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Introduction

⋇ String models with 16 supersymmetries
arising from type IIA/B on𝐾3 × 𝑇 2

and their orbifolds (CHLmodels)

⋇ Goal: Calculate space-time index counting
1/4 BPS states for each value of
electric-magnetic charges

⋇ Some of the first examples of matching BH
black hole entropy vs microscopic degeneracy
[Strominger, Vafa 95; Dijkgraaf, Verlinde2 96

Shih, Strominger, Yin 2005; David, Sen 2006; ...]
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Introduction

⋇ Goal: Calculate space-time index counting
1/4 BPS states for each value of
electric-magnetic charges

⋇ All these indices organized into a generating
function 1/Φ

⋇ Meromorphic Siegel modular form of genus 2
⋇ For type IIA/K3×𝑇 2,Φ is Igusa cusp form of

weight 10
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Introduction

⋇ Non-linear sigmamodel (NLSM) on K3
2-dim superconformal field theory

⋇ Elliptic genus of K3 𝜙(𝜏, 𝑧)
⋇ If NLSM on K3 has a symmetry 𝑔, we can

define a twining genus 𝜙𝑔
⋇ 𝜙𝑔 is weak Jacobi formwt 0 ind 1
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Introduction

⋇ Φ is the Borcherds lift of 𝜙𝑔

⋇ some 𝜙𝑔 cannot be computed directly in the
NLSM

⋇ Idea: use consistency conditions on 1/Φ from
wall-crossing

⋇ Result: for almost all 𝑔, 𝜙𝑔 is uniquely
determined, otherwise only 2 possibilities
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Overview

Introduction

NLSM on K3

Strings on 𝐾3 × 𝑇 2

CHL models
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NLSM on K3
Basic facts about NLSM on K3

⋇ 2-dim𝒩 = (4, 4) superconformal at 𝑐 = ̄𝑐 = 6

⋇ Depends on the choice of metric and B-field
(80-dimmoduli space of theories).
[Aspinwall, Morrison '95; Nahm, Wendland '99]

⋇ Elliptic genus of K3:

𝜙𝐾3(𝜏, 𝑧) = Tr𝑅𝑅(𝑞𝐿0− 𝑐
24 ̄𝑞𝐿̄0− ̄𝑐

24 𝑦𝐽0(−1)𝐽0+ ̄𝐽0)
where (𝜏, 𝑧) ∈ ℍ × ℂ, 𝑞 = 𝑒2𝜋𝑖𝜏 , 𝑦 = 𝑒2𝜋𝑖𝑧

𝐽0, ̄𝐽0 are generators in 𝑠𝑢(2) in𝒩 = 4
[Schellekens, Warner '86; Witten '87;

Eguchi, Ooguri, Taormina, Yang '88]
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Elliptic genus of K3: properties

𝜙𝐾3(𝜏, 𝑧) = Tr𝑅𝑅(𝑞𝐿0− 𝑐
24 ̄𝑞𝐿̄0− ̄𝑐

24 𝑦𝐽0(−1)𝐽0+ ̄𝐽0)
⋇ Only right-moving ground states contribute

→ holomorphic in 𝜏 and 𝑧

⋇ Independent of the metric and B-field

⋇ Elliptic andmodular properties:

𝜙(𝜏, 𝑧 + ℓ𝜏 + ℓ′) = 𝑒−2𝜋𝑖(ℓ2𝜏+2ℓ𝑧)𝜙(𝜏, 𝑧) ℓ, ℓ′ ∈ ℤ
𝜙 (𝑎𝜏+𝑏

𝑐𝜏+𝑑 , 𝑧
𝑐𝜏+𝑑) = 𝑒2𝜋𝑖𝑐𝑧2

𝑐𝜏+𝑑 𝜙(𝜏, 𝑧) ( 𝑎 𝑏
𝑐 𝑑 ) ∈ 𝑆𝐿2(ℤ)

≡ (weak) Jacobi form of weight 0 and index 1
⋇ 𝜙(𝜏, 𝑧) = ∑𝑛≥0,𝑙 𝑐(𝑛, 𝑙)𝑞𝑛𝑦𝑙
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Symmetries of NLSM on K3

⋇ NLSMon K3 can have (finite) group𝐺 of
symmetries commuting with𝒩 = (4, 4) and
spectral flow

⋇ For each 𝑔 ∈ 𝐺, define twining genus

𝜙𝑔(𝜏, 𝑧) = Tr𝑅𝑅(𝑔𝑞𝐿0− 𝑐
24 ̄𝑞𝐿̄0− ̄𝑐

24 𝑦𝐽0(−1)𝐽0+ ̄𝐽0)
Weak Jacobi formwt 0 ind 1wrt
Γ𝑔 ⊆ 𝑆𝐿(2, ℤ)

⋇ Classification: at most 81 independent
twining genera 𝜙𝑔
[Cheng, Harrison, Volpato, Zimet 2016]

Canwe find all of them?
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⋇ In NLSM(K3) with symmetry 𝑔, define

ℋ𝑟,𝑠 ∶= {𝑣 in 𝑔𝑟-twisted sector

s.t. 𝑔(𝑣) = 𝑒2𝜋𝑖𝑠
𝑁 𝑣}

for 𝑟, 𝑠 ∈ ℤ/𝑁ℤ

⋇ 𝑁2 equivariant elliptic genera

𝜙(𝑔)
𝑟,𝑠(𝜏, 𝑧) = Tr𝑅𝑅

ℋ𝑟,𝑠
(𝑞𝐿0− 𝑐

24 ̄𝑞𝐿̄0− ̄𝑐
24 𝑦𝐽0(−1)𝐽0+ ̄𝐽0)

⋇ {𝜙(𝑔)
𝑟,𝑠} are vector-valued weak Jacobi forms

⋇ 𝜙𝑔𝑛 = ∑𝑠∈ℤ𝑁
𝑒2𝜋𝑖𝑛𝑠

𝑁 𝜙𝑟,𝑠

12
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Strings on 𝐾3 × 𝑇 2



Strings on K3

het/𝑇 6 ↔ IIA/𝐾3 × 𝑇 2 ↔ IIB/𝐾3 × 𝑇 2

⋇ 4-dim𝒩 = 4with generic gauge group𝑈(1)28

⋇ electric-magnetic charges (𝑄, 𝑃 ) ∈ Γ6,22 ⊕ Γ6,22

⋇ Duality group𝑂(Γ6,22) × 𝑆𝐿(2, ℤ)
[Sen '94; Witten '94]

⋇ 134-dimmoduli space

14
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1/4 BPS index
⋇ For each (𝑄, 𝑃 ) consider 1/4 BPS index𝐷(𝑄, 𝑃)

𝐷(𝑄, 𝑃) = #{‘bosonic’ supermultiplets}
− #{‘fermionic’ supermultiplets}

⋇ Locally constant on themoduli space, but ‘jumps’
at walls of marginal stability (wall-crossing)

⋇ Invariant under duality group𝑂(Γ6,22) × 𝑆𝐿2(ℤ)
⋇ Describe as function of𝑂(Γ6,22)-invariants

𝐷(𝑄, 𝑃) = (−1)𝑄⋅𝑃+1𝑑(𝑄2

2 , 𝑃 2
2 , 𝑃 ⋅ 𝑄)

⋇ Goal: Find 𝑑(𝑛, 𝑚, 𝑙) for all 𝑛, 𝑚, 𝑙 ∈ ℤ
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1/4 BPS index
⋇ Organize into a generating function

1
Φ ( 𝜎 𝑧𝑧 𝜏 ) = ∑

𝑛,𝑚,𝑙
𝑑(𝑛, 𝑚, 𝑙)𝑒2𝜋𝑖(𝑚𝜎+𝑛𝜏+𝑙𝑧)

for some complex ‘chemical potentials’ 𝜎, 𝜏, 𝑧

⋇ Given by exp-lift of elliptic genus

1
Φ ( 𝜎 𝑧𝑧 𝜏 ) = ∏

𝑛,𝑚≥0,𝑙
(1 − 𝑒2𝜋𝑖(𝑚𝜎+𝑛𝜏+𝑙𝑧))−𝑐(𝑚𝑛,𝑙)

(𝑙 < 0 if𝑚 = 𝑛 = 0)
where 𝑐(𝑚𝑛, 𝑙) are Fourier coeffs of 𝜙𝐾3
[Dijkgraaf, Verlinde, Verlinde '96; Shih, Strominger, Yin

2005; David, Sen 2006]
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Wall crossing
⋇ Some 1/4 BPS states can decay into pair of 1/2

BPS in subregions of the moduli space

⇒ 𝐷(𝑄, 𝑃) ‘jumps’ across wall of marginal
stability [Bergman '97; Bergman, Kol '98; Denef '00]

⋇ Fourier coefficients of 1/Φ

𝑑(𝑛, 𝑚, 𝑙) = ∮
𝒞

𝑒−2𝜋𝑖(𝑚𝜎+𝑛𝜏+𝑙𝑧)

Φ ( 𝜎 𝑧𝑧 𝜏 )
where

𝒞 ∶= {0 ≤ 𝜎1, 𝜏1, 𝑧1 ≤ 1, ( 𝜎2 𝑧2𝑧2 𝜏2 ) fixed}
⋇ 1/Φ is meromorphic⇒ 𝑑(𝑛, 𝑚, 𝑙) ambiguous
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Wall crossing
Contour prescription: 𝒞 depends onmoduli and
charges

𝒞 ∶= {0 ≤ 𝜎1, 𝜏1, 𝑧1 ≤ 1, ( 𝜎2 𝑧2𝑧2 𝜏2 ) = 𝜖−1𝒵(𝑄, 𝑃 , 𝜇)}
where 𝜖 ≪ 1 and𝒵 is the ‘central charge vector’
[Cheng, Verlinde 2007]

⋇ Poles of 1/Φ exactly at walls of marginal
stability

⋇ Residue at pole matches the ‘jump’ of𝐷(𝑄, 𝑃)
⋇ Independent interpretations

[Banerjee, Sen, Srinistava 2008; Bossard,

Cosnier-Horeau, Pioline 2016]
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CHL models



CHL model definition
⋇ Consider type II/𝐾3 × 𝑆1 × ̃𝑆1

⋇ Orbifold by (𝛿, 𝑔), where
⋇ 𝑔 is symmetry of NLSM on K3, 𝑜𝑟𝑑(𝑔) = 𝑁 ,

preserving𝒩 = 4 SUSY
⋇ 𝛿 is a shift by 1/𝑁 period along 𝑆1

Obtain 4-d𝒩 = 4 theory with
⋇ reduced gauge group𝑈(1)𝑑 (6 ≤ 𝑑 ≤ 28)
⋇ reducedmoduli space

⋇ e-m charges (𝑄, 𝑃 ) ∈ Λ𝑒 ⊕ Λ𝑚 (𝑟𝑘 Λ𝑒,𝑚 = 𝑑)
⋇ Duality group⊃ 𝑂(Λ𝑒)

[Chaudhuri,Hockney,Lykken 95; Sen,Vafa 95]
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1/4 BPS states
⋇ 1/4 BPS index depends on𝑂(Λ𝑒)-invariants

𝐷𝑔(𝑃 , 𝑄) = (−1)𝑃⋅𝑄+1𝑑𝑔(𝑃 2/2, 𝑄2/2, 𝑃 ⋅ 𝑄)

⋇ Generating function 1/Φ𝑔 of 𝑑𝑔(𝑛, 𝑚, 𝑙) is
exponential lift of twining genera [Jatkar,Sen 05]

1
Φ𝑔 ( 𝜎 𝑧𝑧 𝜏 ) = ∏

(𝑛,𝑚,𝑙)
(1 − 𝑒2𝜋𝑖(𝑚𝜎+ 𝑛𝜏

𝑁 +𝑙𝑧))−𝑐(𝑔)
𝑛,𝑚(𝑛𝑚

𝑁 ,𝑙)

𝑐(𝑔)
𝑛,𝑚(𝑛𝑚

𝑁 , 𝑙): linear combinations of Fourier coeffs
of 𝜙𝑔𝑑 , for 𝑑|𝑁 , and their 𝑆𝐿(2, ℤ)
transformations
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Wall crossing in CHL models

⋇ Similar wall-crossing for ‘decaying’ of 1/4 BPS to
pair of 1/2 BPS states [Sen 2007]

Main assumption: Contour prescription provides
the correct 𝑑𝑔(𝑛, 𝑚, 𝑙) at all points in moduli space

⇒ 1/Φ𝑔 has only poles at the walls

22
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How to compute the remaining 1/Φ𝑔?

⋇ We can determine walls of marginal stability

⋇ By contour prescription→ poles of 1/Φ𝑔

⋇ Via exponential lift→ sign of 𝑐(𝑔)
𝑚,𝑛(𝑚𝑛

𝑁 , 𝑙) for
4𝑚𝑛

𝑁 − 𝑙2 < 0

This info +modularity + 𝑞0 Fourier coeffs
↓

𝜙𝑔 and 1/Φ𝑔 determined almost completely
(either uniquely or up to 2 possibilities)

[Paquette, Volpato, Zimet 2017]
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Open questions

⋇ Can all 1/Φ𝑔 be determined exactly?

⋇ Can 1/Φ𝑔 be fixed without passing through
NLSM(K3)?

⋇ Relations to Umbral + Conwaymoonshine

24


