Probabilistic Tools for Lattice Path Enumeration

KILIAN RASCHEL

Lattice walks at the Interface of Algebra, Analysis and Combinatorics September 18, 2017 BIRS

(中) (종) (종) (종) (종) (종)

Probabilistic Tools for Lattice Path Enumeration

KILIAN RASCHEL

Lattice walks at the Interface of Algebra, Analysis and Combinatorics September 18, 2017and OProbability BIRS

◆□ → ◆□ → ◆□ → ◆□ → □ □ □

Introduction

Dimension 1: examples & limits

Central idea in dimension ≥ 2 : approximation by Brownian motion

<ロト <四ト <注入 <注下 <注下 <

Application #1: excursions

Application #2: walks with prescribed length

Discrete harmonic functions and critical exponents

First exit time from a cone C

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

First exit time from a cone C

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 ∽੧<⊙

First exit time from a cone C

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

First exit time from a cone C

 $\succ \tau_C = \inf\{n \in \mathbf{N} : S(n) \notin C\} (S \text{ RW})$ $\triangleright T_C = \inf\{t \in \mathbf{R}_+ : B(t) \notin C\} (B \text{ BM})$

<ロト <四ト <注入 <注下 <注下 <

First exit time from a cone C

$$\succ \tau_C = \inf\{n \in \mathbf{N} : S(n) \notin C\} (S \text{ RW})$$
$$\triangleright T_C = \inf\{t \in \mathbf{R}_+ : B(t) \notin C\} (B \text{ BM})$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Persistence probabilities → total number of walks

$$\triangleright \mathbf{P}_{x}[\tau_{\mathcal{C}} > n] \sim \kappa \cdot V(x) \cdot \rho^{n} \cdot n^{-\alpha}$$

First exit time from a cone C

$$\succ \tau_C = \inf\{n \in \mathbf{N} : S(n) \notin C\} (S \text{ RW})$$
$$\triangleright T_C = \inf\{t \in \mathbf{R}_+ : B(t) \notin C\} (B \text{ BM})$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Persistence probabilities → total number of walks

$$\triangleright \mathbf{P}_{x}[\tau_{C} > n] \sim \mathbf{X} \cdot V(x) \cdot \rho^{n} \cdot n^{-\alpha}$$

First exit time from a cone C

$$\succ \tau_C = \inf\{n \in \mathbf{N} : S(n) \notin C\} (S \text{ RW})$$
$$\triangleright T_C = \inf\{t \in \mathbf{R}_+ : B(t) \notin C\} (B \text{ BM})$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Persistence probabilities → total number of walks

$$\triangleright \mathbf{P}_{x}[\tau_{C} > n] \sim \mathbf{X} \cdot \mathbf{V}_{\mathbf{X}} \cdot \rho^{n} \cdot n^{-\alpha}$$

First exit time from a cone C

$$\succ \tau_C = \inf\{n \in \mathbf{N} : S(n) \notin C\} (S \text{ RW})$$
$$\triangleright T_C = \inf\{t \in \mathbf{R}_+ : B(t) \notin C\} (B \text{ BM})$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Persistence probabilities → total number of walks

 $\triangleright \mathbf{P}_{x}[\tau_{C} > n] \sim \mathbf{X} \cdot \mathbf{V}(\mathbf{x}) \cdot \mathbf{X} \cdot n^{-\alpha}$

First exit time from a cone C

$$\succ \tau_C = \inf\{n \in \mathbf{N} : S(n) \notin C\} (S \text{ RW})$$
$$\triangleright T_C = \inf\{t \in \mathbf{R}_+ : B(t) \notin C\} (B \text{ BM})$$

Persistence probabilities ~> total number of walks

$$\triangleright \mathbf{P}_{x}[\tau_{C} > n] \sim \mathbf{X} \cdot \mathbf{V}(\mathbf{x}) \cdot \mathbf{X} \cdot n^{-\alpha}$$

Local limit theorems ~> excursions

$$\triangleright \mathbf{P}_{x}[\tau_{C} > n, S(n) = y] \sim \kappa \cdot V(x, y) \cdot \rho^{n} \cdot n^{-\alpha}$$

First exit time from a cone C

$$\succ \tau_C = \inf\{n \in \mathbf{N} : S(n) \notin C\} (S \text{ RW})$$
$$\triangleright T_C = \inf\{t \in \mathbf{R}_+ : B(t) \notin C\} (B \text{ BM})$$

Persistence probabilities ~> total number of walks

$$\triangleright \mathbf{P}_{x}[\tau_{C} > n] \sim \mathbf{X} \cdot \mathbf{V}(\mathbf{x}) \cdot \mathbf{X} \cdot n^{-\alpha}$$

Local limit theorems ~> excursions

$$\triangleright \mathbf{P}_{x}[\tau_{C} > n, S(n) = y] \sim \mathbf{X} \cdot V(\mathbf{X} y) \cdot \mathbf{X} \cdot n^{-\alpha}$$

First exit time from a cone C

$$\succ \tau_C = \inf\{n \in \mathbf{N} : S(n) \notin C\} (S \text{ RW})$$
$$\triangleright T_C = \inf\{t \in \mathbf{R}_+ : B(t) \notin C\} (B \text{ BM})$$

・ロト ・個ト ・ヨト ・ヨト

E

Persistence probabilities ~> total number of walks

$$\triangleright \mathbf{P}_{x}[\tau_{C} > n] \sim \mathbf{X} \cdot \mathbf{V}(\mathbf{x}) \cdot \mathbf{X} \cdot n^{-\alpha}$$

Local limit theorems ~> excursions

$$\triangleright \mathbf{P}_{x}[\tau_{C} > n, S(n) = y] \sim \mathbf{X} \cdot V(\mathbf{X} y) \cdot \mathbf{X} \cdot n^{-\alpha}$$

Aim of the talk: understanding the critical exponents α

Random walk on Z^d

▷ A random walk $\{S(n)\}_{n \ge 0}$ is

$$S(n) = x + X(1) + \cdots + X(n),$$

where the X(i) are i.i.d.

Random walk on Z^d

▷ A random walk $\{S(n)\}_{n \ge 0}$ is

$$S(n) = x + X(1) + \cdots + X(n),$$

where the X(i) are i.i.d. (e.g., uniform on a step set $\mathfrak{S} \subset \mathbf{Z}^d$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Random walk on Z^d

▷ A random walk $\{S(n)\}_{n \ge 0}$ is

$$S(n) = x + X(1) + \cdots + X(n),$$

where the X(i) are i.i.d. (e.g., uniform on a step set $\mathfrak{S} \subset \mathbf{Z}^d)$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

▷ Example (Dyck paths): simple random walk $X(i) \in \{-1, +1\}$

Random walk on Z^d

▷ A random walk $\{S(n)\}_{n \ge 0}$ is

$$S(n) = x + X(1) + \cdots + X(n),$$

where the X(i) are i.i.d. (e.g., uniform on a step set $\mathfrak{S} \subset \mathbf{Z}^d$) \triangleright Example (Dyck paths): simple random walk $X(i) \in \{-1, +1\}$

æ

Random walk on Z^d

▷ A random walk $\{S(n)\}_{n \ge 0}$ is

$$S(n) = x + X(1) + \cdots + X(n),$$

where the X(i) are i.i.d. (e.g., uniform on a step set $\mathfrak{S} \subset \mathbf{Z}^d$) \triangleright Example (Dyck paths): simple random walk $X(i) \in \{-1, +1\}$

Random walk on Z^d

▷ A random walk $\{S(n)\}_{n \ge 0}$ is

$$S(n) = x + X(1) + \cdots + X(n),$$

where the X(i) are i.i.d. (e.g., uniform on a step set $\mathfrak{S} \subset \mathbf{Z}^d$) \triangleright Example (Dyck paths): simple random walk $X(i) \in \{-1, +1\}$

The ubiquity of random walks

Introduction

Dimension 1: examples & limits

Central idea in dimension ≥ 2 : approximation by Brownian motion

<ロト <四ト <注入 <注下 <注下 <

Application #1: excursions

Application #2: walks with prescribed length

Discrete harmonic functions and critical exponents

▲ロト ▲御ト ▲画ト ▲画ト 三回 - のへで

$$\triangleright \ \#\{x \stackrel{n}{\longrightarrow} \mathbf{Z}\} = 2^n$$

Walk \rightsquigarrow Exponent 0

- E

(日) (四) (王) (王) (王)

▷ $\#\{x \xrightarrow{n} \mathbf{Z}\} = 2^n$ Walk \rightsquigarrow Exponent 0 ▷ $\#\{x \xrightarrow{n} y\} = {\binom{n}{\frac{n+(y-x)}{2}}} \sim \sqrt{\frac{2}{\pi}} \frac{2^n}{\sqrt{n}}$ Bridge \rightsquigarrow Exponent $\frac{1}{2}$

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

▷ $\#\{x \xrightarrow{n} Z\} = 2^n$ Walk \rightsquigarrow Exponent 0 ▷ $\#\{x \xrightarrow{n} y\} = {n \choose \frac{n+(y-x)}{2}} \sim \sqrt{\frac{2}{\pi}} \frac{2^n}{\sqrt{n}}$ Bridge \rightsquigarrow Exponent $\frac{1}{2}$ ▷ $\sum \frac{1}{\sqrt{n}} = \infty$: recurrence of the simple random walk in Z

▷ #{x → Z} = 2ⁿ Walk → Exponent 0 ▷ #{x → y} = $\binom{n}{\frac{n+(y-x)}{2}} \sim \sqrt{\frac{2}{\pi}} \frac{2^n}{\sqrt{n}}$ Bridge → Exponent $\frac{1}{2}$ ▷ $\sum \frac{1}{\sqrt{n}} = \infty$: recurrence of the simple random walk in Z ▷ Constant $\sqrt{\frac{2}{\pi}}$ independent of x & y in the asymptotics

Constrained walk with $\mathfrak{S} = \{-1, +1\}$ (Dyck paths)

▲□▶ ▲圖▶ ▲필▶ ▲필▶ 三里

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆

Sac

Beyond the classical exponents 0, $\frac{1}{2}$ & $\frac{3}{2}$

Weighted models in dimension 1

Drift $\sum_{s\in\mathfrak{S}} s$ governs the exponents, which are still 0, $\frac{1}{2}$ & $\frac{3}{2}$

Beyond the classical exponents 0, $\frac{1}{2}$ & $\frac{3}{2}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Weighted models in dimension 1

Drift $\sum_{s \in \mathfrak{S}} s$ governs the exponents, which are still 0, $\frac{1}{2}$ & $\frac{3}{2}$ The simple walk in two-dimensional wedges

Beyond the classical exponents 0, $\frac{1}{2}$ & $\frac{3}{2}$

Weighted models in dimension 1

Drift $\sum_{s \in \mathfrak{S}} s$ governs the exponents, which are still 0, $\frac{1}{2}$ & $\frac{3}{2}$ The simple walk in two-dimensional wedges

- Half-plane: one-dimensional case
- Dyck paths
- ▷ Total number of walks: \rightarrow Exponent $\frac{1}{2}$
- Excursions:

 \rightsquigarrow Exponent $2 = \frac{3}{2} + \frac{1}{2}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○ ○
Weighted models in dimension 1

Drift $\sum_{s \in \mathfrak{S}} s$ governs the exponents, which are still 0, $\frac{1}{2} \& \frac{3}{2}$ The simple walk in two-dimensional wedges

- Quarter plane: product of two one-dimensional cases
- Reflection principle
- ▷ Total number of walks: \rightarrow Exponent $1 = \frac{1}{2} + \frac{1}{2}$
- Excursions:

 \rightsquigarrow Exponent $3 = \frac{3}{2} + \frac{3}{2}$

《曰》 《聞》 《理》 《理》 三世

Weighted models in dimension 1

Drift $\sum_{s \in \mathfrak{S}} s$ governs the exponents, which are still 0, $\frac{1}{2}$ & $\frac{3}{2}$ The simple walk in two-dimensional wedges

- Slit plane:
 Bousquet-Mélou & Schaeffer '00
 - Highly non-convex cone
 - $\triangleright \text{ Total number of walks:} \\ \rightsquigarrow \text{ Exponent } \frac{1}{4}$

2

 $\triangleright \text{ Excursions:} \\ \rightsquigarrow \text{ Exponent } \frac{3}{2}$

Weighted models in dimension 1

Drift $\sum_{s \in \mathfrak{S}} s$ governs the exponents, which are still 0, $\frac{1}{2}$ & $\frac{3}{2}$ The simple walk in two-dimensional wedges

▷ 45°: Souyou-Beauchamps '86

▷ See

🖗 Bousquet-Mélou & Mishna '10

《曰》 《聞》 《理》 《理》 三世

- Excursions:
 - \rightsquigarrow Exponent 5

Weighted models in dimension 1

Drift $\sum_{s \in \mathfrak{S}} s$ governs the exponents, which are still 0, $\frac{1}{2}$ & $\frac{3}{2}$ The simple walk in two-dimensional wedges

- ▷ 135°: Gessel
- See See Kauers, Koutschan & Zeilberger '09; etc.
- ▷ Total number of walks: \rightarrow Exponent $\frac{2}{3}$

< □ > < @ > < 注 > < 注 > ... 注

 $\triangleright \text{ Excursions:} \\ \rightsquigarrow \text{ Exponent } \frac{7}{3}$

Weighted models in dimension 1

Drift $\sum_{s \in \mathfrak{S}} s$ governs the exponents, which are still 0, $\frac{1}{2} \& \frac{3}{2}$ The simple walk in two-dimensional wedges

- Walks avoiding a quadrant
- See See Bousquet-Mélou '15;
 Mustapha '15; Trotignon et al. '17+

2

- ▷ Total number of walks: \rightarrow Exponent $\frac{1}{3}$
- $\triangleright \quad \text{Excursions:} \\ \rightsquigarrow \quad \text{Exponent } \frac{5}{3}$

Weighted models in dimension 1

Drift $\sum_{s \in \mathfrak{S}} s$ governs the exponents, which are still 0, $\frac{1}{2}$ & $\frac{3}{2}$ The simple walk in two-dimensional wedges

- \triangleright Arbitrary angular sector θ
- ▷ See [®] Varopoulos '99; Denisov & Wachtel '15

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三語……

Weighted models in dimension 1

Drift $\sum_{s \in \mathfrak{S}} s$ governs the exponents, which are still 0, $\frac{1}{2} \& \frac{3}{2}$ The simple walk in two-dimensional wedges

- \triangleright Arbitrary angular sector θ
- ▷ See [®] Varopoulos '99; Denisov & Wachtel '15
- ▷ Total number of walks: \rightarrow Exponent $\frac{\pi}{2\theta}$
- Excursions:
 - \rightsquigarrow Exponent $\frac{\pi}{\theta} + 1$

(日) (四) (문) (문) (문)

Weighted models in dimension 1

Drift $\sum_{s \in \mathfrak{S}} s$ governs the exponents, which are still 0, $\frac{1}{2} \& \frac{3}{2}$ The simple walk in two-dimensional wedges

- \triangleright Arbitrary angular sector θ
- ▷ See [®] Varopoulos '99; Denisov & Wachtel '15
- ▷ Total number of walks: \rightarrow Exponent $\frac{\pi}{2\theta}$
- Excursions:
 - \rightsquigarrow Exponent $\frac{\pi}{\theta}+1$

Conclusion: 1D case not enough

- Dramatic change of behavior: every exponent is possible!
- Non-D-finite behaviors (first observed by Varopoulos '99)

Introduction

Dimension 1: examples & limits

Central idea in dimension ≥ 2 : approximation by Brownian motion

Application #1: excursions

Application #2: walks with prescribed length

Discrete harmonic functions and critical exponents

Law of large numbers

$$\frac{X(1) + \dots + X(n)}{n^1} \stackrel{\text{a.s.}}{\longrightarrow} \mathbf{E}[X(1)]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Law of large numbers

$$\frac{X(1) + \dots + X(n)}{n^1} \xrightarrow{\text{a.s.}} \mathbf{E}[X(1)]$$

Central limit theorem

$$n^{\frac{1}{2}}\left\{\frac{X(1)+\cdots+X(n)}{n^{1}}-\mathsf{E}[X(1)]\right\}\stackrel{\mathsf{law}}{\longrightarrow}\mathcal{N}(0,\mathsf{V}[X(1)])$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Law of large numbers

$$\frac{X(1) + \dots + X(n)}{n^1} \xrightarrow{\text{a.s.}} \mathbf{E}[X(1)]$$

Central limit theorem

$$n^{\frac{1}{2}}\left\{\frac{X(1)+\cdots+X(n)}{n^{1}}-\mathbf{E}[X(1)]\right\}\xrightarrow{\text{law}}\mathcal{N}(0,\mathbf{V}[X(1)])$$

Donsker's theorem (functional central limit theorem)

 $RW \longrightarrow BM$

<ロ> (四) (四) (三) (三) (三)

æ

Law of large numbers

$$\frac{X(1) + \dots + X(n)}{n^1} \xrightarrow{\text{a.s.}} \mathbf{E}[X(1)]$$

Central limit theorem

$$n^{\frac{1}{2}}\left\{\frac{X(1)+\cdots+X(n)}{n^{1}}-\mathbf{E}[X(1)]\right\}\xrightarrow{\text{law}}\mathcal{N}(0,\mathbf{V}[X(1)])$$

Donsker's theorem (functional central limit theorem)

Law of large numbers

$$\frac{X(1) + \dots + X(n)}{n^1} \xrightarrow{\text{a.s.}} \mathbf{E}[X(1)]$$

Central limit theorem

$$n^{\frac{1}{2}}\left\{\frac{X(1)+\cdots+X(n)}{n^{1}}-\mathbf{E}[X(1)]\right\}\xrightarrow{\text{law}}\mathcal{N}(0,\mathbf{V}[X(1)])$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Denisov & Wachtel '15 (excursions for RW in cones $\subset Z^d$)

 $\triangleright \ \mathsf{RW} \longrightarrow \mathsf{BM}$

Law of large numbers

$$\frac{X(1) + \dots + X(n)}{n^1} \xrightarrow{\text{a.s.}} \mathbf{E}[X(1)]$$

Central limit theorem

$$n^{\frac{1}{2}}\left\{\frac{X(1)+\cdots+X(n)}{n^{1}}-\mathbf{E}[X(1)]\right\}\stackrel{\text{law}}{\longrightarrow}\mathcal{N}(0,\mathbf{V}[X(1)])$$

Denisov & Wachtel '15 (excursions for RW in cones $\subset Z^d$)

- $\triangleright \ \mathsf{RW} \longrightarrow \mathsf{BM}$
- Mapping theorem: many asymptotic results concerning RW can be deduced from BM

Law of large numbers

$$\frac{X(1) + \dots + X(n)}{n^1} \xrightarrow{\text{a.s.}} \mathbf{E}[X(1)]$$

Central limit theorem

$$n^{\frac{1}{2}}\left\{\frac{X(1)+\cdots+X(n)}{n^{1}}-\mathbf{E}[X(1)]\right\}\xrightarrow{\text{law}}\mathcal{N}(0,\mathbf{V}[X(1)])$$

Denisov & Wachtel '15 (excursions for RW in cones $\subset Z^d$)

- $\triangleright \ \mathsf{RW} \longrightarrow \mathsf{BM}$
- Mapping theorem: many asymptotic results concerning RW can be deduced from BM

▷ For excursions, α {RW} = α {BM} if $\begin{cases}
E[RW] = E[BM] = 0 \\
V[RW] = V[BM] = id
\end{cases}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Law of large numbers

$$\frac{X(1) + \dots + X(n)}{n^1} \xrightarrow{\text{a.s.}} \mathbf{E}[X(1)]$$

Central limit theorem

$$n^{\frac{1}{2}}\left\{\frac{X(1)+\cdots+X(n)}{n^{1}}-\mathbf{E}[X(1)]\right\}\xrightarrow{\text{law}}\mathcal{N}(0,\mathbf{V}[X(1)])$$

Denisov & Wachtel '15 (excursions for RW in cones $\subset Z^d$)

- $\triangleright \ \mathsf{RW} \longrightarrow \mathsf{BM}$
- Mapping theorem: many asymptotic results concerning RW can be deduced from BM
- ▷ For excursions, α {RW} = α {BM} if $\begin{cases}
 \mathbf{E}[RW] = \mathbf{E}[BM] = 0 \\
 \mathbf{V}[RW] = \mathbf{V}[BM] = id
 \end{cases}$
- ▷ If $\mathbf{V}[\mathsf{RW}] \neq \mathsf{id}$ then $\mathbf{V}[M \cdot \mathsf{RW}] = \mathsf{id}$ for some $M \in \mathbf{M}_d(\mathbf{R})$

Law of large numbers

$$\frac{X(1) + \dots + X(n)}{n^1} \xrightarrow{\text{a.s.}} \mathbf{E}[X(1)]$$

Central limit theorem

$$n^{\frac{1}{2}}\left\{\frac{X(1)+\cdots+X(n)}{n^{1}}-\mathbf{E}[X(1)]\right\}\xrightarrow{\text{law}}\mathcal{N}(0,\mathbf{V}[X(1)])$$

Denisov & Wachtel '15 (excursions for RW in cones $\subset Z^d$)

- $\triangleright \ \mathsf{RW} \longrightarrow \mathsf{BM}$
- Mapping theorem: many asymptotic results concerning RW can be deduced from BM
- ▷ For excursions, α {RW} = α {BM} if $\begin{cases}
 \mathbf{E}[RW] = \mathbf{E}[BM] = 0 \\
 \mathbf{V}[RW] = \mathbf{V}[BM] = id
 \end{cases}$
- $\triangleright \ \, \mathsf{If} \ \, \mathbf{V}[\mathsf{RW}] \neq \mathsf{id} \ \mathsf{then} \ \, \mathbf{V}[M \cdot \mathsf{RW}] = \mathsf{id} \ \mathsf{for} \ \mathsf{some} \ \, M \in \mathbf{M}_d(\mathbf{R})$
- \triangleright Cone *C* becomes $M \cdot C$

Law of large numbers

$$\frac{X(1) + \dots + X(n)}{n^1} \xrightarrow{\text{a.s.}} \mathbf{E}[X(1)]$$

Central limit theorem

$$n^{\frac{1}{2}}\left\{\frac{X(1)+\cdots+X(n)}{n^{1}}-\mathbf{E}[X(1)]\right\}\xrightarrow{\text{law}}\mathcal{N}(0,\mathbf{V}[X(1)])$$

Denisov & Wachtel '15 (excursions for RW in cones $\subset Z^d$)

- $\triangleright \ \mathsf{RW} \longrightarrow \mathsf{BM}$
- Mapping theorem: many asymptotic results concerning RW can be deduced from BM

▷ For excursions,
$$\alpha$$
{RW} = α {BM} if

$$\begin{cases}
E[RW] = E[BM] = 0 \\
V[RW] = V[BM] = ic
\end{cases}$$

Remainder of this section: computing α {BM} (easier)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Two derivations of the BM persistence probability in R

Reflection principle

$$\begin{aligned} \mathbf{P}_{x}[T_{(0,\infty)} > t] &= \mathbf{P}_{0}[\min_{0 \le u \le t} B(u) > -x] \\ &= \mathbf{P}_{0}[|B(t)| < x] \\ &= \frac{2}{\sqrt{2\pi t}} \int_{0}^{x} e^{-\frac{y^{2}}{2t}} dy \end{aligned}$$

(日) (四) (王) (王) (王)

æ

Two derivations of the BM persistence probability in R

Reflection principle

$$\begin{aligned} \mathbf{P}_{x}[T_{(0,\infty)} > t] &= \mathbf{P}_{0}[\min_{0 \leqslant u \leqslant t} B(u) > -x] \\ &= \mathbf{P}_{0}[|B(t)| < x] \\ &= \frac{2}{\sqrt{2\pi t}} \int_{0}^{x} e^{-\frac{y^{2}}{2t}} dy \end{aligned}$$

Heat equation

Function $g(t; x) = \mathbf{P}_x[T_{(0,\infty)} > t]$ satisfies

$$\begin{cases} \left(\frac{\partial}{\partial t} - \frac{1}{2}\Delta\right)g(t;x) = 0, & \forall x \in (0,\infty), \ \forall t \in (0,\infty) \\ g(0;x) = 1, & \forall x \in (0,\infty) \\ g(t;0) = 0, & \forall t \in (0,\infty) \end{cases}$$

Dimension *d*: explicit expression for $P_x[T_C > t]$

Heat equation

🔊 Doob '55

For essentially any domain C in any dimension d, $\mathbf{P}_x[T_C > t] \& p^C(t; x, y) (\mathbf{P}_x[T_C > t] = \int_C p^C(t; x, y) dy)$ satisfy heat equations

Dimension *d*: explicit expression for $P_x[T_C > t]$

Heat equation

🔊 Doob '55

For essentially any domain C in any dimension d, $\mathbf{P}_x[T_C > t] \& p^C(t; x, y) (\mathbf{P}_x[T_C > t] = \int_C p^C(t; x, y) dy)$ satisfy heat equations

Dirichlet eigenvalues problem

🕲 Chavel '84

◆□> <@> < E> < E> < E</p>

$$\Delta_{\mathbf{S}^{d-1}}m = -\lambda m \quad \text{in } \mathbf{S}^{d-1} \cap C$$
$$m = 0 \qquad \text{in } \partial(\mathbf{S}^{d-1} \cap C)$$

Dimension d: explicit expression for $P_x[T_c > t]$ Heat equation Doob '55 For essentially any domain C in any dimension d, $\mathbf{P}_{x}[T_{C} > t]$ & $p^{C}(t; x, y)$ ($\mathbf{P}_{x}[T_{C} > t] = \int_{C} p^{C}(t; x, y) dy$) satisfy heat equations **Dirichlet eigenvalues problem** Chavel '84 $\begin{cases} \Delta_{\mathbf{S}^{d-1}}m = -\lambda m & \text{in } \mathbf{S}^{d-1} \cap C \\ m = 0 & \text{in } \partial(\mathbf{S}^{d-1} \cap C) \end{cases}$ Discrete eigenvalues $0 < \lambda_1 < \lambda_2 \leq \lambda_3 \leq \dots$ and eigenfunctions m_1, m_2, m_3, \dots

Dimension d: explicit expression for $P_x[T_c > t]$ Heat equation Doob '55 For essentially any domain C in any dimension d, $\mathbf{P}_{x}[T_{C} > t]$ & $p^{C}(t; x, y)$ ($\mathbf{P}_{x}[T_{C} > t] = \int_{C} p^{C}(t; x, y) dy$) satisfy heat equations **Dirichlet eigenvalues problem** Chavel '84 $\begin{cases} \Delta_{\mathbf{S}^{d-1}}m = -\lambda m & \text{in } \mathbf{S}^{d-1} \cap C \\ m = 0 & \text{in } \partial(\mathbf{S}^{d-1} \cap C) \end{cases}$ $S^{d-1} \cap C$ Discrete eigenvalues $0 < \lambda_1 < \lambda_2 \leq \lambda_3 \leq \dots$ and eigenfunctions m_1, m_2, m_3, \dots Series expansion DeBlassie '87; Bañuelos & Smits '97 ∞

$$\mathbf{P}_{x}[T_{C} > t] = \sum_{j=1}^{\infty} B_{j}(|x|^{2}/t)m_{j}(x/|x|)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Series expansion

DeBlassie '87; Bañuelos & Smits '97

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$\mathbf{P}_{x}[T_{C} > t] = \sum_{j=1}^{\infty} B_{j}(|x|^{2}/t)m_{j}(x/|x|),$$

with

- ▷ *B_j* hypergeometric
- ▷ series expansion very well suited for asymptotics

Series expansion

DeBlassie '87; Bañuelos & Smits '97

$$\mathbf{P}_{x}[T_{C} > t] = \sum_{j=1}^{\infty} B_{j}(|x|^{2}/t)m_{j}(x/|x|),$$

with

- \triangleright B_i hypergeometric
- ▷ series expansion very well suited for asymptotics

Asymptotic result

DeBlassie '87; Bañuelos & Smits '97

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

$$\mathbf{P}_{x}[\mathbf{T}_{C} > t] \sim \kappa \cdot u(x) \cdot t^{-\alpha},$$

Series expansion

🖄 DeBlassie '87; Bañuelos & Smits '97

$$\mathbf{P}_{x}[T_{C} > t] = \sum_{j=1}^{\infty} B_{j}(|x|^{2}/t)m_{j}(x/|x|),$$

with

- ▷ B_i hypergeometric
- > series expansion very well suited for asymptotics

Asymptotic result

DeBlassie '87; Bañuelos & Smits '97

 $\mathbf{P}_{x}[T_{C} > t] \sim \kappa \cdot u(x) \cdot t^{-\alpha},$ with $\alpha = \frac{1}{2} \left(\sqrt{\lambda_{1} + (\frac{d}{2} - 1)^{2}} - (\frac{d}{2} - 1) \right)$ linked to first eigenvalue

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Series expansion

DeBlassie '87; Bañuelos & Smits '97

$$\mathbf{P}_{x}[T_{C} > t] = \sum_{j=1}^{\infty} B_{j}(|x|^{2}/t)m_{j}(x/|x|),$$

with

- \triangleright B_i hypergeometric
- ▷ series expansion very well suited for asymptotics

Asymptotic result

DeBlassie '87; Bañuelos & Smits '97

(日) (四) (문) (문) (문)

$$\mathbf{P}_{x}[\mathbf{T}_{C} > t] \sim \kappa \cdot u(x) \cdot t^{-\alpha},$$

with
$$\alpha = \frac{1}{2} \left(\sqrt{\lambda_1 + (\frac{d}{2} - 1)^2} - (\frac{d}{2} - 1) \right)$$
 linked to first eigenvalue

Exercise

Recover the exponent $\frac{\pi}{2\theta}$ of the persistence probability for a simple random walk in a two-dimensional wedge of opening angle θ

Introduction

Dimension 1: examples & limits

Central idea in dimension ≥ 2 : approximation by Brownian motion

< □ > < □ > < □ > < □ > < □ > < □ > = □

Application #1: excursions

Application #2: walks with prescribed length

Discrete harmonic functions and critical exponents

In the quarter plane

In the quarter plane

Hypotheses on the *moments*:

$$\mathbf{E}[GB] = (1,0) + (1,-1) + (-1,0) + (-1,1)$$

= (0,0)

<ロ> (四) (四) (日) (日) (日)

æ

In the quarter plane

Hypotheses on the *moments*:

$$\begin{aligned} \mathbf{E}[GB] &= (1,0) + (1,-1) + (-1,0) + (-1,1) \\ &= (0,0) \\ \mathbf{V}[GB] &= \begin{pmatrix} 4 & -2 \\ -2 & 2 \end{pmatrix} \neq \mathsf{id} \end{aligned}$$

<ロ> (四) (四) (日) (日) (日)

æ

In the quarter plane

Hypotheses on the *moments*:

$$\begin{aligned} \mathbf{E}[GB] &= (1,0) + (1,-1) + (-1,0) + (-1,1) \\ &= (0,0) \\ \mathbf{V}[GB] &= \begin{pmatrix} 4 & -2 \\ -2 & 2 \end{pmatrix} \neq \mathsf{id} \end{aligned}$$

Changing the cone

In the quarter plane

Hypotheses on the *moments*:

$$\begin{aligned} \mathbf{E}[GB] &= (1,0) + (1,-1) + (-1,0) + (-1,1) \\ &= (0,0) \\ \mathbf{V}[GB] &= \begin{pmatrix} 4 & -2 \\ -2 & 2 \end{pmatrix} \neq \mathsf{id} \end{aligned}$$

Changing the cone

- \triangleright Wedge of angle $\theta = \frac{\pi}{4}$
- ▷ Total number of walks: \Rightarrow Exponent $\frac{\pi}{2\theta} = 2$

Excursions:

 \rightsquigarrow Exponent $\frac{\pi}{\theta} + 1 = 5$

Example #2: quadrant walks

A scarecrow

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

$$\triangleright \mathbf{E} = (0,0) \& \mathbf{V} = \begin{pmatrix} 4 & -1 \\ -1 & 4 \end{pmatrix} \neq \mathsf{id}$$

(=) (

A scarecrow

$$\triangleright \mathbf{E} = (0,0) \& \mathbf{V} = \begin{pmatrix} 4 & -1 \\ -1 & 4 \end{pmatrix} \neq \mathrm{id}$$
$$\triangleright \theta = \arccos\left(-\frac{1}{4}\right) \Longrightarrow \alpha = \frac{\pi}{\theta} + 1 \notin \mathbf{Q}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

A scarecrow

► **E** = (0,0) & **V** =
$$\begin{pmatrix} 4 & -1 \\ -1 & 4 \end{pmatrix} \neq \text{id}$$
► θ = $\arccos\left(-\frac{1}{4}\right) \implies \alpha = \frac{\pi}{\theta} + 1 \notin \mathbf{Q}$
► $\sum_{n=0}^{\infty} \#_{\mathbf{N}^2}\{(0,0) \xrightarrow{n} (0,0)\}t^n$
non-D-finite

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

(日) (國) (필) (필) (필) 표

▷ Systematic computation of $\alpha = \arccos\{algebraic number\}$

In dimension 2 (excursions only) Sostan, R. & Salvy '14

▷ Systematic computation of $\alpha = \arccos{algebraic number}$

▷ Walks with small steps:

 $\triangleright \frac{\pi}{\alpha} \in \mathbf{Q}$ iff

- generating function of the excursions is D-finite iff
- ▷ the group of the model is finite

In dimension 2 (excursions only) 🔊 Bostan, R. & Salvy '14

▷ Systematic computation of $\alpha = \arccos{algebraic number}$

▷ Walks with small steps:

 $\triangleright \ \frac{\pi}{\alpha} \in \mathbf{Q}$ iff

▷ generating function of the excursions is D-finite iff

▷ the group of the model is finite

▷ If $\sum_{s \in \mathfrak{S}} s \neq 0$, first perform a *Cramér transform*

Example: Kreweras 3D

Model with jumps:

Example: Kreweras 3D

Model with jumps:

Exponent $\alpha = \frac{1}{2}\sqrt{\lambda_1 + \frac{1}{4}} - \frac{1}{4}$

Example: Kreweras 3D

Model with jumps:

◆□▶ ◆舂▶ ◆注≯ ◆注≯ □注□

Example: Kreweras 3D

Model with jumps:

Value of λ_1 ? $\lambda_1 \in \mathbf{Q}$?

Model with jumps:

크

Value of λ_1 ? $\lambda_1 \in \mathbf{Q}$?

General theory (still to be done!)

▷ Classification & resolution of some finite group models

🕾 Bostan, Bousquet-Mélou, Kauers & Melczer '16

- ▷ Asymptotic simulation Sector, Kauers & Yatchak '16; Guttmann '16
 → Conjectured Kreweras exponent ≈ 3.3257569
- Equivalence finite group iff D-finite generating functions?

Eigenvalues of spherical triangles and 3D models A (the?) soluble case

$$\triangleright$$
 SRW in 3D: $eta=rac{\pi}{2}$ and $\lambda_1=12$

Generic case

No closed-form formula known

 \triangleright Even for a flat triangle in $R^2,$ no closed-form formula for smallest eigenvalue...

▷ Is there a miracle for Kreweras? $(\beta = \delta = \varepsilon = \frac{2\pi}{3})$ \rightsquigarrow Tetrahedral tiling of the sphere

Central weightings and stability of the exponent Critical exponents for weighted GB model

 ≈ 4.9042377

Central weightings and stability of the exponent Critical exponents for weighted GB model

Central weightings

- \triangleright Replace the initial weight 1 of jump (i, j) by $c \cdot a^i \cdot b^j$
- ▷ *Critical exponent* for the excursions *unchanged*
- ▷ Second example above: $a = \frac{1}{\sqrt{6}}$, $b = \frac{1}{3}$, $c = \sqrt{6}$
- > Third example is not a central weighting

Much more in Julien Courtiel's talk!

Introduction

Dimension 1: examples & limits

Central idea in dimension ≥ 2 : approximation by Brownian motion

<ロト <四ト <注入 <注下 <注下 <

Application #1: excursions

Application #2: walks with prescribed length

Discrete harmonic functions and critical exponents

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Excursions: formula for α independent of the drift $\sum_{s \in \mathfrak{S}} s$

Excursions: formula for α independent of the drift $\sum_{s \in \mathfrak{S}} s$

Case #1: interior drift

Non-universal exponents: six cases **Excursions:** formula for α independent of the drift $\sum_{s \in \mathfrak{S}} s$

Case #1: interior drift

▷ Law of large numbers: $\mathbf{P}[\forall n, S(n) \in C] > 0$

・ロト ・四ト ・ヨト ・ヨト

æ

 $\triangleright \ \mathsf{Exponent} \ \alpha = \mathbf{0}$

Excursions: formula for α independent of the drift $\sum_{s \in \mathfrak{S}} s$

Case #1: interior drift

- ▷ Law of large numbers: $\mathbf{P}[\forall n, S(n) \in C] > 0$
- $\triangleright \ {\rm Exponent} \ \alpha = {\rm 0}$
- Cannot be used as a filter to detect non-D-finiteness

< □ > < @ > < 注 > < 注 > ... 注

Excursions: formula for α independent of the drift $\sum_{s \in \mathfrak{S}} s$

Case #1: interior drift

- ▷ Law of large numbers: $\mathbf{P}[\forall n, S(n) \in C] > 0$
- $\triangleright \ \mathsf{Exponent} \ \alpha = \mathbf{0}$
- Cannot be used as a filter to detect non-D-finiteness

< □ > < @ > < 注 > < 注 > ... 注

- ▷ Half-plane case
- ▶ Exponent $\alpha = \frac{1}{2}$

Excursions: formula for α independent of the drift $\sum_{s \in \mathfrak{S}} s$

Case #1: interior drift

- ▷ Law of large numbers: $\mathbf{P}[\forall n, S(n) \in C] > 0$
- $\triangleright \ \mathsf{Exponent} \ \alpha = \mathbf{0}$
- Cannot be used as a filter to detect non-D-finiteness

< □ > < @ > < 注 > < 注 > ... 注

- ▷ Half-plane case
- ▶ Exponent $\alpha = \frac{1}{2}$

Excursions: formula for α independent of the drift $\sum_{s \in \mathfrak{S}} s$

Case #1: interior drift

- ▷ Law of large numbers: $\mathbf{P}[\forall n, S(n) \in C] > 0$
- $\triangleright \ \mathsf{Exponent} \ \alpha = \mathbf{0}$
- Cannot be used as a filter to detect non-D-finiteness

- 2

- ▷ Half-plane case
- ▷ Exponent $\alpha = \frac{1}{2}$

Excursions: formula for α independent of the drift $\sum_{s \in \mathfrak{S}} s$

Case #1: interior drift

- ▷ Law of large numbers: $\mathbf{P}[\forall n, S(n) \in C] > 0$
- $\triangleright \ \mathsf{Exponent} \ \alpha = \mathbf{0}$
- Cannot be used as a filter to detect non-D-finiteness

< □ > < @ > < 注 > < 注 > ... 注

- ▷ Half-plane case
- ▶ Exponent $\alpha = \frac{1}{2}$

Excursions: formula for α independent of the drift $\sum_{s \in \mathfrak{S}} s$

Case #1: interior drift

- ▷ Law of large numbers: $\mathbf{P}[\forall n, S(n) \in C] > 0$
- $\triangleright \ \mathsf{Exponent} \ \alpha = \mathbf{0}$
- Cannot be used as a filter to detect non-D-finiteness

< □ > < @ > < 注 > < 注 > ... 注

- ▷ Half-plane case
- ▶ Exponent $\alpha = \frac{1}{2}$

Excursions: formula for α independent of the drift $\sum_{s \in \mathfrak{S}} s$

Case #1: interior drift

- ▷ Law of large numbers: $\mathbf{P}[\forall n, S(n) \in C] > 0$
- $\triangleright \ \mathsf{Exponent} \ \alpha = \mathbf{0}$
- Cannot be used as a filter to detect non-D-finiteness

< □ > < @ > < 注 > < 注 > ... 注

- ▷ Half-plane case
- ▶ Exponent $\alpha = \frac{1}{2}$

Excursions: formula for α independent of the drift $\sum_{s \in \mathfrak{S}} s$

Case #1: interior drift

- ▷ Law of large numbers: $\mathbf{P}[\forall n, S(n) \in C] > 0$
- $\triangleright \ \mathsf{Exponent} \ \alpha = \mathbf{0}$
- Cannot be used as a filter to detect non-D-finiteness

< □ > < @ > < 注 > < 注 > ... 注

- ▷ Half-plane case
- ▶ Exponent $\alpha = \frac{1}{2}$

Excursions: formula for α independent of the drift $\sum_{s \in \mathfrak{S}} s$

Case #1: interior drift

- ▷ Law of large numbers: $\mathbf{P}[\forall n, S(n) \in C] > 0$
- $\triangleright \ \mathsf{Exponent} \ \alpha = \mathbf{0}$
- Cannot be used as a filter to detect non-D-finiteness

< □ > < @ > < 注 > < 注 > ... 注

- ▷ Half-plane case
- ▶ Exponent $\alpha = \frac{1}{2}$

Excursions: formula for α independent of the drift $\sum_{s \in \mathfrak{S}} s$

Case #1: interior drift

- ▷ Law of large numbers: $\mathbf{P}[\forall n, S(n) \in C] > 0$
- $\triangleright \ \mathsf{Exponent} \ \alpha = \mathbf{0}$
- Cannot be used as a filter to detect non-D-finiteness

< □ > < @ > < 注 > < 注 > ... 注

- ▷ Half-plane case
- ▶ Exponent $\alpha = \frac{1}{2}$

Excursions: formula for α independent of the drift $\sum_{s \in \mathfrak{S}} s$

Case #1: interior drift

- ▷ Law of large numbers: $\mathbf{P}[\forall n, S(n) \in C] > 0$
- $\triangleright \ \mathsf{Exponent} \ \alpha = \mathbf{0}$
- Cannot be used as a filter to detect non-D-finiteness

- Half-plane case
- ▷ Exponent $\alpha = \frac{1}{2}$
- Cannot be used as a filter to detect non-D-finiteness
- $\triangleright \text{ Exponent } \alpha = \frac{i}{2} \text{ for non-smooth}$ boundary

- ▷ Half-plane case
- ▷ Exponent $\alpha = \frac{3}{2}$
- Cannot be used as a filter to detect non-D-finiteness

(日) (四) (문) (문) (문)

- ▷ Half-plane case
- ▷ Exponent $\alpha = \frac{3}{2}$
- Cannot be used as a filter to detect non-D-finiteness

Case #4: zero drift

- ▷ See [©] Varopoulos '99; Denisov & Wachtel '15
- Exponent

$$\alpha_1 = \frac{1}{2} \left(\sqrt{\lambda_1 + (\frac{d}{2} - 1)^2} - (\frac{d}{2} - 1) \right)$$

Can be used as a filter to detect non-D-finiteness

Case #5: polar interior drift

- 🕞 See 🥯 Duraj '14
 - \triangleright Exponent $2\alpha_1 + 1$
 - Can be used as a filter to detect non-D-finiteness

◆□▶ ◆□▶ ◆□▶ ◆□▶

12

Case #5: polar interior drift

- 🕞 👂 🔊 Duraj '14
- \triangleright Exponent $2\alpha_1 + 1$
 - Can be used as a filter to detect non-D-finiteness

Case #6: polar boundary drift

- \triangleright Exponent $\alpha_1 + 1$
- Can be used as a filter to detect non-D-finiteness

Case #5: polar interior drift

- ▷ See [©] Duraj '14
- \triangleright Exponent $2\alpha_1 + 1$
- Can be used as a filter to detect non-D-finiteness

Case #6: polar boundary drift

- \triangleright Exponent $\alpha_1 + 1$
- Can be used as a filter to detect non-D-finiteness

▲□▶ ▲□▶ ▲厘▶

Weighted GB model: with J. Courtiel, S. Melczer & M. Mishna

Case #5: polar interior drift

- ▷ See [©] Duraj '14
- \triangleright Exponent $2\alpha_1 + 1$
- Can be used as a filter to detect non-D-finiteness

Case #6: polar boundary drift

- \triangleright Exponent $\alpha_1 + 1$
- Can be used as a filter to detect non-D-finiteness

Six-exponents-result: joint with R. Garbit & S. Mustapha

Introduction

Dimension 1: examples & limits

Central idea in dimension ≥ 2 : approximation by Brownian motion

Application #1: excursions

Application #2: walks with prescribed length

Discrete harmonic functions and critical exponents
Absorption probabilities for the SRW on N

Absorption probabilities for the SRW on N

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □

Probability $a(i) := \mathbf{P}_i[\exists n \ge 0 : \text{SRW } S(n) = 0]$ satisfies $\triangleright a(0) = 1 \rightsquigarrow \text{initial condition}$ $\triangleright a(i) = \mathbf{p} \cdot a(i+1) + (1-\mathbf{p}) \cdot a(i-1) \rightsquigarrow \text{recurrence}$

Absorption probabilities for the SRW on N

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三語……

Probability $a(i) := \mathbf{P}_i [\exists n \ge 0 : \text{SRW } S(n) = 0]$ satisfies $\triangleright a(0) = 1 \rightsquigarrow \text{initial condition}$ $\triangleright a(i) = p \cdot a(i+1) + (1-p) \cdot a(i-1) \rightsquigarrow \text{recurrence}$ Solution $a(i) = \begin{cases} 1 & \text{if } p \le \frac{1}{2} \\ \left(\frac{1-p}{p}\right)^i & \text{if } p > \frac{1}{2} \end{cases}$

Absorption probabilities for the SRW on N

Probability $a(i) := \mathbf{P}_i[\exists n \ge 0 : \text{SRW } S(n) = 0]$ satisfies $\triangleright a(0) = 1 \rightsquigarrow \text{initial condition}$ $\triangleright a(i) = p \cdot a(i+1) + (1-p) \cdot a(i-1) \rightsquigarrow \text{recurrence}$ Solution $a(i) = \begin{cases} 1 & \text{if } p \le \frac{1}{2} \\ \left(\frac{1-p}{p}\right)^i & \text{if } p > \frac{1}{2} \end{cases}$

Definition: f harmonic if L[f](x) = 0 for all x in a region $\subset \mathbf{Z}^d$

$$L[f](x) = \sum_{y \in N_x} p(y) \{ f(x+y) - f(x) \},\$$

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三語……

with set of neighbors $N_{\times} \subset \mathbf{Z}^d$ and weights $p = \{p(y)\}_{y \in \mathbf{Z}^d}$

Absorption probabilities for the SRW on N

Probability $a(i) := \mathbf{P}_i[\exists n \ge 0 : \text{SRW } S(n) = 0]$ satisfies $\triangleright a(0) = 1 \rightsquigarrow \text{initial condition}$ $\triangleright a(i) = p \cdot a(i+1) + (1-p) \cdot a(i-1) \rightsquigarrow \text{recurrence}$ Solution $a(i) = \begin{cases} 1 & \text{if } p \le \frac{1}{2} \\ \left(\frac{1-p}{p}\right)^i & \text{if } p > \frac{1}{2} \end{cases}$

Definition: f harmonic if L[f](x) = 0 for all x in a region $\subset \mathbf{Z}^d$

$$L[f](x) = \sum_{y \in N_x} p(y) \{ f(x+y) - f(x) \},\$$

with set of neighbors $N_{\times} \subset \mathbf{Z}^d$ and weights $p = \{p(y)\}_{y \in \mathbf{Z}^d}$

Multivariate linear recurrences with constant coefficients

Bousquet-Mélou & Petkovšek '00

520

$$P \quad q(n; i, j) = \#_{\mathbb{N}^2} \{ (0, 0) \xrightarrow{n} (i, j) \}$$

$$P \quad q(n+1; i, j) = q(n; i-1, j) + q(n; i+1, j) + q(n; i, j-1) + q(n; i, j+1)$$

$$(Caloric functions)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

> q(n; i, j) = #_{N²}{(0, 0) → (i, j)}
> q(n + 1; i, j) =
q(n; i - 1, j) + q(n; i + 1, j) + q(n; i, j - 1) + q(n; i, j + 1)
(Caloric functions)
> f(i, j) =
$$\frac{1}{4}$$
{f(i - 1, j) + f(i + 1, j) + f(i, j - 1) + f(i, j + 1)}
(Preharmonic functions)

- 2

Main differences & difficulties

 $\triangleright\,$ A unique solution vs. an unknown ($\leqslant\infty)$ number of solutions

Consequence: guess and prove techniques do not work

▷ q(n; i, j) = #_{N²}{(0, 0)
$$\xrightarrow{n}$$
 (i, j)}
▷ q(n + 1; i, j) =
q(n + 1; i, j) + q(n; i + 1, j) + q(n; i, j - 1) + q(n; i, j + 1)
(Caloric functions)
▷ f(i, j) =
 $\frac{1}{4}$ {f(i - 1, j) + f(i + 1, j) + f(i, j - 1) + f(i, j + 1)}
(Preharmonic functions)

Main differences & difficulties

- \triangleright A unique solution vs. an unknown ($\leqslant \infty$) number of solutions
- Consequence: guess and prove techniques do not work
- Generating functions of preharmonic functions satisfy kernel functional equations
- \triangleright Preharmonic functions \approx homogenized enumeration problem:

K(x, y)Q(x, y) = K(x, 0)Q(x, 0) + K(0, y)Q(0, y) - K(0, 0)Q(0, 0) - xyK'(x, y)F(x, y) = K'(x, 0)F(x, 0) + K'(0, y)F(0, y) - K'(0, 0)F(0, 0)

▷ q(n; i, j) = #_{N²}{(0, 0)
$$\xrightarrow{n}$$
 (i, j)}
▷ q(n + 1; i, j) =
q(n + 1; i, j) =
q(n; i - 1, j) + q(n; i + 1, j) + q(n; i, j - 1) + q(n; i, j + 1)
(Caloric functions)
▷ f(i, j) =
 $\frac{1}{4}$ {f(i - 1, j) + f(i + 1, j) + f(i, j - 1) + f(i, j + 1)}
(Preharmonic functions)

Main differences & difficulties

- \triangleright A unique solution vs. an unknown ($\leqslant \infty$) number of solutions
- Consequence: guess and prove techniques do not work
- Generating functions of preharmonic functions satisfy kernel functional equations
- \triangleright Preharmonic functions \approx homogenized enumeration problem:

K(x, y)Q(x, y) = K(x, 0)Q(x, 0) + K(0, y)Q(0, y) - K(0, 0)Q(0, 0) - xyK'(x, y)F(x, y) = K'(x, 0)F(x, 0) + K'(0, y)F(0, y) - K'(0, 0)F(0, 0)

▷ Preharmonic functions → counting numbers asymptotics

Two examples of rational harmonic functions

The simple walk

- \triangleright Uniform weights $\frac{1}{4}$
- $\triangleright f(i,j) = i \cdot j$
- Unique preharmonic function (up to multiplicative factors)
- ▷ Product form Second Picardello & Woess '92

- \triangleright Uniform weights $\frac{1}{3}$
- $\triangleright f(i,j) = i \cdot j \cdot (i+j)$
- Unique preharmonic function (up to multiplicative factors) Siane '92

<ロト <四ト <注入 <注下 <注下 <

Asymptotic statements

 \triangleright

Total number of walks starting at
$$(k, \ell)$$
:
 $q(n; k, \ell; \mathbb{N}^2) = \#_{\mathbb{N}^2}\{(k, \ell) \xrightarrow{n} \mathbb{N}^2\}$
 $\sim f_1(k, \ell) \cdot \rho_1^n \cdot n^{\alpha_1}$

Not proved yet!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

Asymptotic statements

 \triangleright

Total number of walks starting at
$$(k, \ell)$$
:
 $q(n; k, \ell; \mathbb{N}^2) = \#_{\mathbb{N}^2}\{(k, \ell) \xrightarrow{n} \mathbb{N}^2\}$
 $\sim f_1(k, \ell) \cdot \rho_1^n \cdot n^{\alpha_1}$

Not proved yet!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

$$Excursions starting at (k, ℓ) :
 $q(n; k, \ell; i, j) = \#_{\mathbb{N}^2}\{(k, \ell) \xrightarrow{n} (i, j)\}$
 $\sim f_2(k, \ell) \cdot f'_2(i, j) \cdot \rho_2^n \cdot n^{\alpha_2}$
 $\square Denison & Wachtel '15$$$

Asymptotic statements

Total number of walks starting at
$$(k, \ell)$$
:
 $q(n; k, \ell; \mathbb{N}^2) = \#_{\mathbb{N}^2}\{(k, \ell) \xrightarrow{n} \mathbb{N}^2\}$
 $\sim f_1(k, \ell) \cdot \rho_1^n \cdot n^{\alpha_1}$

Not proved yet!

$$Excursions starting at (k, \ell): q(n; k, \ell; i, j) = \#_{\mathbb{N}^2} \{ (k, \ell) \xrightarrow{n} (i, j) \} \sim f_2(k, \ell) \cdot f'_2(i, j) \cdot \rho_2^n \cdot n^{\alpha_2}$$

🖄 Denisov & Wachtel '15

(日) (四) (문) (문) (문)

Preharmonicity of the prefactors

 \triangleright f_1 is ρ_1 -harmonic & f_2 is ρ_2 -harmonic

 \triangleright

Asymptotic statements

Total number of walks starting at
$$(k, \ell)$$
:
 $q(n; k, \ell; \mathbb{N}^2) = \#_{\mathbb{N}^2}\{(k, \ell) \xrightarrow{n} \mathbb{N}^2\}$
 $\sim f_1(k, \ell) \cdot \rho_1^n \cdot n^{\alpha_1}$

Not proved yet!

$$Excursions starting at (k, \ell): q(n; k, \ell; i, j) = \#_{\mathbb{N}^2} \{ (k, \ell) \xrightarrow{n} (i, j) \} \sim f_2(k, \ell) \cdot f'_2(i, j) \cdot \rho_2^n \cdot n^{\alpha_2}$$

🖄 Denisov & Wachtel '15

Preharmonicity of the prefactors

 \triangleright

▷ f_1 is ρ_1 -harmonic & f_2 is ρ_2 -harmonic: replace $q(n; k, \ell; \mathbb{N}^2)$ by its asymptotic expansion in the step-by-step construction $q(n+1; k, \ell; \mathbb{N}^2) = \sum_{(i,j) \in S} q(n; k-i, \ell-j; \mathbb{N}^2)$

Asymptotic statements

Total number of walks starting at
$$(k, \ell)$$
:
 $q(n; k, \ell; \mathbb{N}^2) = \#_{\mathbb{N}^2}\{(k, \ell) \xrightarrow{n} \mathbb{N}^2\}$
 $\sim f_1(k, \ell) \cdot \rho_1^n \cdot n^{\alpha_1}$

Not proved yet!

$$Excursions starting at (k, \ell): q(n; k, \ell; i, j) = \#_{\mathbb{N}^2} \{ (k, \ell) \xrightarrow{n} (i, j) \} \sim f_2(k, \ell) \cdot f'_2(i, j) \cdot \rho_2^n \cdot n^{\alpha_2}$$

Denisov & Wachtel '15

Preharmonicity of the prefactors

 \triangleright

- ▷ f_1 is ρ_1 -harmonic & f_2 is ρ_2 -harmonic: replace $q(n; k, \ell; \mathbb{N}^2)$ by its asymptotic expansion in the step-by-step construction $q(n + 1; k, \ell; \mathbb{N}^2) = \sum_{(i,j)\in\mathcal{S}} q(n; k - i, \ell - j; \mathbb{N}^2)$
- \triangleright f'_2 is ρ_2 -harmonic for the *reversed step set* S' = -S

Asymptotic statements

Total number of walks starting at
$$(k, \ell)$$
:
 $q(n; k, \ell; \mathbb{N}^2) = \#_{\mathbb{N}^2}\{(k, \ell) \xrightarrow{n} \mathbb{N}^2\}$
 $\sim f_1(k, \ell) \cdot \rho_1^n \cdot n^{\alpha_1}$

Not proved yet!

$$Excursions starting at (k, ℓ) :

$$q(n; k, \ell; i, j) = \#_{\mathbb{N}^2} \{ (k, \ell) \xrightarrow{n} (i, j) \}$$

$$\sim f_2(k, \ell) \cdot f'_2(i, j) \cdot \rho_2^n \cdot n^{\alpha_2}$$$$

Denisov & Wachtel '15

(日) (國) (필) (필) (필) 표

Preharmonicity of the prefactors

 \triangleright

- ▷ f_1 is ρ_1 -harmonic & f_2 is ρ_2 -harmonic: replace $q(n; k, \ell; \mathbb{N}^2)$ by its asymptotic expansion in the step-by-step construction $q(n + 1; k, \ell; \mathbb{N}^2) = \sum_{(i,j) \in S} q(n; k - i, \ell - j; \mathbb{N}^2)$
- \triangleright f'_2 is ρ_2 -harmonic for the *reversed step set* S' = -S
- \triangleright Drift zero: unique harmonic function \Longrightarrow f_1 , f_2 and f'_2

A functional equation reminiscent of the enumeration

$$F(x, y) = \sum_{i,j \ge 1} f(i,j) x^{i-1} y^{j-1}$$

$$F'(x, y) = xy \{ \sum_{-1 \le k, \ell \le 1} p(k, \ell) x^{-k} y^{-\ell} - 1 \}$$

$$F'(x, y) = xy \{ \sum_{-1 \le k, \ell \le 1} p(k, \ell) x^{-k} y^{-\ell} - 1 \}$$

 $\begin{aligned} & K'(x, y)F(x, y) = \\ & K'(x, 0)F(x, 0) + K'(0, y)F(0, y) - K'(0, 0)F(0, 0) \end{aligned}$

(中) (종) (종) (종) (종) (종)

A functional equation reminiscent of the enumeration

《曰》 《聞》 《理》 《理》 三世

Definition of Tutte's invariants

- Introduced to count q-colored triangulations & planar maps Tutte '73; Bernardi & Bousquet-Mélou '11
- ▷ Define X_0 & X_1 by $K'(X_0, y) = K'(X_1, y) = 0$
- \triangleright Tutte's invariant: function $I \in {\sf Q}[[x]]$ such that $I(X_0) = I(X_1)$

A functional equation reminiscent of the enumeration

Definition of Tutte's invariants

- Introduced to count *q*-colored triangulations & planar maps Tutte '73; Bernardi & Bousquet-Mélou '11
- ▷ Define X_0 & X_1 by $K'(X_0, y) = K'(X_1, y) = 0$
- ▷ Tutte's invariant: function $I \in \mathbf{Q}[[x]]$ such that $I(X_0) = I(X_1)$

The sections K'(x, 0)F(x, 0) & K'(0, y)F(0, y) are invariants

- \triangleright Evaluate the functional equation at $X_0 \& X_1$
- Make the difference of the two identities

A functional equation reminiscent of the enumeration

Definition of Tutte's invariants

- ▷ Define X_0 & X_1 by $K'(X_0, y) = K'(X_1, y) = 0$
- ▷ Tutte's invariant: function $I \in \mathbf{Q}[[x]]$ such that $I(X_0) = I(X_1)$

The sections K'(x, 0)F(x, 0) & K'(0, y)F(0, y) are invariants

- \triangleright Evaluate the functional equation at $X_0 \& X_1$
- Make the difference of the two identities

Does this characterize the sections?

A product-form generating function

$$f(i,j) = i \cdot j \implies \left[F(x,y) = \sum_{i,j \ge 1} i \cdot j \cdot x^{i-1} y^{j-1} = \frac{1}{(1-x)^2 (1-y)^2} \right]$$

Kernel: $K'(x,y) = xy\{\frac{x}{4} + \frac{1}{4x} + \frac{y}{4} + \frac{1}{4y} - 1\} = \frac{y(x-1)^2}{4} + \frac{x(y-1)^2}{4}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

A product-form generating function

$$f(i,j) = i \cdot j \implies F(x,y) = \sum_{i,j \ge 1} i \cdot j \cdot x^{i-1} y^{j-1} = \frac{1}{(1-x)^2 (1-y)^2}$$

Kernel: $K'(x,y) = xy\{\frac{x}{4} + \frac{1}{4x} + \frac{y}{4} + \frac{1}{4y} - 1\} = \frac{y(x-1)^2}{4} + \frac{x(y-1)^2}{4}$

Verification of the functional equation

K'(x, y)F(x, y) = K'(x, 0)F(x, 0) + K'(0, y)F(0, y) - K'(0, 0)F(0, 0)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A product-form generating function

$$f(i,j) = i \cdot j \implies F(x,y) = \sum_{i,j \ge 1} i \cdot j \cdot x^{i-1} y^{j-1} = \frac{1}{(1-x)^2 (1-y)^2}$$

Kernel: $K'(x,y) = xy\{\frac{x}{4} + \frac{1}{4x} + \frac{y}{4} + \frac{1}{4y} - 1\} = \frac{y(x-1)^2}{4} + \frac{x(y-1)^2}{4}$
Verification of the functional equation

$$K'(x, y)F(x, y) = \frac{K'(x, 0)F(x, 0) + K'(0, y)F(0, y) - K'(0, 0)F(0, 0)}{\frac{x}{4} \times \frac{1}{(1-x)^2} + \frac{y}{4} \times \frac{1}{(1-y)^2} - \frac{1}{0} \times 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

A product-form generating function

$$f(i,j) = i \cdot j \implies F(x,y) = \sum_{i,j \ge 1} i \cdot j \cdot x^{i-1} y^{j-1} = \frac{1}{(1-x)^2 (1-y)^2}$$

Kernel: $K'(x,y) = xy\{\frac{x}{4} + \frac{1}{4x} + \frac{y}{4} + \frac{1}{4y} - 1\} = \frac{y(x-1)^2}{4} + \frac{x(y-1)^2}{4}$

Verification of the functional equation

$$K'(x,y)F(x,y) = \frac{K'(x,0)F(x,0) + K'(0,y)F(0,y) - K'(0,0)F(0,0)}{= \frac{x}{4} \times \frac{1}{(1-x)^2} + \frac{y}{4} \times \frac{1}{(1-y)^2} - \frac{1}{0} \times 1$$

Tutte's invariants

$$I(X_0) = I(X_1) \xrightarrow{X_0 X_1 = 1} I(x) = I(\frac{1}{x}) \Longrightarrow I \text{ function of } x + \frac{1}{x}$$

$$K'(x, 0)F(x, 0) = \frac{x}{4} \frac{1}{(1-x)^2} = \frac{1}{4} \frac{1}{x + \frac{1}{x} - 2} \text{ is an invariant}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A product-form generating function

$$f(i,j) = i \cdot j \implies F(x,y) = \sum_{i,j \ge 1} i \cdot j \cdot x^{i-1} y^{j-1} = \frac{1}{(1-x)^2 (1-y)^2}$$

Kernel: $K'(x,y) = xy\{\frac{x}{4} + \frac{1}{4x} + \frac{y}{4} + \frac{1}{4y} - 1\} = \frac{y(x-1)^2}{4} + \frac{x(y-1)^2}{4}$

Verification of the functional equation

$$K'(x,y)F(x,y) = \frac{K'(x,0)F(x,0) + K'(0,y)F(0,y) - K'(0,0)F(0,0)}{\frac{x}{4} \times \frac{1}{(1-x)^2} + \frac{y}{4} \times \frac{1}{(1-y)^2} - 0 \times 1$$

Tutte's invariants

$$I(X_0) = I(X_1) \xrightarrow{X_0 X_1 = 1} I(x) = I(\frac{1}{x}) \Longrightarrow I \text{ function of } x + \frac{1}{x}$$

$$K'(x,0)F(x,0) = \frac{x}{4}\frac{1}{(1-x)^2} = \frac{1}{4}\frac{1}{x+\frac{1}{x}-2} \text{ is an invariant}$$

Why this function of $x + \frac{1}{x}$?

▷ Of order 1 in $x + \frac{1}{x} \rightarrow Minimality$ (conformal mappings) ▷ $F(1, 0) = \infty \rightarrow Liouville's theorem$

Tutte's invariants & conformal mappings A general theorem

K'(x,0)F(x,0) = w(x), characterized by

Conformal mapping of a quartic

$$\triangleright w(x) = w(\overline{x})$$

- $\triangleright w(x) = \frac{c+o(1)}{(1-x)^{\alpha-1}}, \alpha = \text{crit. exponent}$
- ▷ Same for K'(0, y)F(0, y)

Tutte's invariants & conformal mappings

A general theorem

K'(x,0)F(x,0) = w(x), characterized by

- Conformal mapping of a quartic
- $\triangleright w(x) = w(\overline{x})$
- $\triangleright w(x) = \frac{c+o(1)}{(1-x)^{\alpha-1}}, \ \alpha = \text{crit. exponent}$
- ▷ Same for K'(0, y)F(0, y)

Going back to the SRW

$$K'(x,0)F(x,0) = \frac{x}{4(1-x)^2}$$
, characterized by

Conformal mapping of the unit disc

$$\triangleright w(e^{i\theta}) = w(e^{-i\theta})$$

$$\triangleright w(1) = \infty$$

▷ Same for
$$K'(0, y)F(0, y) = \frac{y}{4(1-y)^2}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Tutte's invariants & conformal mappings A general theorem

K'(x,0)F(x,0) = w(x), characterized by

- Conformal mapping of a quartic
- $\triangleright w(x) = w(\overline{x})$
- $\triangleright w(x) = \frac{c+o(1)}{(1-x)^{\alpha-1}}, \ \alpha = \text{crit. exponent}$
- ▷ Same for K'(0, y)F(0, y)

Going back to the SRW

$$K'(x,0)F(x,0) = \frac{x}{4(1-x)^2}$$
, characterized by

Conformal mapping of the unit disc

$$\triangleright w(e^{i\theta}) = w(e^{-i\theta})$$

$$\triangleright w(1) = \infty$$

▷ Same for
$$K'(0, y)F(0, y) = \frac{y}{4(1-y)^2}$$

Question

How deep is this connection conformal maps/harmonic functions?

