Spherical description of photon fields: application to RET

Garth Jones

School of Chemistry, UEA

Electronic energy transfer

$$
D^{*}+A \rightarrow D+A^{*}
$$

QED of electronic energy transfer

$$
\langle F| \hat{T}^{(2)}|I\rangle=\frac{\langle F| \hat{H}_{\text {int }}\left|I_{1}(\mathbf{k}, \lambda)\right\rangle\left\langle I_{1}(\mathbf{k}, \lambda)\right| \hat{H}_{\text {int }}|I\rangle}{c K-c k+i s}+\frac{\langle F| \hat{H}_{\text {int }}\left|I_{2}(\mathbf{k}, \lambda)\right\rangle\left\langle I_{2}(\mathbf{k}, \lambda)\right| \hat{H}_{\text {int }}|I\rangle}{-c K-c k+i s}
$$

Multipolar Hamiltonian

$$
H=H_{\mathrm{mol}}(D)+H_{\mathrm{mol}}(A)+H_{\mathrm{rad}}+H_{\mathrm{int}}(D)+H_{\mathrm{int}}(A)
$$

$$
H_{\mathrm{mol}}(X) ; X=D, A \quad \text { (Molecular Hamiltonian) }
$$

$H_{\mathrm{rad}}=\sum_{\mathbf{k}, \lambda} a^{(\lambda) \dagger}(\vec{k}) a^{(\lambda)}(\vec{k}) \hbar c k+e_{\mathrm{vac}} \quad$ (EM radiation Hamiltonian)
$H_{\text {int }}(\xi)=-\varepsilon_{0}^{-1} \int \vec{p}^{\perp}(\xi, \vec{r}) \cdot \hat{d}^{\perp}(\vec{r}) \mathrm{d}^{3} \vec{r} \quad$ (Interaction Hamiltonian)

Interaction Hamiltonian

$$
\begin{gathered}
H_{\mathrm{int}}(\xi)=-\varepsilon_{0}^{-1} \int \vec{p}^{\perp}(\xi, \vec{r}) \cdot \hat{d}^{\perp}(\vec{r}) \mathrm{d}^{3} \vec{r} \\
\vec{p}(\vec{r})=\sum_{\alpha} e_{\alpha}\left(\vec{q}_{\alpha}-\vec{R}\right) \int_{0}^{1}\left[1-\left\{\lambda\left(\vec{q}_{\alpha}-\vec{R}\right) \nabla\right\}\right. \\
\left.+\frac{1}{2!}\left\{\lambda\left(\vec{q}_{\alpha}-\vec{R}\right) \nabla\right\}^{2}-\cdots\right] \delta(r-R) \mathrm{d} \lambda \\
d^{\perp}(R)=i \sum_{k, \lambda}\left(\frac{\hbar c k \varepsilon_{0}}{2 V}\right)^{\frac{1}{2}} e^{(\lambda)}(\vec{k})\left\{a^{(\lambda)}(\vec{k}) \mathrm{e}^{i \vec{k} \cdot \bar{R}}-a^{(\lambda) \dagger}(\vec{k}) \mathrm{e}^{-i \vec{k} \cdot \vec{R}}\right\}
\end{gathered}
$$

Theory of RET

Matrix element

$$
\langle F| T^{(2)}|I\rangle \longrightarrow \mu_{A_{l}}^{\text {full }} \theta_{l j}^{v a c} \mu_{D_{j}}^{\text {fill }}
$$

$$
\theta_{l j}^{v a c}(k, \hat{\mathbf{R}})=\frac{k^{3} e^{i K R}}{4 \pi \varepsilon_{0}}\left[\left(\delta_{l j}-3 \hat{R}_{l} \hat{R}_{j}\right)\left(\frac{1}{k^{3} R^{3}}-\frac{i}{k^{2} R^{2}}\right)-\left(\delta_{l j}-R_{l} R_{j}\right) \frac{1}{k R}\right]
$$

- J. S. Avery, Proc. Phys. Soc., 88, 1 - 8, 1966
- E. A. Power, T. Thirunmachandram , Phys. Rev. A, 28, 2671, 1983
- D. L. Andrews, Chem. Phys. v. 135, 195-201, 1989
- G. J. Daniels, et al., J. Chem. Phys., 119, 2264 - 2274, 2003
- A. Salam, J. Chem. Phys., 122, 044112, 2005.
- R. Grinter and G. A. Jones, J. Chem. Phys., 145, 074107, 2016

Zones of EET

$$
\theta_{l j}^{v a c}(k, \hat{\mathbf{R}})=\frac{k^{3} e^{i K R}}{4 \pi \varepsilon_{0}}\left[\left(\delta_{l j}-3 \hat{R}_{l} \hat{R}_{j}\right)\left(\frac{1}{k^{3} R^{3}}-\frac{i}{k^{2} R^{2}}\right)-\left(\delta_{l j}-R_{l} R_{j}\right) \frac{1}{k R}\right]
$$

Near-zone
Intermediate Zone
$k R \ll 1 \quad k R \sim 1$
$R \ll \lambda$
$R \sim \lambda$

Far Zone
$k R \gg 1$
$R \gg \lambda$

Orientational Factors

$$
\theta_{l j}^{v a c}(k, \hat{\mathbf{R}})=\frac{k^{3} e^{i K R}}{4 \pi \varepsilon_{0}}\left[\left(\delta_{l j}-3 \hat{R}_{l} \hat{R}_{j}\right)\left(\frac{1}{k^{3} R^{3}}-\frac{i}{k^{2} R^{2}}\right)-\left(\delta_{l j}-R_{l} R_{j}\right) \frac{1}{k R}\right]
$$

- Orientational factor for near- and intermediatetransfer
- This couples molecules via both longitudinal and transverse fields
- Orientational factor for free space transfer
- This couples molecules via transverse fields only

The photon field

- The character of the field will change significantly as we move from near to far zone.
- In the near-zone both longitudinal and transverse components are involved in coupling
- In the far zone, only transverse components of the field are relevant
- We are particularly interested in orientational characteristics of the field as we move from near to the far zone

Plane wave description of photon fields

$$
e^{i k \cdot r}=\sum_{l} \frac{(i \vec{k} \cdot \vec{r})}{l!}=1+i(\vec{k} \cdot \vec{r})-\frac{(\vec{k} \cdot \vec{r})^{2}}{2}-\frac{i(k \cdot r)^{3}}{6}+\cdots
$$

- This expression invites one to interpret the multipolar contributions with respect to the field of the photon.
- The first term relates to the transition dipole moment, the second to the magnetic dipole or the transition quadrupole moment, etc.,...
- Only the full expression defines the complete field

z propagation in terms of spherical waves

$$
e^{i \vec{k} \vec{z}}=\sum_{J} \sum_{l} i^{l}[4 \pi(2 l+1)]^{\frac{1}{2}} j_{l}(k r)\langle l 10 n \mid J n\rangle Y_{J \mathrm{ln}}(\vartheta, \varphi)
$$

$j_{l}(k r)$ Radial part Bessel functions of half order
$\langle l 10 n \mid J n\rangle \quad$ Clebsch-Gordon Coefficients
$Y_{J \mathrm{ln}}(\vartheta, \varphi)=\sum_{n} \sum_{m}\langle l 1 \mathrm{mn} \mid J M\rangle Y_{l m} e_{1 n} \quad$ Vector Spherical Harmonics

Angular Momentum; Brink and Satchler, Oxford Publishing, (1963, Third Ed. 1993)

Vector Spherical Harmonics and light

$$
Y_{J \mathrm{ln}}(\vartheta, \varphi)=\sum_{n} \sum_{m}\langle l \mathrm{mmn} \mid J M\rangle Y_{l m} e_{1 n}
$$

$e_{1-1}, e_{10}, e_{1+1} \quad$ Polarization unit vectors

The laws of addition of angular momentum say;
For $l \neq 0 \rightarrow J=l+1, l, l-1$
From any SSH $Y_{l m}$ there are only three possible VSH $Y_{l+1 l M}, Y_{l l M}, Y_{l-1 l M}$
Usually these are written in terms of J

$$
Y_{J J-1 M}, Y_{J J M}, Y_{J J+1 M}
$$

Properties Vector Spherical Harmonics

$$
\begin{gathered}
\hat{J}^{2}|J, l, M\rangle=[J(J+1)]^{1 / 2} \hbar|J, l, M\rangle \\
\hat{J}_{z}|J, l, M\rangle=M \hbar|J, l, M\rangle
\end{gathered}
$$

$$
\left\langle J, l, M \mid J^{\prime}, l^{\prime}, M^{\prime}\right\rangle=\delta_{J, l^{\prime}} \delta_{l, l^{\prime}} \delta_{M, M^{\prime}}
$$

With

$$
\langle J, l, M|=|J, l, M\rangle^{*}=(-1)^{l+J+M+1}|J, l,-M\rangle
$$

Multipole radiation from VSH

$$
l=J \rightarrow Y_{J M}
$$

This is perpendicular to k and represents the magnetic 2^{J}-pole
$\Xi_{J, J \pm 1, M}=\sqrt{\frac{J}{2 J+1}} Y_{J, J+1, M}+\sqrt{\frac{J+1}{2 J+1}} Y_{J, J-1, M}$

This the electric 2^{J}-pole radiation and is orthogonal to both k and $Y_{J M}$

Note that this combination ensures cancellation of longitudinal fields at large distances.

Electric dipole radiation: E1 transitions

$$
J=1, l=J-1=0
$$

$$
Y_{10+1}=Y_{00} \cdot e_{1+1} \quad \text { Left circularly polarized light }
$$

$$
Y_{100}=Y_{00} \cdot e_{10} \quad \text { Longitudinal fields }
$$

$$
Y_{10-1}=Y_{00} \cdot e_{1-1} \quad \text { Right circularly polarized light }
$$

R. Grinter, J. Phys. B: At., Mol. Opt. Phys. 41, 095001 (2008).

Electric dipole radiation: E1 transitions

$$
J=1, l=J+1=2
$$

$$
\begin{aligned}
& Y_{12+1}=\frac{1}{\sqrt{10}}\left\{\sqrt{6} Y_{2+2} \cdot e_{1-1}-\sqrt{3} Y_{2+1} \cdot e_{10}+Y_{20} \cdot e_{1+1}\right\} \\
& Y_{120}=\frac{1}{\sqrt{10}}\left\{\sqrt{3} Y_{2+1} \cdot e_{1-1}-\sqrt{2} Y_{20} \cdot e_{10}+\sqrt{3} Y_{2-1} \cdot e_{1+1}\right\} \\
& Y_{12-1}=\frac{1}{\sqrt{10}}\left\{Y_{20} \cdot e_{1-1}-\sqrt{3} Y_{2-1} \cdot e_{10}+\sqrt{6} Y_{2-2} \cdot e_{1+1}\right\}
\end{aligned}
$$

Magnetic dipole radiation

$$
J=1, l=J=1: \mathrm{M} 1 \text { transitions }
$$

$$
\begin{aligned}
& Y_{11+1}=\frac{1}{\sqrt{2}}\left\{Y_{1+1} \cdot e_{10}-Y_{10} \cdot e_{1+1}\right\} \\
& Y_{110}=\frac{1}{\sqrt{2}}\left\{Y_{1+1} \cdot e_{1-1}-Y_{1-1} \cdot e_{1+1}\right\} \\
& Y_{11-1}=\frac{1}{\sqrt{2}}\left\{Y_{10} \cdot e_{1-1}-Y_{1-1} \cdot e_{10}\right\}
\end{aligned}
$$

Electric quadrupole radiation

$$
J=2, l=J-1=1: \mathrm{E} 2 \text { transitions }
$$

Note there is also a set for $l=J+1$

$$
\begin{array}{ll}
Y_{21+2}=Y_{1+1} \cdot e_{1+1} & Y_{21-1}=\frac{1}{\sqrt{2}}\left\{Y_{10} \cdot e_{1-1}+Y_{1-1} \cdot e_{10}\right\} \\
Y_{21+1}=\frac{1}{\sqrt{2}}\left\{Y_{1+1} \cdot e_{10}+Y_{10} \cdot e_{1+1}\right\} & Y_{21-2}=Y_{1-1} \cdot e_{1-1} \\
Y_{210}=\frac{1}{\sqrt{6}}\left\{Y_{1+1} \cdot e_{1-1}+2 Y_{10} \cdot e_{10}+Y_{1-1} e_{1+1}\right\}
\end{array}
$$

Visualization of VSH

Y_{110}
 Magnetic multipole transition

$$
Y_{110}=(1 / \sqrt{2})\left(Y_{1+1} \cdot e_{1+1}-Y_{1-1} \cdot e_{1+1}\right)
$$

Back to Resonance Energy Transfer

R. Grinter and G. A. Jones, J. Chem. Phys. 145, 074107, (2016).

Using spherical polar basis vectors

$$
Y_{J, l, M}=\Theta_{J, l, M} \hat{\Theta}+\Phi_{J, l, M} \hat{\Phi}+R_{J, l, M} \hat{R}
$$

$$
\begin{gathered}
e_{1-1}=\frac{e^{-i \varphi}}{\sqrt{2}}\{+\cos \vartheta \hat{\Theta}-i \hat{\Phi}+\sin \vartheta \hat{R}\} \\
e_{10}=-\sin \vartheta \hat{\Theta}+\cos \vartheta \hat{R}
\end{gathered}
$$

$$
e_{1+1}=\frac{e^{+i \varphi}}{\sqrt{2}}\{-\cos \vartheta \hat{\Theta}-i \hat{\Phi}-\sin \vartheta \hat{R}\}
$$

The electric field via VSH

The VSH theory requires that the electric field associated with any particular transition is described by a combination of two VSHs both of which have the same J and M but different / numbers;

$$
l=J-1, l=J+1
$$

We can write the overall electric field of a photon as

$$
\begin{aligned}
& \vec{E}=A_{J}^{E} e^{i M \varphi}\left\{a_{J-1} h_{J-1}^{(1)}(k r)\left[\Theta_{J, J-1, M} \hat{\Theta}+\Phi_{J, J-1, M} \hat{\Phi}+R_{J, J-1, M} \hat{R}\right]\right. \\
&\left.+a_{J+1} h_{J+1}^{(1)}(k r)\left[\Theta_{J, J+1, M} \hat{\Theta}+\Phi_{J, J+1, M} \hat{\Phi}+R_{J, J+1, M} \hat{R}\right]\right\}
\end{aligned}
$$

$h_{n}^{(1)}=j_{n}+i n_{n} \quad$ Hankel function for travelling waves

Electric field in the \mathbf{z} - direction

$$
\begin{gathered}
\vec{E}=E_{R} \hat{R}+E_{\Theta} \hat{\Theta} \\
E_{R} \equiv E_{\|}=\frac{2 \vec{\mu} k^{3}}{4 \pi \varepsilon_{0}} \exp (i k R)\left[-\frac{i}{(k R)^{2}}+\frac{1}{(k R)^{3}}\right] \cos \vartheta \\
E_{\Theta} \equiv E_{\perp}=\frac{\vec{\mu} k^{3}}{4 \pi \varepsilon_{0}} \exp (i k R)\left[-\frac{1}{k R}-\frac{i}{(k R)^{2}}+\frac{1}{(k R)^{3}}\right] \sin \vartheta
\end{gathered}
$$

Longitudinal components

$$
E_{R} \equiv E_{\|}=\frac{2 \vec{\mu} k^{3}}{4 \pi \varepsilon_{0}} \exp (i k R)\left[-\frac{i}{(k R)^{2}}+\frac{1}{(k R)^{3}}\right] \cos \vartheta \quad \vartheta=0
$$

Equation 3.4a: R. Grinter and G. A. Jones, J. Chem. Phys. 145, 074107, (2016).

Transverse Component

$\sin \vartheta=1$

$$
\begin{aligned}
E_{\Theta} \equiv & E_{\perp}=\frac{\vec{\mu} k^{3}}{4 \pi \varepsilon_{0}} \exp (i k R) \\
& {\left[-\frac{1}{k R}-\frac{i}{(k R)^{2}}+\frac{1}{(k R)^{3}}\right] \sin \vartheta }
\end{aligned}
$$

The electronic coupling: arbitrary orientation

$$
\begin{gathered}
\operatorname{Re}(W)=-\frac{k^{3}}{2 \pi \varepsilon_{0}}\left\{M_{R}^{\prime}\right\}\left[\frac{\sin k R}{(k R)^{2}}+\frac{\cos k R}{(k R)^{3}}\right]+\frac{k^{3}}{4 \pi \varepsilon_{0}}\left\{M_{\Theta}^{\prime}+M_{\Phi}^{\prime}\right\}\left[\frac{\cos k R}{k R}-\frac{\sin k R}{(k R)^{2}}-\frac{\cos k R}{(k R)^{3}}\right] \\
\operatorname{Im}(W)=-\frac{k^{3}}{2 \pi \varepsilon_{0}}\left\{M_{R}^{\prime}\right\}\left[-\frac{\cos k R}{(k R)^{2}}+\frac{\sin k R}{(k R)^{3}}\right]+\frac{k^{3}}{4 \pi \varepsilon_{0}}\left\{M_{\Theta}^{\prime}+M_{\Phi}^{\prime}\right\}\left[\frac{\sin k R}{k R}+\frac{\cos k R}{(k R)^{2}}-\frac{\sin k R}{(k R)^{3}}\right] \\
M_{R}^{\prime}=\mu_{R}^{\prime}\left[+\mu_{x} \sin \vartheta \cos \varphi+\mu_{y} \sin \vartheta \sin \varphi+\mu_{z} \cos \vartheta\right] \\
M_{\Theta}^{\prime}=\mu_{\Theta}^{\prime}\left[-\mu_{x} \cos \vartheta \cos \varphi-\mu_{y} \cos \vartheta \sin \varphi+\mu_{z} \sin \vartheta\right] \\
M_{\Phi}^{\prime}=\mu_{\Phi}^{\prime}\left[+\mu_{x} \sin \varphi-\mu_{y} \cos \varphi\right]
\end{gathered}
$$

R. Grinter and G. A. Jones. J. Chem. Phys. 145, 074107, (2016).

Overview of the VSH description

The spherical wave description of photon fields is complementary to the plane wave description, in particular;
$>$ It is very useful in the case of spherically symmetric and isotropic situations
$>$ There is a rigorous definition of different types of transitions (electric dipole, magnetic dipole, electric quadrupole, etc.) and this can in principle be linked directly to electronic states
$>$ The both electric and magnetic fields can be easily extracted and mapped over space (and in principle time).
$>$ The transverse and longitudinal field components fall out naturally

Future Directions

There are several possible directions this work can be taken;
$>$ The development of a graphical interface for visualizing vector fields on the surface of a sphere
> Investigation of higher order effects. e.g. quadrupole emission and higher order couplings in EET
$>$ Application to high a.m. light?

People

- Dr Roger Grinter - Major collaborator on this project
- Dr Colm Gillis - Recently graduated PhD student
- Mr James Frost - PhD student
- Mr Dale Green - PhD student
- Prof Andrews \& his group

