on a simplex soup K in \mathbb{R}^{d}. $\mu=\sum_{\sigma} \mu_{\sigma}$, with σ simplex of any dimension.
- A (probability) measure on a point cloud $Y \subset \mathbb{R}^{d}$

$$
\nu=\sum_{y} \nu_{y} \delta_{y}
$$

Output:

- Transport plan between μ and ν for quadratic cost

Problematic:

Input:

- A (probability) measure on a simplex soup K in \mathbb{R}^{d}. $\mu=\sum_{\sigma} \mu_{\sigma}$, with σ simplex of any dimension.
- A (probability) measure on a point cloud $Y \subset \mathbb{R}^{d}$

$$
\nu=\sum_{y} \nu_{y} \delta_{y}
$$

Output:

- Transport plan between μ and ν for quadratic cost

However does not satisfy MTW:

- Not c-convex in general
- Not connected in general

Damped Newton Algorithm

Equation $\left(\rho\left(\operatorname{Lag}_{y}(\psi)\right)-\nu_{y}\right)=0$
Admissible domain: $E_{\varepsilon}:=\left\{\psi \in Y^{\mathbb{R}} ; \forall y \in Y, \rho\left(\operatorname{Lag}_{\psi}(y)\right) \geq \varepsilon\right\}$
We put $G_{y}(\psi)=\rho\left(\operatorname{Lag}_{y}(\psi)\right)$
Damped Newton algorithm: for solving $G(\psi)=\nu$
Input: $\psi_{0} \in Y^{\mathbb{R}}$ s.t. $\varepsilon:=\frac{1}{2} \min _{y \in Y} \min \left(G\left(\psi_{0}\right)_{y}, \nu_{y}\right)>0$
Loop: \longrightarrow Define $\psi_{k}^{\tau}=\psi_{k}-\tau \mathrm{D} G\left(\psi_{k}\right)^{-1}\left(G\left(\psi_{k}\right)-\nu\right)$

$$
\begin{aligned}
& \longrightarrow \tau_{k}:=\max \left\{\tau \in 2^{-\mathbb{N}} \mid \psi_{k}^{\tau} \in E_{\varepsilon} \text { and }\left\|G\left(\psi_{k}^{\tau}\right)-\nu\right\| \leq\left(1-\frac{\tau}{2}\right)\left\|G\left(\psi_{k}\right)-\nu\right\|\right\} \\
& \longrightarrow \psi_{k+1}:=\psi_{k}^{\tau_{k}}
\end{aligned}
$$

Remark: The damped Newton's algorithm converges globally provided that:
(Smoothness): $\nabla \mathcal{K}=G-\nu$ is \mathcal{C}^{1} on E_{ε}.
(Strict concavity): $\forall \psi \in E_{\varepsilon}, \mathrm{D}^{2} \mathcal{K}(\psi)=D G(\psi)$ is neg. definite on $E_{\varepsilon} \cap\{c s t\}^{\perp}$

$$
\Rightarrow \text { We have to show smoothness and strict monotonicity }
$$

Convergence

Theorem: [Merigot, Meyron, T. '17]
Assume μ is regular simplicial measure
Then:
y_{1}, \cdots, y_{N} are in generic position

- G has class C^{1} on \mathbb{R}^{N}.
- G is strictly monotone

$$
\forall \psi \in \mathcal{K}^{+}, \forall v \in\{c s t\} \perp \backslash\{0\}, \quad\langle D G(\psi) v \mid v\rangle<0 .
$$

Convergence

Theorem: [Mérigot, Meyron, T. '17]
Assume μ is regular simplicial measure
Then:

$$
y_{1}, \cdots, y_{N} \text { are in generic position }
$$

- G has class C^{1} on \mathbb{R}^{N}.
- G is strictly monotone

$$
\forall \psi \in \mathcal{K}^{+}, \forall v \in\{c s t\} \perp \backslash\{0\}, \quad\langle D G(\psi) v \mid v\rangle<0 .
$$

Convergence

Theorem: [Mérigot, Meyron, T. 17]
Assume μ is regular simplicial measure
Then:

$$
y_{1}, \cdots, y_{N} \text { are in generic position }
$$

- G has class C^{1} on \mathbb{R}^{N}.
- G is strictly monotone

$$
\forall \psi \in \mathcal{K}^{+}, \forall v \in\{c s t\} \perp \backslash\{0\}, \quad\langle D G(\psi) v \mid v\rangle<0 .
$$

Corollary: [Mérigot, Meyron, T. '17]
Assume μ is regular simplicial measure
y_{1}, \cdots, y_{N} are in generic position
Then the damped Newton algorithm converges with linear rate globally, i.e.

$$
\left.\left\|G\left(\psi_{k}\right)-\nu\right\| \leq\left(1-\frac{\tau^{*}}{2}\right)^{k}\left\|G\left(\psi_{0}\right)-\nu\right\|\right\}
$$

Regular simplicial measure

Definition A simplex soup is a finite family Σ of simplices of \mathbb{R}^{d}.

- d_{σ} : dimension of a simplex σ is denoted
$K=\cup_{\sigma \in \Sigma} \sigma$: support of Σ

Regular simplicial measure

Definition A simplex soup is a finite family Σ of simplices of \mathbb{R}^{d}. - d_{σ} : dimension of a simplex σ is denoted $K=\cup_{\sigma \in \Sigma} \sigma$: support of Σ

Definition: $\mu=\sum_{\sigma \in \Sigma} \mu_{\sigma}$ is a regular simplicial measure if

- μ_{σ} has density ρ_{σ}
- the dimension d is ≥ 2
- $\rho_{\sigma}: \sigma \rightarrow \mathbb{R}$ is continuous and $\min \rho_{\sigma}>0$
- $K \backslash S$ is connected, for every S finite.

Regular simplicial measure

Definition A simplex soup is a finite family Σ of simplices of \mathbb{R}^{d}. - d_{σ} : dimension of a simplex σ is denoted

- $K=\cup_{\sigma \in \Sigma} \sigma$: support of Σ

Definition: $\mu=\sum_{\sigma \in \Sigma} \mu_{\sigma}$ is a regular simplicial measure if

- μ_{σ} has density ρ_{σ}
- the dimension d is ≥ 2
- $\rho_{\sigma}: \sigma \rightarrow \mathbb{R}$ is continuous and $\min \rho_{\sigma}>0$
- $K \backslash S$ is connected, for every S finite.
e.g. uniform measure on a connected triangulated surface of \mathbb{R}^{3}.

Genericity condition

Definition: $\left\{y_{1}, \cdots, y_{N}\right\}$ is in generic position with respect to σ if
$\forall p<k \forall l \leq \min (d, N-1)$

$$
\operatorname{dim}\left(\operatorname{vect}\left(y_{i_{1}}-y_{i_{0}}, \ldots, y_{i_{\ell}}-y_{i_{0}}\right)^{\perp} \cap \operatorname{vect}\left(x_{j_{1}}-x_{j_{0}}, \ldots, x_{j_{p}}-x_{j_{0}}\right)\right)=\max (p-\ell, 0)
$$

Genericity condition

Definition: $\left\{y_{1}, \cdots, y_{N}\right\}$ is in generic position with respect to σ if
$\forall p<k \forall l \leq \min (d, N-1)$
$\operatorname{dim}\left(\operatorname{vect}\left(y_{i_{1}}-y_{i_{0}}, \ldots, y_{i_{\ell}}-y_{i_{0}}\right)^{\perp} \cap \operatorname{vect}\left(x_{j_{1}}-x_{j_{0}}, \ldots, x_{j_{p}}-x_{j_{0}}\right)\right)=\max (p-\ell, 0)$
Generically $\operatorname{dim} d-l \quad \operatorname{dim} p$
minimum dimension

Genericity condition

Definition: $\left\{y_{1}, \cdots, y_{N}\right\}$ is in generic position with respect to σ if
$\forall p<k \forall l \leq \min (d, N-1)$ $\operatorname{dim}\left(\operatorname{vect}\left(y_{i_{1}}-y_{i_{0}}, \ldots, y_{i_{\ell}}-y_{i_{0}}\right)^{\perp} \cap \operatorname{vect}\left(x_{j_{1}}-x_{j_{0}}, \ldots, x_{j_{p}}-x_{j_{0}}\right)\right)=\max (p-\ell, 0)$

Generically $\quad \operatorname{dim} d-l$
minimum dimension

Not generic

Generic

Smoothness of G

Example 1: not a generic case

Smoothness of G

Example 1: not a generic case

$$
\begin{aligned}
& \operatorname{Lag}_{1}\left(\psi^{t}\right) \\
& \\
& \frac{\partial G_{2}}{\partial \psi_{3}}\left(\psi^{t}\right)=\mathcal{H}^{1}\left(K \cap \operatorname{Lag}_{2,3}\left(\psi^{t}\right)\right) \\
& \text { If } t=0 \frac{\partial G_{2}}{\partial \psi_{3}}\left(\psi^{t}\right)=1
\end{aligned}
$$

Smoothness of G

Example 1: not a generic case
$\operatorname{Lag}_{1}\left(\psi^{t}\right)$

| | |
| :--- | :--- | :--- |
| $\frac{\partial G_{2}}{\partial \psi_{3}}\left(\psi^{t}\right)=\mathcal{H}^{1}\left(K \cap \operatorname{Lag}_{2,3}\left(\psi^{t}\right)\right)$ | |
| If $t=0 \frac{\partial G_{2}}{\partial \psi_{3}}\left(\psi^{t}\right)=1$ | |
| If t decreases, $\frac{\partial G_{2}}{\partial \psi_{3}}\left(\psi^{t}\right)=1$ | |

Smoothness of G

Example 1: not a generic case

If t still decreases, suddenly $\frac{\partial G_{2}}{\partial \psi_{3}}\left(\psi^{t}\right)=0$

Smoothness of G

Example 1: not a generic case
$\operatorname{Lag}_{1}\left(\psi^{t}\right)$

y_{1}
$\frac{\partial G_{2}}{\partial \psi_{3}}\left(\psi^{t}\right)=\mathcal{H}^{1}\left(K \cap \operatorname{Lag}_{2,3}\left(\psi^{t}\right)\right)$
If $t=0 \frac{\operatorname{Lag}_{2}\left(\psi^{t}\right)}{\partial \psi_{3}}\left(\psi^{t}\right)=1$
If t decreases, $\frac{\partial G_{2}}{\partial \psi_{3}}\left(\psi^{t}\right)=1$

If t still decreases, suddenly $\frac{\partial G_{2}}{\partial \psi_{3}}\left(\psi^{t}\right)=0$
$\rightsquigarrow G$ is not continuous \rightsquigarrow need genericity

Smoothness of G

Example 2: not a regular measure $(\operatorname{dim}(\sigma)=1)$
σ is a simplex of $\operatorname{dim} 1$

$$
\frac{\partial G_{1}}{\partial \psi_{2}}\left(\psi^{t}\right)=\mathcal{H}^{0}\left(K \cap \operatorname{Lag}_{1,2}\left(\psi^{t}\right)\right)=1
$$

Smoothness of G

Example 2: not a regular measure $(\operatorname{dim}(\sigma)=1)$
σ is a simplex of $\operatorname{dim} 1$

- y_{2}

$$
\frac{\partial G_{1}}{\partial \psi_{2}}\left(\psi^{t}\right)=\mathcal{H}^{0}\left(K \cap \operatorname{Lag}_{1,2}\left(\psi^{t}\right)\right)=1
$$

Smoothness of G

Example 2: not a regular measure $(\operatorname{dim}(\sigma)=1)$
σ is a simplex of $\operatorname{dim} 1$

- y_{2}

$$
\frac{\partial G_{1}}{\partial \psi_{2}}\left(\psi^{t}\right)=\mathcal{H}^{0}\left(K \cap \operatorname{Lag}_{1,2}\left(\psi^{t}\right)\right)=0
$$

Smoothness of G

Example 2: not a regular measure $(\operatorname{dim}(\sigma)=1)$
σ is a simplex of $\operatorname{dim} 1$

- y_{2}
$\frac{\partial G_{1}}{\partial \psi_{2}}\left(\psi^{t}\right)=\mathcal{H}^{0}\left(K \cap \operatorname{Lag}_{1,2}\left(\psi^{t}\right)\right)=0$
$\rightsquigarrow G$ is not continuous

Strict monotonicity of G

Example 3: K connected, but $K \backslash\{p\}$ not connected.
$Y=\left\{y_{1}, y_{2}\right\}$
$K=$ union of two triangles

$$
\mathrm{D} G(\psi)=\left(\begin{array}{cc}
a & -a \\
-a & a
\end{array}\right) \text { where } a=\frac{1}{2\left\|y_{1}-y_{2}\right\|} \mathcal{H}^{1}\left(\operatorname{Lag}_{1,2}(\psi) \cap K\right)
$$

For every y_{2} in blue domain, there exists ψ_{1} and ψ_{2} s.t. $D G(\psi)=0$

Strict monotonicity of G

For every y_{2} in blue domain, there exists ψ_{1} and ψ_{2} s.t. $D G(\psi)=0$
\rightsquigarrow Even generically, $D G(\psi)$ is not strictly monotone

Strict monotonicity of G

$Y=\left\{y_{1}, y_{2}\right\}$
$K=$ union of two triangles

$$
\mathrm{D} G(\psi)=\left(\begin{array}{cc}
a & -a \\
-a & a
\end{array}\right) \text { where } a=\frac{1}{2\left\|y_{1}-y_{2}\right\|} \mathcal{H}^{1}\left(\operatorname{Lag}_{1,2}(\psi) \cap K\right)
$$

Example 3: K connected, but $K \backslash\{p\}$ not connected.

For every y_{2} in blue domain, there exists ψ_{1} and ψ_{2} s.t. $D G(\psi)=0$
\rightsquigarrow Even generically, $D G(\psi)$ is not strictly monotone
\rightsquigarrow we need this connectedness condition.

Application

Uniform measure
$N=1000,<60 s$, less than 9 iterations, error $<10^{-6}$.

Application

Target measure not uniform (decreases from left to right)
$N=1000,<60 s$, less than 9 iterations, error $<10^{-6}$.

Conclusion

A damped Newton algorithm can be used to solve large geometric instances of optimal transport.

- For cost satisfying MTW and source measure with density
- For measure supported on sets with codimension and quadratic cost.

Conclusion

A damped Newton algorithm can be used to solve large geometric instances of optimal transport.

- For cost satisfying MTW and source measure with density
- For measure supported on sets with codimension and quadratic cost.
\rightsquigarrow Generalization to generated jacobian equations (application to optics, near field target)
\rightsquigarrow Applications to optimal transport beween measures supported on graphs.

Conclusion

A damped Newton algorithm can be used to solve large geometric instances of optimal transport.

- For cost satisfying MTW and source measure with density
- For measure supported on sets with codimension and quadratic cost.
\rightsquigarrow Generalization to generated jacobian equations (application to optics, near field target)
\rightsquigarrow Applications to optimal transport beween measures supported on graphs.

Looking for post-docs (French ANR project MAGA)

Thank you!

