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Some transcendence results for special functions

Proposition
The function Γ(x) satisfying Γ(x + 1) = xΓ(x) is
transcendental over C1(x) where C1 is the field of 1-periodic
meromorphic functions over C.

Theorem
Let b1, . . . , br ∈ C(x) and f1, . . . , fr meromorphic functions
over C solutions of

fi (x + 1) = fi (x) + bi (x) for all i = 1, . . . , r

The fi ’s are algebraically dependent over C1(x) if and only if
there exist γ1, . . . , γr ∈ C not all zero and g ∈ C(x) such that

γ1b1(x) + · · ·+ γr br (x) = g(x + 1)− g(x).
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Theorem (Roques 2007)

For q ∈ C with |q| > 1. Let y1(x), y2(x) two linearly
independent solutions of

y(q2x)− 2ax − 2
a2x − 1 y(qx)− x − 1

a2x − q2x y(x) = 0

with a /∈ qZ and a2 ∈ qZ. Then, y1(x), y2(x), y1(qx) are
algebraically independent.
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These results come from
a Galois theory for linear discrete equations

and from the comprehension of the associated
linear algebraic groups
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Elementary Proof of Transcendence of Γ

Suppose to the contrary that Γ(x) is algebraic.
Let

Γ(x)n + an−1(x)Γ(x)n−1 + . . .+ a0(x) = 0, (1.1)

be a minimal relation with ai (x) ∈ C(x) and a0(x) 6= 0.
Change x into x + 1 in (1.1) to find

Γ(x +1)n +an−1(x +1)Γ(x +1)n−1 + . . .+a0(x +1) = 0. (1.2)

Use Γ(x + 1) = xΓ(x) in (1.2) and eliminate Γ(x)n between
(1.1) and (1.2), we find

xn−1(an−1(x+1)−xan−1(x))Γ(x)n−1 . . .+(a0(x+1)−xna0(x)) = 0.

By minimality, we must have a0(x + 1) = xna0(x) with
a0(x) ∈ C(x)∗. Absurd !
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Galois theoretic proof

Set K = C1(x) and KΓ = C1(x)(Γ) ⊂ Mer(C).
These fields are closed under σ(f (x)) = f (x + 1) and

σ(Γ) = xΓ

Kσ
Γ := {f ∈ KΓ|σ(f ) = f } = C1 = Kσ

Consider

Gal(KΓ|K ) = {τ ∈ Aut(KΓ) τ |K = idK τ ◦ σ = σ ◦ τ}.

Let τ ∈ Gal(KΓ|K ). Then

σ (τ(Γ(x))) = τ (σ(Γ(x))) = τ (xΓ(x)) = xτ(Γ(x)).

Thus, there exists cτ ∈ C∗1 such that τ(Γ) = cτΓ.
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trdeg(KΓ|K ) = 0 = dim(Gal(KΓ|K )|C1)).

∃n|Gal(KΓ|K ) = {cτ} ⊂ µn, i.e.

cn
τ = 1

τ(Γn) = (τ(Γ))n = (cτΓ)n = Γn for all τ ∈ Gal(KΓ|K )

Γn ∈ C1(x)

There exists g(x) = Γ(x)n ∈ C1(x) such that

g(x + 1) = xng(x)
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A difference field (K , σ) is a field K together with σ : K → K
an automorphism.

Examples (Endomorphism of the complex variable)

K = C(x), σ(f (x)) = f (x + 1) ;
K = C(x), σ(f (x)) = f (qx) for |q| > 1
K = C(x), σ(f (x)) = f (xp) with p ∈ N ; This is not
surjective !
Replace K by K̂ = ∪∞n=0C(x1/pn ) and set
σ(x1/pn ) = x1/pn−1 .

Algebraic notions and compatibility with σ : σ-ring,
σ-morphism, σ-subfield, σ-field extension etc
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Examples (Automorphisms of an elliptic curve)

Let (E ,⊕) ⊂ P2C be an elliptic curve and let Ω ∈ E.
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Let (K , σ) be a difference field. The field of constants is
k = Kσ = {a ∈ K |σ(a) = a}.

Examples

K = C(x), σ(x) = x + 1. Then k = C ;
K =Mer(C), σ(x) = x + 1. Then k = C1 ;
K = CE with σ(ω) = ω + ω3 and for all n ∈ Z∗,
nω3 /∈ Zω1 + Zω2. Then k = C.
K = Mer(C), σ(ω) = ω + ω3. Then k is the field of
ω3-periodic functions.
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Difference equations

Let (K , σ) be a σ-field and g a solution of
σn(y) + an−1σ

n−1(y) + · · ·+ a0y = 0 (L),

with a0 6= 0, ai ∈ K . Then, Z :=


g

σ(g)
...

σn−1(g)

 is solution of

σ(Y ) = ALY
with

AL =



0 1 0 · · · 0
0 0 1 . . . ...
...

... . . . . . . 0
0 0 · · · 0 1
− a0

an
− a1

an
· · · · · · −an−1

an


∈ GLn(K ). (2.1)
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Difference systems

Let (K , σ) be a σ-field.
An equation σ(Y ) = AY with A ∈ GLn(K ) is called difference
system.
From now on, we will always consider σ-fields with non periodic
element.
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Fundamental solution matrix

Definition
Let (K , σ) be a σ-field and A ∈ GLn(K ). Let L be a σ-field
extension of K.
An matrix U ∈ GLn(L) such that σ(U) = AU is called
fundamental solution matrix of σ(Y ) = AY

Let U1,U2 ∈ GLn(L) two fundamental solution matrices for
σ(Y ) = AY then there exists D ∈ GLn(Lσ) such that

U1 = U2D.
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solutions

Examples

Consider the difference field extension(
C(x), σ(f (x)) = f (x + 1)

)
⊂
(
Mer(C), σ(f (x)) = f (x + 1)

)
.

Then Γ ∈ Mer(C)∗ is a fundamental solution matrix for
σ(y) = xy .
Let ψ(x) be the digamma function Γ′

Γ . Then,
σ(ψ(x)) = ψ(x) + 1

x .This correspond to the difference
system

σ(Y ) =
(

1 1
x

0 1

)
Y

with fundamental solution matrix
U =

(
1 ψ(x)
0 1

)
∈ Gl2(Mer(C))
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1 1
x 0 . . . 0

0 1 0 . . . ...
... . . . . . . 0 0
0 . . . 0 1 (−1)r−1

x r

0 . . . 0 0 1


Y

with

U =



1 ψ(x) 0 . . . 0
0 1 . . . . . . ...
... . . . . . . . . . 0
0 . . . 0 1 d r

dx r (ψ(x))
0 . . . 0 0 1


∈ GL2(r+1)(Mer(C))
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Kσ
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such that KA = K (U).
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Existence of a Picard-Vessiot extension for σ(Y ) = AY :
No general results for arbitrary difference fields
BUT via analytic resolution, we get(

Mer(C), σ(f (x)) = f (x + 1)
)

with Mer(C)σ = C1.
For any A ∈ Gln(Mer(C)), there exists
U ∈ GLn(Mer(C)) such that σ(U) = AU (Praagman).
Then, KA = C1(x)(U) ⊂ Mer(C) is a PV-field extension
for σ(Y ) = AY over K = C1(x).
Similar result for Mer(C∗) and σ(f (x)) = f (qx)
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Galois group

Let (K , σ) be a σ-field and A ∈ GLn(K ).

Definition
Let KA|K be a Picard-Vessiot field extension for σ(Y ) = AY
over K. The Galois group Gal(KA|K ) of KA over K is defined
by

Gal(KA|K ) = {τ : KA → KA|τ is a K-σ-automorphism}.

Let U ∈ GLn(KA) be a fundamental solution matrix and
τ ∈ Gal(KA|K ). Then,

σ(τ(U)) = τ(σ(U)) = τ(AU) = Aτ(U).

Thus, there exists [τ ]U ∈ GLn(Kσ) such that τ(U) = U[τ ]U .
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Group representation

Theorem
The application

ρU : Gal(KA|K ) // GLn(Kσ)

τ // [τ ]U

where τ(U) = U[τ ]U identifies Gal(KA|K ) with an algebraic
subgroup of GLn(Kσ).
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Algebraic groups

H is an algebraic subgroup of GLn(k) if
H subgroup of GLn(k)
H = {M|P(M) = 0 for all P ∈ S} with S ⊂ k[X , 1

det(X) ]

Examples

µn = {xn
1,1 = 1} ⊂ Gl1(k)

Sln(k) = {X = (xi ,j)i ,j=1,...,n)| det(X ) = 1}
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Rank 1

(K , σ) = (C1(x), σ(f (x)) = f (x + 1)), b ∈ C(x) and
σ(y) = y + b ;

Matrix form σ(Y ) =
(

1 b
0 1

)
Y and U =

(
1 u
0 1

)
where

u ∈Mer(C) solution of σ(y) = y + b.
Then,

KA = C1(x)(u) and Kσ
A = C1

ρU : Gal(KA|K ) →GL2(C1)

τ 7→[τ ]U =
(

1 cτ
0 1

)
with τ(u) = u + cτ and cτ ∈ C1.
Then, Gal(KA|K ) = {cτ} is an algebraic subgroup of (C1,+),

i.e., Gal(KA|K ) =
{

(C1,+)
({0},+)
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Direct sum of rank 1

(K , σ) = (C1(x), σ(f (x)) = f (x + 1)) and b1, . . . , br ∈ C1(x).

σ(y1) = y1 + b1

σ(y2) = y2 + b2
... =

...
σ(yr ) = yr + br

Then
KA = C1(x)(u1, . . . , ur ) ⊂ Mer(C) with ui ∈Mer(C)
solution of σ(yi ) = yi + bi .

ρU : Gal(KA|K ) // (C r
1 ,+)

τ // (cτ 1, . . . , cτ r )

where τ(ui ) = ui + cτ i .
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Direct sum of rank 1

Algebraic subgroups of (C r
1 ,+) are C1-vector spaces

Gal(KA|K )
{

= (C r
1 ,+)

⊂ {(ci )|γ1c1 + · · ·+ γr cr = 0} for γi ∈ C1
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Main results

Theorem
Let (K , σ) be a σ-field.
Let A ∈ GLn(K ) and KA|K a PV-field extension for
σ(Y ) = Y . Then,

K Gal(KA|K)
A := {f ∈ KA|τ(f ) = f for all τ ∈ Gal(KA|K )} = K

degtr(KA|K ) = dimk(Gal(KA|K )).
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Independence of discrete logarithms

Set (K , σ) = (C1(x), σ(f (x) = f (x + 1)).
Let b1, . . . , br ∈ C(x) and u1, . . . , ur ∈Mer(C) solutions of

σ(y1) = y1 + b1

σ(y2) = y2 + b2
... =

...
σ(yr ) = yr + br

If the ui are algebraically dependent over K then there exists
γ1, . . . , γr ∈ C not all zero and g ∈ C(x) such that

γ1b1 + · · ·+ γr br = σ(g)− g . (5.1)
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solutions

Ideas of proof

KA = C1(x)(u1, . . . , ur ) and
Gal(KA|K ) = {(c i

τ )i=1..r |τ(ui ) = ui + c i
τ}

ui alg. dep implies Gal(KA|K ) ( (C r
1 ,+)

There exist γ1, . . . , γr ∈ C1 not all zero such that

Gal(KA|K ) ⊂ {ci |γ1c1 + · · ·+ γr cr = 0}.

Group equation : γ1c1 + · · ·+ γr cr = 0

⇓
Relation for solutions :γ1u1 + · · ·+ γr ur = g with g ∈ K

⇓
Relation for coefficients : γ1b1 + · · ·+ γr br = σ(g)− g
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d
dx ◦ σ = σ ◦ d

dx we find

σ(ψ(x)) = ψ(x) + 1
x

σ( d
dx (ψ(x))) = d

dx (ψ(x)) + d
dx ( 1

x )
... =

...

σ( d r

dx r (ψ(x))) = d r

dx r (ψ(x)) + d r

dx r ( 1
x ).

Thus Γ(x) diff.alg iff ∃r ψ(x), . . . , d r

dx r (ψ(x)) algebraically
dependent
⇒ ∃r , γ1, . . . , γr+1 ∈ C, not all zero g ∈ C(x) such that

γ1
1
x + · · ·+ γr+1

d r

dx r ( 1
x ) = g(x + 1)− g(x).
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General criteria

Theorem
Let (K , σ) a σ-field with a derivation δ commuting with σ and
let b ∈ K.
Let f ∈ L, a σ-δ-field extension of K , such that σ(f ) = f + b.
Assume that Kσ is algebraically closed.
Then, f is differentially transcendental over K if there are no
r ∈ N, γ1, . . . , γr+1 ∈ k and g ∈ K such that

γ1b + . . .+ γr+1δ
r (b) = σ(g)− g .
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A first difficulty

Examples
(K , σ) = (C(x), σ(f (x)) = f (x + 1)) and σ(y) = −y.
Suppose that there exists a solution u 6= 0 in a σ-field L with
Lσ = C(x)σ = C.
Then σ(u2) = (−u)2 = u2 and u2 ∈ Lσ = C.
Then u ∈ C and σ(u) = u. Contradiction !
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A dichotomy

For difference systems, one has a kind of dichotomy
either, one solves in a field extension L BUT Lσ 6= Kσ.
K = C(x), σ(x) = x + 1. For any σ(Y ) = AY with
A ∈ GLn(C(x)) there exists a fundamental solution matrix
U ∈ GLn(Mer(C)).
But Mer(C)σ = C1 6= C(x)σ = C.
or one solves in σ-rings L that might not be integral
domains BUT Lσ = Kσ

(General Picard Vessiot theory cf. van der Put-Singer,
Wibmer)
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Existence and uniqueness of Picard-Vessiot
pseudofields

Theorem
Let (K , σ) a σ-field with Kσ algebraically closed and
A ∈ Gln(K ).
Then, there exists a unique Picard-Vessiot pseudofield KA for
the system σ(Y ) = AY .

That is
KA = K (U) with U a fundamental solution matrix
Kσ

A = Kσ

KA = L1
σ ++
×L2 × . . .×

σ
** Lt

σ

ff

And all the results for fields hold in this context
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A concrete example

Let CN the ring of C-valued sequences with addition and
multiplication defined component by component.
The morphism

σ : CN → CN, (a(0), a(1), . . . , a(n), . . . ) 7→ (a(1), . . . , a(n), . . . )

is not injective.
Set

a ∼ b iff ∃N|a(n) = b(n) for all n > N.

Then σ induces on S = CN/ ∼ an injective morphism.
The σ-ring S is called the ring of germs of sequences.
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Consider C(x) endowed with σ(f (x)) = f (x + 1).
The application

C(x) // S

f � // (f (0), . . . , f (n), . . . )

is an injective ring morphism, the identity on C, commutes
with σ.
The difference field (C(x), σ) is a σ-subring of S.
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A universal Picard-Vessiot ring

An example

Examples
K = (C(x), σ(f (x)) = f (x + 1)) ⊂ S and σ(y) = −y.
Then u = ((−1)n)n∈N is a fundamental solution matrix. In S,
we have

u − 1 6= 0 and u + 1 6= 0 but (u − 1)(u + 1) = u2 − 1 = 0.
C(x)(u) = L1 × L2 ⊂ S with L1 = C(x).(u − 1) and
L2 = C(x).(u + 1).

A general result : Let C(x) ⊂ S and A ∈ GLn(C(x)). There
exists a Picard-Vessiot ring RA := C(x)[U, 1

det(U) ] ⊂ S.
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Application of the pseudofield structure

Theorem (Larson-Tarft-1990)

Let u, v ∈ S two sequences each of them satisfying a difference
equation over C(x) and such that uv = 0.Then, there exist
u0, . . . , ut−1, v0, . . . , vt−1 ∈ S such that

u (resp.v) is the interlacing of the ui (resp. vi )
for all i either ui = 0 or vi = 0

Theorem (Wibmer 2012)

Let u ∈ S satisfying a linear difference equation L over C(x).
The following are equivalent

Skolem Mahler Lech problem : the set {i |u(i) = 0} is a
finite union of arithmetic progressions
there exists a Picard-Vessiot pseudofield for L inside S.
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Comparing “special functions” and “abstract
solutions”

Let (K , σ) be a σ-field with Kσ algebraically closed and
A ∈ GLn(K ). Let L be a σ-field and let Z ∈ Ln anon zero
solution of σ(Y ) = AY .
First case : Lσ = Kσ

Then, there exists a Picard-Vessiot extension for σ(Y ) = AY
containing Z .

Examples
K = ∪n∈NC(z1/pn ) and σ(f (z)) = f (zp). Generating series for
automatic sequences belong to some L = C((z1/pk )). One has
Lσ = C.
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Let (K , σ) be a σ-field with Kσ algebraically closed and
A ∈ GLn(K ). Let L be a σ-field and let Z ∈ Ln anon zero
solution of σ(Y ) = AY .
First case : Lσ = Kσ

Then, there exists a Picard-Vessiot extension for σ(Y ) = AY
containing Z .

Examples
K = ∪n∈NC(z1/pn ) and σ(f (z)) = f (zp). Generating series for
automatic sequences belong to some L = C((z1/pk )). One has
Lσ = C.
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Second case : Lσ 6= Kσ

If Z satisfies an algebraic relation over K , there exists a
Picard-Vessiot extension for σ(Y ) = AY where a solution
vector satisfies the same relation.
Examples
K = C(x) ⊂ Mer(C) = L with σ(f (x)) = f (x + 1).
Then C(x)σ = C 6= Mer(C)σ. If Γ(x) is algebraic over C(x)
there exists a Picard-Vessiot extension for σ(y) = xy
containing a non zero solution algebraic solution.
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