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Review: hematopoiesis

A complex mechanism in which self-renewing hematopoietic stem
cells (HSCs) differentiate via a series of intermediate progenitor
cell stages to produce blood cells

• Multi-stage process in bone marrow, lymphatic and circulatory
systems: difficult to observe in vivo

• Dynamics and structure are largely unknown

• Clinical relevance: stem cell transplantation is a mainstay of
cancer therapy; all blood cell diseases are caused by
malfunctions in the hematopoietic process

• Stochastic modeling efforts provide quantitative basis to
answer questions about dynamics (parameter inference) and
structure (model selection)



Branching structure of hematopoiesis

Many versions of the hematopoietic tree have been proposed



Two-type compartmental model

• Series of statistical studies targeting HSC dynamics [Abkowitz et al
1990, Golinelli et al 2009, Catlin et al 2011]

• Cannot resolve questions about later stages of differentiation

• Past studies: intensive simulation study, estimating equations,
reversible-jump MCMC

• Can be equivalently treated as a Markov branching process



Multi-type Markov branching processes

• Random vector X(t); Xi (t) denotes type i population at time t

• Cells act independently: can die, reproduce, create other cells

• Independence ⇒ linearity: overall rates are multiplicative in number
of cells

• Time-homogeneity: jump rates are constant over time

• A class of continuous-time Markov chains (CTMCs): memoryless,
exponential times between events



Challenges: discretely observed data



The discretely-observed data likelihood

`o(Y|θ) =
m∑

p=1

n(p)−1∑
i=0

log pXp(tp,i ),Xp(tp,i+1)(tp,i+1 − tp,i |θ)

In particular, need finite-time transition probabilities:

px,y(t) = Pr (X(t + s) = y|X(s) = x)

• Classical matrix exponentiation for CTMCs is O(|Ω|3)

P(t) :=
{
px,y(t)

}
x,y∈Ω

= eQt =
∞∑
k=0

(Qt)k

k!
.

• When only partially observed (latent process), compounded by
additional marginalization over hidden states



Using the probability generating function φ

φjk(t, s1, s2;θ) = Eθ

(
s
X1(t)
1 s

X2(t)
2 |X1(0) = j ,X2(0) = k

)
=
∞∑
l=0

∞∑
m=0

p(jk),(lm)(t;θ)s l1s
m
2 ; |si | ≤ 1

• PGF φjk computed by solving Kolmogorov forward/backward ODEs

• Transition probabilities related via differentiation, but impractical

p(jk),(lm)(t) =
1

l!m!

∂ l

∂s1

∂m

∂s2
φjk(t)

∣∣∣∣
s1=s2=0

• Transform s1 = e2πiw1 , s2 = e2πiw2 ⇒ φ becomes a Fourier series:

φjk(t, e2πiw1 , e2πiw2 ) =
∞∑
l=0

∞∑
m=0

p(jk),(lm)(t)e2πilw1e2πimw2



From differentiation to integration: a spectral trick

• Inverting the Fourier series representation recovers transition
probabilities efficiently:

p(jk),(lm)(t) =

∫ 1

0

∫ 1

0

φjk(t, e2πiw1 , e2πiw2 )e−2πilw1e−2πimw2dw1dw2

(applying a Riemann sum approximation)

≈ 1

N2

N−1∑
u=0

N−1∑
v=0

φjk(t, e2πiu/N , e2πiv/N)e−2πilu/Ne−2πimv/N .

• Can simultaneously compute probabilities {p(jk),(lm)(t)} for all
l ,m = 0, . . . ,N via Fast Fourier Transform (FFT)

• Compute discrete-data likelihood practically; similar approach yields
conditioned moments useful for EM
[Xu, Guttorp, Kato-Maeda, Minin 2015]
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More missing data: partially observed processes

Process X(t) poses same challenges as before, but now we only glimpse
partial information (sampling, measurement error)

• Direct marginalization impractical for large Ω

• Data augmented MCMC: slow mixing, need efficient proposals

• Simulation approaches (particle filtering, SMC) are flexible,
but quickly become limited for large populations
[Andrieu et al 2010]



Hematopoietic lineage barcoding data

• DNA barcoding experiments enable individual cell lineage tracking
through time, in vivo

• IID time series data: DNA read counts partially inform the
populations of each barcode ID present among each cell type

• Monitored at discrete times over 30 months, dataset contains 110
million read counts across 9635 unique barcode IDs

• Discrete hidden space of multiple very large, hidden populations



Illustration: experimental design
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The hidden branching process model

• Latent process: each barcode lineage evolves as a
continuous-time, multitype branching process X(t) whose
components are counts of each cell type

• Observation process: flexible choice of emission distribution
for sample counts: we use multivariate hypergeometric
distribution Ỹ ∼ mvhypgeo(X)

• Read data: read counts Y are proportional to Ỹ with
unknown amplification constant



Moment-based method of inference

Loss function estimation: match pairwise model-based and
empirical correlations across barcode lineages [Xu et al 2017],

L(θ;Y) =
∑
tj

∑
m

∑
n 6=m

[
ψj
mn(θ)− ψ̂j

mn(Y)
]2
,

ψj
mn(θ) = [ρ(Ym(tj),Yn(tj));θ] , and

ψ̂j
mn denotes the corresponding sample correlations at time tj

• Estimating parameters θ reduces to nonlinear least squares
optimization: θ̂ = argminθ L(θ;Y)

• Consistent under mild assumptions: {θ̂N} → θ0 in probability



A richer class of compartmental models
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Allows for an arbitrary number of intermediate progenitors and mature

cell types, requiring that each mature type can be descended from only

one possible progenitor type



Fitted correlations: macaque lineage tracking data
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Overview of results

• HSC self-renewal rate λ̂ = .0593 (every 12 weeks) falls into the
confidence interval (0.0095, 0.0649) obtained in previous primate
studies

• Initial distribution π̂ = .139 consistent with GFP marking levels
stabilizing at 13%

• Intermediate rates νi suggest granulocytes and monocytes are
produced much more rapidly than T, B and NK cells, and individual
progenitors can each produce thousands of cells daily (not previously
estimated)

• NK cells track distinctly from other mature blood cells

• Single-progenitor models fit best, affirming recent findings [Notta
2015] of in vitro human hematopoiesis that challenge the traditional
oligopotency assumption



Evidence against oligopotency

Notta et al. 2015



An open challenge: model selection
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A model with two oligopotent progenitors instead of one common
multipoint progenitor leads to poor model fit



An open challenge: model selection
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• Efficient parameter
estimation for fitting
cell lineage barcoding
data to rich models of
hematopoiesis

• Need model selection
techniques for
rigorous conclusions
about pathway
structure



Nonlinear compartmental models

Motivating example: stochastic SIR model of infection

“The associated mathematical manipulations required to generate
solutions can only be described as heroic.”

— E. Renshaw, 2015,
Stochastic population processes: analysis, approximations, simulations.



SIR dynamics

Pr(S(t + h) = xh, I (t + h) = yh|S(t) = xt , I (t) = yt)

=


βxtyth + o(h) if (xh, yh) = (xt − 1, yt + 1)

γyth + o(h) if (xh, yh) = (xt , yt − 1)

1− (βxtyt + γyt)h + o(h) if (xh, yh) = (xt , yt)

• Parameters: infection rate β, recovery rate γ

• Nonlinearity arises from interactions: does not satisfy particle
independence ⇒ cannot analyze as branching process

• Finite-time behavior (transition probabilities) challenging



Transition probabilities: a different route

Very briefly, working in the Laplace domain,

φab(s) := L[Pa0b0
ab (t)](s) =

∫ ∞
0

e−stPa0b0
ab (t)dt

satisfies a recursion with continued fraction representation

φ
(0)
ab (s) =

b∏
i=1

xai
xa,b+1

Ya,b+1 +
xa,b+2Yab

ya,b+2 +
xa,b+3

ya,b+3 +
xa,b+4

ya,b+4 + · · ·

• Evaluate to finite depth, numerically invert Laplace transform
[Ho, Xu, Crawford, Minin, Suchard 2017]



Back to branching processes

• Continued fraction method is limited to moderate outbreak sizes;
derivation is delicate and hard to extend

• Two-type branching approximation yields analytic transition
probabilities

(c) Continued fraction (d) Branching process



Current/future work: correcting the approximation
Branching process model as proposal density within MCMC

• Metropolis-Hastings step corrects approximation error

Circles represent true populations. I and R curves proposed from
branching process, given true β, γ, and observed S population
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Simulation study

Infer parameters for partially observed datasets simulated from models in
our class: we use the following as an example
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Results: simulation study
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Histogram of relative errors across all parameters
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Performance under model misspecification
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Figure: Inference on same synthetic data generated from the two-progenitor
model, but misspecifying a three-progenitor model



Performance under model misspecification

20 40 60 80 100 120 140

−
0.

5
0.

0
0.

5
1.

0

Fitting one−progenitor model on two−progenitor data

Observation Time

C
or

re
la

tio
n

True parameters
Misspecified Fit

Figure: Here we wrongly assume there is one common progenitor



Performance under model misspecification
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Figure: When we lump mature compartments together but otherwise correctly
specify progenitors they are descended from, the fit is still good.



Parameter estimates

Estimated parameter 5-type model fit 3-type model fit

HSC renewal λ 0.0634 0.0497
HSC diff ν0 2.80 × 10−6 1.11 × 10−5

Progen. death µ0 0.000 0.000
Progen. diff. to Type 1 ν1 1614.7 2635.7

ν2 6093.6 283.3
ν3 39.6 173.1
ν4 126.1 NA
ν5 64.4 NA

Mature death of Type 1 µ1 0.5 0.7
µ2 0.7 0.01
µ3 0.01 0.40
µ4 0.01 NA
µ5 0.45 NA

Percentage barcoded at HSC 0.289 0.148



The emission distribution

Observation model: read count data Yp(t) for barcode p at time
t are distributed according to multivariate hypergeometric
distribution:

Y p
1 (t) | X(t) ∼ hypergeom(N3,X

p
3 (t), n1),

Y p
2 (t) | X(t) ∼ hypergeom(N4,X

p
4 (t), n2),

• n1 and n2 are known numbers of sampled cells of types 3
(Gr+Mono) and 4 (T+B+NK)

• N3 and N4 are known total numbers of barcoded type 3 and 4
cells in the animal

• X p
3 (t) and X p

4 (t) are unknown numbers of types 3 and 4 cells
with barcode p



Fitted correlation plots
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Fitted correlation plots
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