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Square-Integrable Automorphic Forms

I G a reductive algebraic group defined over a number field F .

I A is the ring of adeles of F .

I XG := G(F )\G(A)1, where G(A)1 := ∩χ∈X∗(G) ker |χ|A.

I L2(XG) denotes the space of functions: φ : XG → C such
that ∫

G(Q)\G(A)1
|φ(g)|2dg <∞.

I A2(G) is the set of equivalence classes of irreducible unitary
representations π of G(A) occurring in the discrete spectrum
L2
disc(XG).

I Acusp(G) is the subset of A2(G) consisting of those π of
G(A) occurring in the cuspidal spectrum L2

cusp(XG).



Square-Integrable Automorphic Forms

I G a reductive algebraic group defined over a number field F .

I A is the ring of adeles of F .

I XG := G(F )\G(A)1, where G(A)1 := ∩χ∈X∗(G) ker |χ|A.

I L2(XG) denotes the space of functions: φ : XG → C such
that ∫

G(Q)\G(A)1
|φ(g)|2dg <∞.

I A2(G) is the set of equivalence classes of irreducible unitary
representations π of G(A) occurring in the discrete spectrum
L2
disc(XG).

I Acusp(G) is the subset of A2(G) consisting of those π of
G(A) occurring in the cuspidal spectrum L2

cusp(XG).



Square-Integrable Automorphic Forms

I G a reductive algebraic group defined over a number field F .

I A is the ring of adeles of F .

I XG := G(F )\G(A)1, where G(A)1 := ∩χ∈X∗(G) ker |χ|A.

I L2(XG) denotes the space of functions: φ : XG → C such
that ∫

G(Q)\G(A)1
|φ(g)|2dg <∞.

I A2(G) is the set of equivalence classes of irreducible unitary
representations π of G(A) occurring in the discrete spectrum
L2
disc(XG).

I Acusp(G) is the subset of A2(G) consisting of those π of
G(A) occurring in the cuspidal spectrum L2

cusp(XG).



Square-Integrable Automorphic Forms

I G a reductive algebraic group defined over a number field F .

I A is the ring of adeles of F .

I XG := G(F )\G(A)1, where G(A)1 := ∩χ∈X∗(G) ker |χ|A.

I L2(XG) denotes the space of functions: φ : XG → C such
that ∫

G(Q)\G(A)1
|φ(g)|2dg <∞.

I A2(G) is the set of equivalence classes of irreducible unitary
representations π of G(A) occurring in the discrete spectrum
L2
disc(XG).

I Acusp(G) is the subset of A2(G) consisting of those π of
G(A) occurring in the cuspidal spectrum L2

cusp(XG).



Square-Integrable Automorphic Forms

I G a reductive algebraic group defined over a number field F .

I A is the ring of adeles of F .

I XG := G(F )\G(A)1, where G(A)1 := ∩χ∈X∗(G) ker |χ|A.

I L2(XG) denotes the space of functions: φ : XG → C such
that ∫

G(Q)\G(A)1
|φ(g)|2dg <∞.

I A2(G) is the set of equivalence classes of irreducible unitary
representations π of G(A) occurring in the discrete spectrum
L2
disc(XG).

I Acusp(G) is the subset of A2(G) consisting of those π of
G(A) occurring in the cuspidal spectrum L2

cusp(XG).



Square-Integrable Automorphic Forms

I G a reductive algebraic group defined over a number field F .

I A is the ring of adeles of F .

I XG := G(F )\G(A)1, where G(A)1 := ∩χ∈X∗(G) ker |χ|A.

I L2(XG) denotes the space of functions: φ : XG → C such
that ∫

G(Q)\G(A)1
|φ(g)|2dg <∞.

I A2(G) is the set of equivalence classes of irreducible unitary
representations π of G(A) occurring in the discrete spectrum
L2
disc(XG).

I Acusp(G) is the subset of A2(G) consisting of those π of
G(A) occurring in the cuspidal spectrum L2

cusp(XG).



Theory of Endoscopic Classification

Theorem (Arthur, Mok, Kaletha-Minguez-Shin-White)

Let G∗ be an F -quasisplit classical group and G be a pure inner
form of G∗ over F . For any π ∈ Acusp(G), there is a global Arthur
parameter ψ ∈ Ψ2(G

∗), which is G-relevant, such that

π ∈ Πψ(G)

where Πψ(G) is the global Arthur packet of G associated to ψ.

I We may form the global Arthur-Vogan packet as union of the
global Arthur packets Πψ(G) over all the pure inner forms G
of G∗:

Πψ[G∗] := ∪GΠψ(G).

I ψ is G-relevant if the global packet Πψ(G) is not empty.
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Global Arthur Parameters Ψ2(G): Examples

I G∗ = SO∗2n+1, F -split, and (G∗)∨ = Sp2n(C).

I Each ψ ∈ Ψ2(G
∗) (global Arthur parameters) is written as

a formal sum of simple Arthur parameters:

ψ = ψ1 � ψ2 � · · ·� ψr

where ψi = (τi, bi), with τi ∈ Acusp(GLai); ai, bi ≥ 1; and∑r
i=1 aibi = 2n.

I If i 6= j, either τi 6∼= τj or bi 6= bj , with the parity condition
that ai · bi is even and ψi ∈ Ψ2(SO∗aibi+1).

I Endoscopy Structure: 2n =
∑r

i=1 ai · bi,

SO∗a1·b1+1 × · · · × SO∗ar·br+1 =⇒ SO∗2n+1

Πψ1(·) ⊗ · · · ⊗ Πψr(·) =⇒ Πψ(·)
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Global Arthur Parameters Ψ2(G): Examples

I G∗ = Sp∗2n, F -split, and (G∗)∨ = SO2n+1(C).

I Each ψ ∈ Ψ2(G
∗) is written as a formal sum of simple Arthur

parameters:
ψ = ψ1 � ψ2 � · · ·� ψr

where ψi = (τi, bi), with τi ∈ Acusp(GLai); ai, bi ≥ 1;∑r
i=1 aibi = 2n+ 1; and

∏r
i=1 ω

bi
τi = 1.

I If i 6= j, either τi 6∼= τj or bi 6= bj , with the parity:
1 If ai · bi is even, then ψi ∈ Ψ2(SO∗

aibi);
2 If ai · bi is is odd, then ψi ∈ Ψ2(Sp∗

aibi−1).

I Endoscopy Structure: 2n+ 1 =
∑r

i=1 ai · bi,∏
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SO∗2li ×
∏
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Global Arthur Parameters Ψ2(G): Examples

I A parameter ψ = ψ1 � ψ2 � · · ·� ψr ∈ Ψ2(G
∗) is generic if

b1 = · · · = br = 1.

I Generic global Arthur parameters φ ∈ Φ2(G
∗) are:

φ = (τ1, 1)� (τ2, 1)� · · ·� (τr, 1)

with τi ∈ Acusp(GLai) that τi 6∼= τj if i 6= j. They are of
either symplectic or orthogonal type, depending on G∗.

I The pure inner forms of G∗ = SO∗m are G = SOm(V, q) for
non-deg. quad. spaces (V, q) over F with the same dimension
and discriminant.

I If G is a pure inner form of G∗, then LG = LG∗.

I For φ ∈ Φ2(G
∗), the endoscopic classification may define the

global Arthur packet Πφ(G∗) and also define the global
Arthur packet Πφ(G), which is non-empty if φ is G-relevant.
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Endoscopic Classification and Langlands Functoriality

A(GLNG
)

πψ

↑

Ψ2(G
∗)G

ψ

↙ ↘

A2(G) ∩Πψ(G) ⇐⇒ Πψ(G∗) ∩ A2(G
∗)



Problems Based on Endoscopic Classification

I A Simple Question: Πψ(G) ∩ Acusp(G) = ∅?

I If Πψ(G) ∩ Acusp(G) 6= ∅, call ψ cuspidal.

I What can one say about the cuspidal ψ?

I Write ψ = (τ1, b1)� · · ·� (τr, br). How to bound these
integers b1, · · · , br if ψ is cuspidal?

I This leads to a Ramanujan type upper bound for Acusp(G).

I For π ∈ Acusp(G), how to determine which (τ, b) occurs in
the global Arthur parameter ψ of π?

I This leads to the (τ, b)-theory that characterizes the (τ, b)
factor of π in terms of basic invariants of π.

I If ψ is cuspidal, how to construct explicit modules for the
members in Πψ(G) ∩ Acusp(G)?

I This leads to the theory of twisted automorphic descents and
endoscopy correspondences via integral transforms.
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Fourier Coefficients and Nilpotent Adjoint Orbits

The general notion of Fourier Coefficients can be used to
understand structures and properties of π ∈ Acusp(G).

I G∗ is an F -quasi-split classical group and g∗ is the Lie algebra.

I Let NG∗ be the dimension for the defining embedding
G∗ → GL(NG∗).

I Over algebraic closure F of F , all the nilpotent elements in
g∗(F ) form a conic algebraic variety, called the nilcone N (g∗).

I Under the adjoint action of G∗, N (g∗) decomposes into
finitely many adjoint G∗-orbits O, which are parameterized by
the corresponding partitions of N = NG∗ of type G∗.

I Over F , each F -orbit reduces to an F -stable adjoint
G∗(F )-orbits Ost, and hence the F -stable adjoint orbits in the
nilcone N (g∗) are also parameterized by the corresponding
partitions of an integer N = NG∗ of type G∗.
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I For X ∈ N (g∗), use sl2-triple (over F ) to define a unipotent
subgroup VX and a character ψX .

I Let {X,H, Y } be an sl2-triple (over F ). Under the adjoint
action of ad(H),

g∗ = g−r ⊕ · · · ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ · · · ⊕ gr.

I Ad(G∗)(Y ) ∩ g−2 and Ad(G∗)(X) ∩ g2 are Zariski dense in
g−2 and g2, respectively.

I Take VX to be the unipotent subgroup of G∗ such that the
Lie algebra of VX is equal to ⊕i≥2gi.

I Let ψF be a non-trivial additive character of F\A. The
character ψX of VX(F ) or VX(A) is defined by

ψX(v) = ψF (tr(Y log(v))).
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I The Fourier coefficient of ϕ ∈ π ∈ A2(G
∗) is defined by

FψX (ϕ)(g) :=

∫
VX(F )\VX(A)

ϕ(vg)ψX(v)−1dv.

I Since ϕ is automorphic, the nonvanishing of FψX (ϕ) depends
only on the G∗(F )-adjoint orbit OX of X.

I The set n(ϕ) := {X ∈ N (g) | FψX (ϕ) 6= 0} is stable under
the G∗(F )-adjoint action.

I Denoted by p(ϕ) the set of partitions p of NG∗ of type G∗

corresponding to the F -stable orbits Ost
p that have non-empty

intersection with n(ϕ).

I pm(ϕ) is the set of all maximal partitions in p(ϕ), according
to the partial ordering of partitions.
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Maximal Fourier Coefficients of Automorphic Forms

I For π ∈ A2(G), denote by pm(π) the set of maximal members
among pm(ϕ) for all ϕ ∈ π.

I We would like to know:
I How to determine pm(π) in terms of other invariants of π?
I What can one say about π based on the structure of pm(π)?

I Folklore Conjecture: For any irreducible automorphic
representation π of G, the set pm(π) is singleton.

I Write p = [p1p2 · · · pr] ∈ pm(π) with p1 ≥ p2 ≥ · · · ≥ pr.
I What can we say about the largest part p1 if π is cuspidal?

I This problem is closely related to the theory of twisted
automorphic descent, and is an induction step towards the
understanding of the wave-front set of π. The p-adic analogy
was undertaken in my recent work with Lei Zhang.
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Maximal Fourier Coefficients of Automorphic Forms

I Examples: G = GLn, the G(F )-stable orbits in N (g) are
parameterized by partitions of n.

I Theorem (Piatetski-Shapiro; Shalika): If π ∈ A2(GLn) is
cuspidal, pm(π) = {[n]}. This says that any π ∈ Acusp(GLn)
has a nonzero Whittaker-Fourier coefficient.

I What happens if π ∈ A2(GLn) is not cuspidal?

I Moeglin-Waldspurger Theorem: Any π ∈ Adisc(GLn) has
form ∆(τ, b) (Speh residue with cuspidal support τ⊗b),
where τ ∈ Acusp(GLa) and n = ab.

I If π = ∆(τ, b), then pm(π) = {[ab]} (Ginzburg (2006), J.-
Baiying Liu (2013) gives a complete global proof).

I In particular, the Folklore Conjecture is verified for all
π ∈ A2(GLn)!
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Maximal Fourier Coefficients and Arthur Parameters

I How to understand this in terms of Arthur parametrization?

I ∆(τ, b) has the Arthur parameter ψ = (τ, b).

I The partition for ψ is p
ψ

:= [ba] and pm(∆(τ, b)) = {[ab]}.
I η([ba]) = [ab] is given by the Barbasch-Vogan duality η from

GL∨n to GLn. In this case, it is just the transpose.

I Take an Arthur parameter for GLn: for τi ∈ Acusp(GLai),

ψ = (τ1, b1)� (τ2, b2)� · · ·� (τr, br).

I The partition for ψ is p
ψ

= [ba11 b
a2
2 · · · barr ].

I The Arthur representation is an isobaric sum

πψ = ∆(τ1, b1)�∆(τ2, b2)� · · ·�∆(τr, br).

I Conjecture: pm(πψ) = {ηgl∨n ,gln(p
ψ

)}.
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I The partition for ψ is p
ψ

= [ba11 b
a2
2 · · · barr ].

I The Arthur representation is an isobaric sum

πψ = ∆(τ1, b1)�∆(τ2, b2)� · · ·�∆(τr, br).

I Conjecture: pm(πψ) = {ηgl∨n ,gln(p
ψ

)}.



Maximal Fourier Coefficients and Arthur Parameters

I For ψ = ψ1 � ψ2 � · · ·� ψr ∈ Ψ2(G
∗), where ψi = (τi, bi)

with τi ∈ Acusp(GLai) and bi ≥ 1, p
ψ

= [ba11 · · · barr ] is the

partition of N(G∗)∨ attached to (ψ, (G∗)∨) and η(p
ψ

) is the

Barbasch-Vogan duality of p
ψ

from (G∗)∨ to G∗.

I Conjecture (J.-2014):
(1) For every π ∈ Πψ(G∗) ∩ A2(G∗), any partition p ∈ pm(π) has

the property that p ≤ η(p
ψ

).

(2) There exists at least one member π ∈ Πψ(G) ∩ A2(G) for
some pure inner form G of G∗ that have the property:
η(p

ψ
) ∈ pm(π).

I Remark: For a pure inner form G of G∗, assume that the
global Arthur parameter ψ is G-relevant and the
Barbasch-Vogan duality η(p

ψ
) is a G-relevant partition of

NG = NG∗ of type G∗. The definition of Fourier coefficients
also work.
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Examples of the Barbasch-Vogan duality

I G = SO2n+1 and 2n = ab; Take ψ = (τ, b) for
τ ∈ Acusp(GLa), and

b =

{
2`, if τ is orthogonal,

2`+ 1, if τ is symplectic.

I p
ψ

= [ba] is the partition of 2n of type (ψ,Sp2n(C)).

I The Barbasch-Vogan duality is given as follows:

η(p
ψ

) =


[(a+ 1)ab−2(a− 1)1] if b = 2l and a is even;

[ab1] if b = 2l and a is odd;

[(a+ 1)ab−1] if b = 2l + 1.



Examples of the Barbasch-Vogan duality

I Take G = Sp2n and ψ = (τ, 2b+ 1)��ri=2(τi, 1) ∈ Ψ2(G).

I p
ψ

= [(2b+ 1)a(1)2m+1−a] with 2m+ 1 = (2n+ 1)− 2ab.

I When a ≤ 2m and a is even,

η(p
ψ

) =η([(2b+ 1)a(1)2m+1−a]) = [(2b+ 1)a(1)2m−a]t

=[(a)2b+1] + [(2m− a)] = [(2m)(a)2b].

I When a ≤ 2m and a is odd,

η(p
ψ

) =η([(2b+ 1)a(1)2m+1−a])

=([(2b+ 1)a(1)2m−a]Sp2n)t

=[(2b+ 1)a−1(2b)(2)(1)2m−a−1]t

=[(a− 1)2b+1] + [(1)2b] + [(1)2] + [(2m− 1− a)]

=[(2m)(a+ 1)(a)2b−2(a− 1)].



Remarks on the Conjecture

I It is true when G = GLn and ψ is an Arthur parameter for
the discrete spectrum.

I If φ ∈ Φ2(G
∗) is generic, i.e. b1 = · · · = br = 1, the partition

p
φ

= [1N(G∗)∨ ].

I The Barbasch-Vogan duality of p
φ

is η([1N(G∗)∨ ]) = [NG∗ ]G∗ .

I It is clear that the partition η([1N(G∗)∨ ]) is G-relevant only if
G = G∗ is quasi-split. In this case, it the regular partition.

I The conjecture claims that any generic global Arthur packet
contains a generic member for quasi-split G∗, and hence
implies the global Shahidi conjecture on genericity of
tempered packets.

I This special case can be proved by the Arthur-Langlands
transfer from G to GLNG

and the Ginzburg-Rallis-Soudry
descent (J.- Liu 2016).
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On Large Cuspidal Spectrum

I My work with Baiying Liu on small cuspidal spectrum and
connection with the Ramanujan type upper bound on the
cuspidal spectrum was discussed in my lecture at KIAS 2015,
and will be published in Simons Symposium 2018.

I I would like to discuss a conjecture of J.- Lei Zhang on Large
Cuspidal Spectrum in our work (J.- Zhang 2017).

I For G quasi-split, a π ∈ Acusp(G) is called Large if π has a
non-zero Whittaker-Fourier coefficient.

I Global Generic Packet Conjecture: For any global generic
Arthur parameter φ of G, the global Arthur packet Πφ(G)
contains at least one Large cuspidal member.

I For G to be quasisplit classical groups, the Global Generic
Packet Conjecture is known (J.- Liu 2016).

I The Question remains when G is not quasisplit.



On Large Cuspidal Spectrum

I My work with Baiying Liu on small cuspidal spectrum and
connection with the Ramanujan type upper bound on the
cuspidal spectrum was discussed in my lecture at KIAS 2015,
and will be published in Simons Symposium 2018.

I I would like to discuss a conjecture of J.- Lei Zhang on Large
Cuspidal Spectrum in our work (J.- Zhang 2017).

I For G quasi-split, a π ∈ Acusp(G) is called Large if π has a
non-zero Whittaker-Fourier coefficient.

I Global Generic Packet Conjecture: For any global generic
Arthur parameter φ of G, the global Arthur packet Πφ(G)
contains at least one Large cuspidal member.

I For G to be quasisplit classical groups, the Global Generic
Packet Conjecture is known (J.- Liu 2016).

I The Question remains when G is not quasisplit.



On Large Cuspidal Spectrum

I My work with Baiying Liu on small cuspidal spectrum and
connection with the Ramanujan type upper bound on the
cuspidal spectrum was discussed in my lecture at KIAS 2015,
and will be published in Simons Symposium 2018.

I I would like to discuss a conjecture of J.- Lei Zhang on Large
Cuspidal Spectrum in our work (J.- Zhang 2017).

I For G quasi-split, a π ∈ Acusp(G) is called Large if π has a
non-zero Whittaker-Fourier coefficient.

I Global Generic Packet Conjecture: For any global generic
Arthur parameter φ of G, the global Arthur packet Πφ(G)
contains at least one Large cuspidal member.

I For G to be quasisplit classical groups, the Global Generic
Packet Conjecture is known (J.- Liu 2016).

I The Question remains when G is not quasisplit.



On Large Cuspidal Spectrum

I My work with Baiying Liu on small cuspidal spectrum and
connection with the Ramanujan type upper bound on the
cuspidal spectrum was discussed in my lecture at KIAS 2015,
and will be published in Simons Symposium 2018.

I I would like to discuss a conjecture of J.- Lei Zhang on Large
Cuspidal Spectrum in our work (J.- Zhang 2017).

I For G quasi-split, a π ∈ Acusp(G) is called Large if π has a
non-zero Whittaker-Fourier coefficient.

I Global Generic Packet Conjecture: For any global generic
Arthur parameter φ of G, the global Arthur packet Πφ(G)
contains at least one Large cuspidal member.

I For G to be quasisplit classical groups, the Global Generic
Packet Conjecture is known (J.- Liu 2016).

I The Question remains when G is not quasisplit.



On Large Cuspidal Spectrum

I My work with Baiying Liu on small cuspidal spectrum and
connection with the Ramanujan type upper bound on the
cuspidal spectrum was discussed in my lecture at KIAS 2015,
and will be published in Simons Symposium 2018.

I I would like to discuss a conjecture of J.- Lei Zhang on Large
Cuspidal Spectrum in our work (J.- Zhang 2017).

I For G quasi-split, a π ∈ Acusp(G) is called Large if π has a
non-zero Whittaker-Fourier coefficient.

I Global Generic Packet Conjecture: For any global generic
Arthur parameter φ of G, the global Arthur packet Πφ(G)
contains at least one Large cuspidal member.

I For G to be quasisplit classical groups, the Global Generic
Packet Conjecture is known (J.- Liu 2016).

I The Question remains when G is not quasisplit.



On Large Cuspidal Spectrum

I My work with Baiying Liu on small cuspidal spectrum and
connection with the Ramanujan type upper bound on the
cuspidal spectrum was discussed in my lecture at KIAS 2015,
and will be published in Simons Symposium 2018.

I I would like to discuss a conjecture of J.- Lei Zhang on Large
Cuspidal Spectrum in our work (J.- Zhang 2017).

I For G quasi-split, a π ∈ Acusp(G) is called Large if π has a
non-zero Whittaker-Fourier coefficient.

I Global Generic Packet Conjecture: For any global generic
Arthur parameter φ of G, the global Arthur packet Πφ(G)
contains at least one Large cuspidal member.

I For G to be quasisplit classical groups, the Global Generic
Packet Conjecture is known (J.- Liu 2016).

I The Question remains when G is not quasisplit.



On Large Cuspidal Spectrum

I Take G to be SOr+m0,r or Ur+m0,r with r the F -rank of G.

I Take the partition p
r

:= [(2r + 1)1m0−1], which is G-relevant.

I One has a unipotent subgroup Vp
r

of G and the character

ψp
r
;X , which define the Fourier coefficient Fψp

r
;X (ϕπ) for

π ∈ Acusp(G).

I The stabilizer of ψp
r
;X is reductive subgroup of the

F -anisotropic SOm0 or Um0 , and hence Fψp
r
;X is the largest

possible Fourier coefficient one might get for G.

I A π ∈ Acusp(G) is called Large if Fψp
r
;X (ϕπ) is nonzero.

I Global Large Cuspidal Packet Conjecture (J.-Zhang): Let
G∗ be the F -quasisplit pure inner form of G. For any generic
global Arthur parameter φ of G∗, which is G-relevant, the
global Arthur packet Πφ(G) contains at least one Large
cuspidal member.
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On Large Cuspidal Spectrum

I A special case of the GLCP Conjecture has the following
important application.

I Theorem (J.- Zhang 2017): Assume that the GLCP
Conjecture holds for Un+2,n. Let G∗ to be either Un,n or
Un+1.n. For any global generic Arthur parameter π of G∗,
there exists an automorphic character χ of U1 such that

L(
1

2
, π × χ) 6= 0

for all cuspidal members π belonging to the global Arthur
packet Πφ(G∗).

I Proposition (J.-Zhang 2017): For such a φ, there is a φ′

such that φ� φ′ is a generic global Arthur parameter of
Un+1,n+1, which is Un+2,n-relevant.

I One direction of the global Gan-Gross-Prasad conjecture holds
for Un+2,n (J.- Zhang 2015).
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