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Questions for Principal:

Can principal’s total profit achieve its maximum by manipulating
the price lists?

If the maximizers exist, under what conditions will that be unique?

What is the structure of profit functional?
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Main Result:

Identified certain hypotheses under which this maximization
problem is strictly concave on a convex function space, where
the maximizer is unique.
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Mathematical framework of principal-agent problem on
nonlinear pricing

monopolist(principal): produces and sells products y ∈ cl(Y ), at
price v(y) ∈ R, to be designed, where Y ⊂ Rn.

consumers(agents): x ∈ X , where X ⊂ Rm, buys one of those
products which maximize his benefit

u(x) := max
y∈cl(Y )

G (x , y , v(y)) (1)

given benefit function G (x , y , z) : X × cl(Y )× cl(Z ) −→ R,
denotes the benefit to agent x when he chooses product y at
price z , where Z = (z, z̄) ⊂ R̄ with −∞ < z < z̄ ≤ +∞.

e.g. G (x , y , z) :=< x , y > −
√
z , where X ,Y ⊂ Rn, Z ⊂ [0,∞] and

<,> is the Euclidean inner product in Rn.
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Principal-agent framework on nonlinear pricing (cont.)

distribution of agents: dµ(x) on X .

profit gained by monopolist:
Π(v , y) =

∫
X π(x , y(x), v(y(x)))dµ(x),

given profit function π(x , y , z) : X × cl(Y )× cl(Z ) −→ R, which
represents profit to the principal who sells product y to agent x at
price z .

where y(x) denotes that product y which agent x chooses to buy,
while the function v represents a price list.
e.g. π(x , y , z) = z − a(y), where a(y) denotes the principal’s cost of
manufacturing y .

Question of monopolist: How to maximize her profit among all
feasible pricing policies?
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Constraints

Definition (incentive compatible)

A Borel map x ∈ X 7−→ (y(x), z(x)) ∈ cl(Y )× cl(Z ) of agents to
(product, price) pairs is called incentive compatible if and only if
G (x , y(x), z(x)) ≥ G (x , y(x ′), z(x ′)) for all x , x ′ ∈ X .

Such a map offers agent x no incentive to pretend to be x ′.

Definition (participation constraint)

There exists a function u∅ : X −→ R such that the agents’ utility u
is bounded below by u∅, i.e. u(x) ≥ u∅(x), for all x ∈ X .

This constraint provides an outside option for each agent so that
he can choose not to participate if the maximum utility gained
from buying activity is less than u∅(x).
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principal’s program

Proposition

The principal’s program can be described as follows:

(P0)



sup Π(v , y) =
∫
X π(x , y(x), v(y(x)))dµ(x)

s.t.

x ∈ X 7−→ (y(x), v(y(x))) incentive compatible;

u(x) := G (x , y(x), v(y(x))) ≥ u∅(x) for all x ∈ X ;

π(x , y(x), v(y(x))) is measurable.

(2)
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Previous Results by Others

Existence: Mirrlees(1971), Spence(1974), ..., Rochet(1987), ...,
Rochet-Choné (1998, [1]), Monteiro-Page(1998), ...,
Carlier(2001, [2]), ..., Nöldeke & Samuelson (2015, [3]), etc.

Mirrlees, Spence: one-dimensional
Rochet-Choné, Monteiro-Page, Carlier: quasi-linear pricing models,
multi-dimensional
Nöldeke & Samuelson: nonlinear pricing model/nonlinear matching
model, multi-dimensional
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Previous Results by Others

Concavity and Stability: Figalli-Kim-McCann (FKM, 2011), etc.

FKM: quasilinear pricing model, total social welfare.

Economic Interpretation: Mirrlees(1971), Spence(1974),...,
Rochet-Choné (1998, [1]), etc.

Nobel Economics Prizes: Mirrlees(1996), Spence(2001)
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Why not quasi-linear?

� G (x , y , z) = b(x , y)− z , where utility G linearly depends on
prices z .

� G (x , y , z) = b(x , y)−
√
z , non-constant marginal utilities.

� G (x , y , z) = b(x , y)− f (x , z), where agents have different
sensitivities to the same price.
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b-convexity

Definition (b-convexity)

A function u : cl(X ) −→ R is called b-convex if u = (ub
∗
)b and

v : cl(Y ) −→ R is called b∗-convex if v = (vb)b
∗
, where

vb(x) = sup
y∈cl(Y )

b(x , y)− v(y) and ub
∗
(y) = sup

x∈cl(X )
b(x , y)− u(x)

(3)

Taking b(x , y) =< x , y >, then b-convexity coincides with convexity.

Definition (b-concavity)

A function u : cl(X ) −→ R is called b-concave if (−u) is
(−b)-convex, i.e., u = −((−u)(−b)∗)(−b). And v : cl(Y ) −→ R is
called b∗-concave if (−v) is (−b)∗-convex.
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Hypotheses of FKM

Hypotheses (G (x , y , z) = b(x , y)− z , m = n)

(B0) b ∈ C 4(cl(X × Y )), where X ,Y ∈ Rn are open and bounded;

(B1) (bi-twist) Both y ∈ cl(Y ) 7−→ Dxb(x0, y) and
x ∈ cl(X ) 7−→ Dyb(x , y0) are diffeomorphisms onto their ranges, for
each x0 ∈ X and y0 ∈ Y , respectively;

(B2) (bi-convexity) Both ranges Dxb(x0,Y ) and Dyb(X , y0) are convex
subsets of Rn, for each x0 ∈ X and y0 ∈ Y , respectively;

(B3) (non-negative cross-curvature)

∂4

∂s2∂t2

∣∣∣∣∣
(s,t)=(0,0)

b(x(s), y(t)) ≥ 0 (4)

whenever either s ∈ [−1, 1] 7−→ Dyb(x(s), y(0)) or t ∈ [−1, 1] 7−→
Dxb(x(0), y(t)) forms an affinely parameterized line segment.
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Result of FKM

Theorem (Figalli-Kim-McCann, 2011)

Suppose m = n, G (x , y , z) = b(x , y)− z , π(x , y , z) = z − a(y), b
satisfies (B0− B3) and the manufacturing cost a : cl(Y ) −→ R is
b∗-convex, then the principal’s problem becomes a concave
maximization over a convex set.
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Hypotheses

Hypotheses

(C0) (Strictly Monotonicity) G (x , y , z) is strictly decreasing in z , for
any (x , y) ∈ X × cl(Y ), z ∈ cl(Z );

(C0) is automatically satisfied when G (x , y , z) = b(x , y)− z .

Definition (H(x , y , ·) = G−1(x , y , ·))

For all x ∈ X , y ∈ cl(Y ), u ∈ G (x , y , cl(Z )), define H(x , y , u) := z
where z satisfies G (x , y , z) = u.
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Hypotheses (cont.)

Hypotheses (cont.)

(C1) G ∈ C 1(cl(X × Y × Z )), where X ∈ Rm, Y ∈ Rn are open and
bounded and Z = (z , z̄) with −∞ < z < z̄ ≤ +∞;

(B0) b ∈ C 4(cl(X × Y )), where X ,Y ∈ Rn are open and bounded;

(C2) (twist) The map (y , z) ∈ cl(Y × Z ) 7−→ (Gx ,G )(x0, y , z) is
homeomorphism onto its range, for each x0 ∈ X ;

(B1) (bi-twist) Both y ∈ cl(Y ) 7−→ Dxb(x0, y) and x ∈ cl(X ) 7−→
Dyb(x , y0) are diffeomorphisms onto their ranges, for each x0 ∈ X and
y0 ∈ Y ;

The first part of (B1) implies (C2), in the quasilinear case.
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G -convexity, G -subdifferentiability

Definition (G -convexity)

A function u ∈ C 0(X ) is called G -convex in X , if for each x0 ∈ X ,
there exists y0 ∈ cl(Y ), and z0 ∈ cl(Z ) such that
u(x0) = G (x0, y0, z0), and u(x) ≥ G (x , y0, z0), for all x ∈ X .

For G(x , y , z) = b(x , y) − z , G -convexity coincides with b-convexity.

Definition (G -subdifferential)

The G -subdifferential of a function u(x) is defined by

∂Gu(x) := {y ∈ Y |u(x ′) ≥ G (x ′, y ,H(x , y , u(x))),∀x ′ ∈ X}

A function u is said to be G -subdifferentiable at x if and only if
∂Gu(x) 6= ∅.

For G(x , y , z) =< x , y > −z , G -subdifferential coincides with subdifferential.
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Proposition (1)

A function u : X → R is G -convex if and only if it is
G -subdifferentiable everywhere.

Proposition (2)

Let (y , z) be a pair of functions from X to Ȳ × Z̄ , then it
represents an incentive compatible contract if and only if
u(·) := G (·, y(·), z(·)) is G -convex on X and y(x) ∈ ∂Gu(x) for
each x ∈ X .
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Restate Principal’s problem

Proposition (Reformulation of Principal’s problem)

Assume hypotheses (C0− C2), π ∈ C 0(cl(X )× cl(Y )× cl(Z )),
z̄ < +∞ and µ� Lm. Then the principal’s problem (P0) is
equivalent to

(P)


max Π̃(u, y) =

∫
X π(x , y(x),H(x , y(x), u(x)))dµ(x)

among G-convex u with

u(x) ≥ u∅(x) and y(x) ∈ ∂Gu(x) for all x ∈ X .

(5)
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Further reformulation of Principal’s functional

By (C2), the optimal choice y(x) of Lebesgue almost every agent
x ∈ X is uniquely determined by u. For x ∈ domDu, let
y(x , u(x),Du(x)) be the unique solution y of the system

u(x) = G (x , y , z), Du(x) = DxG (x , y , z). (6)

Proposition (Reformulation of Principal’s problem)

Assume hypotheses (C0− C2), π ∈ C 0(cl(X × Y × Z )), z̄ < +∞
and µ� Lm. Then the principal’s problem (P0) can be rewritten
as maximizing a functional depending only on the agents’ utility u:

ΠΠΠ(u) :=

∫
X

π(x , y(x , u(x),Du(x)),H(x , y(x , u(x),Du(x)), u(x)))dµ(x)

on the space

U∅ := {u : X −→ R|u is G -convex and u ≥ u∅}.
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Hypotheses

Hypotheses (cont.)

(C3) (convexity) The set (Gx ,G )(x0, cl(Y × Z )) ⊂ Rm+1 is
convex, for each x0 ∈ X ;

(B2) (bi-convexity) Both ranges Dxb(x0,Y ) and Dyb(X , y0) are
convex subsets of Rn, for each x0 ∈ X and y0 ∈ Y , respectively;
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G -segment

Definition (G -segment)

For each x0 ∈ X and (y0, z0), (y1, z1) ∈ cl(Y × Z ), define (yt , zt)
∈ cl(Y × Z ) such that the following equation holds for each
t ∈ [0, 1]:

(Gx ,G )(x0, yt , zt) = (1− t)(Gx ,G )(x0, y0, z0) + t(Gx ,G )(x0, y1, z1) (7)

By (C2) and (C3), (yt , zt) is uniquely determined by (7). We call
t ∈ [0, 1] 7−→ (x0, yt , zt) the G -segment connecting (x0, y0, z0) and
(x0, y1, z1).
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Hypotheses (cont.)

Hypotheses (cont.)

(C4) For each x , x0 ∈ X , assume t ∈ [0, 1] 7−→ G (x , yt , zt) is convex
along all G -segments (x0, yt , zt);

(B3) (non-negative cross-curvature)

∂4

∂s2∂t2

∣∣∣∣∣
(s,t)=(0,0)

b(x(s), y(t)) ≥ 0 (8)

whenever either s ∈ [−1, 1] 7−→ Dyb(x(s), y(0)) or t ∈ [−1, 1] 7−→
Dxb(x(0), y(t)) forms an affinely parameterized line segment;
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Convexity of underlying space/Concavity of the functional

Theorem 1 (McCann-Z., 2017)

Under assumptions (C1− C4), U∅ is convex.

Theorem 2 (McCann-Z., 2017)

Assuming (C0− C4), and µ� Lm, the following statements are
equivalent:

(i) t ∈ [0, 1] 7−→ π(x , yt(x), zt(x)) is concave along all G-segments
(x , yt(x), zt(x)) whose endpoints satisfy
min{G (x , y0(x), z0(x)),G (x , y1(x), z1(x))} ≥ u∅(x);

(ii) ΠΠΠ(u) is concave in U∅.
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Theorem 1 (McCann-Z., 2017)

Under assumptions (C1− C4), U∅ is convex.

Theorem 2 (McCann-Z., 2017)

Assuming (C0− C4), and µ� Lm, the following statements are
equivalent:

(i) t ∈ [0, 1] 7−→ π(x , yt(x), zt(x)) is concave along all G-segments
(x , yt(x), zt(x)) whose endpoints satisfy
min{G (x , y0(x), z0(x)),G (x , y1(x), z1(x))} ≥ u∅(x);

(ii) ΠΠΠ(u) is concave in U∅.
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Remarks

Remark 1 (Convexity of Principal’s functional)

Under the same hypotheses as in Theorem 2, (i) remains
equivalent to (ii) when both occurences of concavity are replaced
by convexity; (i) implies to (ii) when both occurences of concavity
are replaced by strictly concavity or strictly convexity, respectively.

Remark 2 (Uniqueness)

Theorem 1 and Theorem 2 [strict version] together imply
uniqueness of principal’s maximization problem.
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Hypotheses (cont.)

Define Ḡ (x̄ , ȳ) = Ḡ (x , x0, y , z) := x0G (x , y , z), where
x̄ = (x , x0), ȳ = (y , z) and x0 ∈ X0, where X0 ⊂ (−∞, 0) is an
open bounded interval containing −1.

Hypotheses (cont.)

(C5) (non-degeneracy) G ∈ C 2(cl(X × Y × Z )), and
Dx̄,ȳ (Ḡ )(x ,−1, y , z) has full rank, for each (x , y , z) ∈ X × Y × Z .

(B1) (bi-twist) Both y ∈ cl(Y ) 7−→ Dxb(x0, y) and x ∈ cl(X ) 7−→
Dyb(x , y0) are diffeomorphisms onto their ranges, for each x0 ∈ X and
y0 ∈ Y ;
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Dx̄,ȳ (Ḡ )(x ,−1, y , z) has full rank, for each (x , y , z) ∈ X × Y × Z .

(B1) (bi-twist) Both y ∈ cl(Y ) 7−→ Dxb(x0, y) and x ∈ cl(X ) 7−→
Dyb(x , y0) are diffeomorphisms onto their ranges, for each x0 ∈ X and
y0 ∈ Y ;

Shuangjian Zhang with Robert McCann Concavity of Principal-Agent Maximization Problem University of Toronto



Introduction b-convexity and results of FKM G-convexity and Hypotheses Main result

Characterizing concavity of functional in the smooth case

Assuming (C5), we denote (D2
x̄ ,ȳ Ḡ )−1 the left inverse of

Dx̄ ,ȳ (Ḡ )(x ,−1, y , z).

Remark 3 (Characterizing concavity of principal’s profit in the
smooth case)

If G ∈ C 3(cl(X × Y × Z )) satisfies (C0− C5),
π ∈ C 2(cl(X × Y × Z )) and µ� Lm, then the following
statements are equivalent:

(i) concavity of t ∈ [0, 1] 7−→ π(x , yt(x), zt(x)) along all G-segments
(x , yt(x), zt(x));

(ii) non-positive definiteness of (D2
ȳ ȳπ − Dȳπ(D2

x̄,ȳ Ḡ )−1D3
x̄,ȳ ȳ Ḡ )

∣∣
x0=−1

on Rn+1.

(iii) concavity of ȳ1 7−→ π(x , ȳ1) −Dȳπ(x , ȳ)· (D2
x̄,ȳ Ḡ (x ,−1, ȳ))−1·

Dx̄ Ḡ (x ,−1, ȳ1) at ȳ1 = ȳ , for any (x , ȳ) ∈ X × Y × Z .
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Comparison

Corollary 1 (Concavity of principal’s objective with her utility not
depending on agents’ types)

If G ∈ C 3(cl(X × Y × Z )) satisfies (C0− C5), π = π(y , z) ∈
C 2(cl(Y × Z )) is (Ḡ )∗-concave and µ� Lm, then ΠΠΠ is concave.

Theorem (Figalli-Kim-McCann, 2011; m = n, G (x , y , z) = b(x , y)
−z , π(x , y , z) = z − a(y))

If b satisfies (B0− B3) and the manufacturing cost
a : cl(Y ) −→ R is b∗-convex, then the principal’s problem becomes
a concave maximization over a convex set.
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A shaper result

Proposition 1 (Concavity of principal’s objective with her utility
not depending on agents’ types 2)

Suppose G ∈ C 3(cl(X × Y × Z )) satisfies (C0− C5),
π ∈ C 2(cl(Y × Z )), µ� Lm, and there exists a set J ⊂ cl(X )
such that for each ȳ ∈ Y × Z , 0 ∈ (πȳ + Gȳ )(cl(J), ȳ), then the
following statements are equivalent:

(i) πȳ ȳ (ȳ) + Gȳ ȳ (x , ȳ) is non-positive definite whenever πȳ (ȳ)+
Gȳ (x , ȳ) = 0, for each (x , ȳ) ∈ cl(J)× Y × Z ;

(ii) ΠΠΠ is concave.

Remark 4

Under the same hypotheses, if πȳ ȳ (ȳ) + Gȳ ȳ (x , ȳ) is negative
definite whenever πȳ (ȳ) + Gȳ (x , ȳ) = 0, for each
(x , ȳ) ∈ cl(J)× Y × Z , then statement ΠΠΠ is strictly concave.
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A shaper result

Definition ((−G )-concavity)

A function π : cl(Y × Z ) −→ R ∪ {+∞}, not identically +∞, is
said to be (−G )-concave if there exists J ⊂ cl(X ), such that
π(ȳ) = inf

x∈cl(J)
−G (x , ȳ), for all ȳ ∈ cl(Y × Z ).

Corollary 2

Suppose G ∈ C 3(cl(X × Y × Z )) satisfies (C0− C5),
π ∈ C 2(cl(Y × Z )), µ� Lm, if π is (−G )-concave, i.e., there
exists J ∈ cl(X ) such that π(ȳ) = min

x∈cl(J)
−G (x , ȳ) for each

ȳ ∈ cl(Y × Z ), and the equation (π + G )ȳ (x , ȳ) = 0 has unique
solution x ∈ cl(J) for each ȳ ∈ Y × Z , then ΠΠΠ is concave.
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Example 1

Example (Nonlinear yet homogeneous sensitivity of agents to
prices)

Take π(x , y , z) = z − a(y), G (x , y , z) = b(x , y)− f (z), satisfying
(C0− C5), G ∈ C 3(cl(X × Y × Z )), π ∈ C 2(cl(X × Y × Z )) and
µ� Lm.

1. If f (z) is convex in cl(Z ), then ΠΠΠ(u) is concave if and only if
there exist ε ≥ 0 such that each (x , y , z) ∈ X × Y × Z and
ξ ∈ Rn satisfy{

akj (y)−
b,kj (x , y)

f ′(z)
+
(b,l (x , y)

f ′(z)
− al (y)

)
[bi,l (x , y)]−1bi,kj (x , y)

}
ξkξj ≥ ε|ξ|2.

2. If in addition, f ′′ > 0 and ε > 0, then ΠΠΠ(u) is strictly concave.
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Example 2

Example (Inhomogeneous sensitivity of agents to prices)

Take π(x , y , z) = z − a(y), G (x , y , z) = b(x , y)− f (x , z), satisfying

(C0− C5), G ∈ C 3(cl(X × Y × Z )), π ∈ C 2(cl(X × Y × Z )) and

µ� Lm. Suppose Dx,yb(x , y) has full rank for each (x , y) ∈ X × Y , and

1− (fz)−1b,β(bα,β)−1fα,z 6= 0, for all (x , y , z) ∈ X × Y × Z .

1. If (x , y , z) 7−→ h(x , y , z) := al (bi,l )
−1fi,zz +

[aβ (bα,β )−1fα,z−1][b,l (bi,l )
−1fi,zz−fzz ]

fz−b,β (bα,β )−1fα,z

≥ 0, then ΠΠΠ(u) is concave if and only if there exist ε ≥ 0 such that
each (x , y , z) ∈ X × Y × Z and ξ ∈ Rn satisfy{

akj − al (bi,l )
−1bi,kj +

[
aβ (bα,β )−1fα,z − 1

][
b,kj − b,l (bi,l )

−1bi,kj

]
fz − b,β (bα,β )−1fα,z

}
ξ
k
ξ
j ≥ ε|ξ|2.

2. If in addition, h > 0 and ε > 0, then ΠΠΠ(u) is strictly concave.
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Example 3

Example (Zero sum transactions)

Take π(x , y , z) + G (x , y , z) = 0, satisfying (C0− C4) and
µ� Lm, which means the monopolist’s profit in each transaction
coincides exactly with the agent’s loss. Then ΠΠΠ(u) is linear.
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Hypotheses (cont.)

Hypotheses (cont.)

(C6) (twist) For each (y0, z0) ∈ cl(Y × Z ), the map x ∈ X 7−→
Gy

Gz
(x , y0, z0) is one-to-one;

(C7) (convexity) Its range
Gy

Gz
(X , y0, z0) is convex, for each

(y0, z0) ∈ cl(Y × Z );

(B1) (bi-twist) Both y ∈ cl(Y ) 7−→ Dxb(x0, y) and
x ∈ cl(X ) 7−→ Dyb(x , y0) are diffeomorphisms onto their ranges,
for each x0 ∈ X and y0 ∈ Y , respectively;

(B2) (bi-convexity) Both ranges Dxb(x0,Y ) and Dyb(X , y0) are
convex subsets of Rn, for each x0 ∈ X and y0 ∈ Y , respectively;
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Equivalence of (B3) and (C4)

Proposition 2 ((C4): (B3)-like hypothesis)

Assuming m = n, G ∈ C 4(cl(X × Y × Z )) satisfying
(C0− C3,C5− C7), then (C4) is equivalent to:
(non-positive cross-curvature) For any given curve xs ∈ X
connecting x0 and x1, and any curve (yt , zt) ∈ cl(Y × Z )
connecting (y0, z0) and (y1, z1), we have

∂2

∂s2

(
1

Gz(xs , yt , zt)

∂2

∂t2
G (xs , yt , zt)

)∣∣∣∣∣
(s,t)=(s0,t0)

≤ 0, (9)

whenever either of the two curves t ∈ [0, 1] 7−→ (Gx ,G )(xs0 , yt , zt)

and s ∈ [0, 1] 7−→ Gy

Gz
(xs , yt0 , zt0) forms an affinely parametrized

line segment.
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Thank you!
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