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Metrics on functional spaces

Supremum Distance
For ox, 9% : X = R,

[@x — P llee 1= sup [@x(x) — @x(x)|.
xeX

Natural Pseudo-Distance
For ox : X - R, ¢y : Y — R, X and Y homeomorphic,

d = hl|oo.
e (Ox, Qy) heHomeo(XY)”(pX @y o h||

dyp extends |- [jw: for X =Y, dnp(@x, %) < [[@x — @ |-
1st Goal:
Extend dyp to the case when X and Y are only homotopy equivalent.
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Lifting stability results

Stability of Persistence (1)

For ox, 9% : X = R, dg(dgm(¢x), dgm(¢%)) < [|ox — P |-

Stability of Persistence (I1)

For ox : X = R, ¢y : Y — R, with X homeomorphic to Y,
dg(dgm(¢x), dgm(py)) < dnp(@x, Py).

2nd Goal: Stability of Persistence (lll)

For ox : X = R, ¢y : Y — R, with X homotopy equivalent to Y/,
ds(dgm(ex), dgm(@y)) < dur(9x. ¢v)

and, for X, Y homeomorphic,

dut(9x. ey) < dvp(@x, Qy)
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Definition and stability of dyt
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a-maps and a-homotopies

Let S be the category such that:
e objects are bounded continuous functions ¢x : X — R,

e morphisms from @x to @y are all continuous maps f : X — Y such
that (pyof < ('@

Let @ > 0. Any f: X — Y such that ¢y of < @x + a is called an
o-map with respect to (@x, Qy).

Given two a¢-maps f; : X — Y and f: X — Y, an a-homotopy
between f; and f, with respect to the pair (¢x, @y) is a homotopy
that is an @-map at every instant.



o-homotopy equivalences

¢x and @y are «a-homotopy equivalent if there exist a-maps

f:X—=>Yandg:Y—=>X

w.r.t. (¢x,y) and (@y,@x) such that:
e gof: X — X is 2a-homotopic to idx with respect to (@x, ¢x);

e fog:Y — Y is 2o-homotopic to idy with respect to (@y,Qy).




The persistent homotopy type distance

Definition

dut(ox,0y) == inf{oc €R: ¢x and ¢y are a-homotopy equivalent}

Proposition

e dyr is an extended pseudo-metric.
e If X and Y are homeomorphic, then

dut(0x, @y) < dye (@x, Qy)

e X and Y are homotopy equivalent iff dyr(@x, @Py) < co.
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Comments on the definition of dyt

e What about defining a-homotopies w/out the condition to be an
a-map at each instant?
o The stability property would not lift.
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Comments on the definition of dyt

e What about defining a-homotopies w/out the condition to be an
a-map at each instant?

o The stability property would not lift.

e |s it possible to define dyt via a minimum instead of an infimum?
Is dyt only a pseudo-metric or actually a metric?
o Examples where the infimum is 0 and it is not attained.
e |s dyt different from dyp?
o X contractible, x € X, c € R: dy7((X,¢),({x},¢)) =0, dyp = .
o Cylinder C and strip M twisted of 27 radians: dy7(C,M) =1,
dne((C,2),(M,z)) =2.




Lifting stability results via dyt

Stability Theorem
X,Y compact polyhedra, ¢x, @y continuous functions.

dg (dgm(@x),dgm(@y)) < dur(@x, @v).
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Lifting stability results via dyt

Stability Theorem

X,Y compact polyhedra, ¢x, @y continuous functions.

dg (dgm(x),dgm(@y)) < dut (@x, Py).

Idea of the proof
¢ Any a-homotopy equivalence induces an a-interleaving of g-tame
persistence modules.

e Any a-interleaving of g-tame persistence modules induces a
bottleneck matching with cost < a (Algebraic Stability Theorem).
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Restricting dyT to subcategories

We can restrict dy1 to any sub-category C of S closed with respect
to the a-shift functor. Denote it dE,T.

e Let X be fixed. Take C whose objects are functions ¢ : X — R,
and between any two objects @, ¢’ there is at most one morphism,
idx : X — X, then

diir(9,9) =10 — ¢l

e Take C whose objects are those of S, while morphisms from @x to
@y are the homeomorphisms f such that @y of < @x. Then

it (0x, Py) = dup(Px, Py ).
e Take C be the PL or C* subcategory. Then

dir(ox. 9v) = dir(ox, @y).
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An application

Use dy7 to compare merge trees: mrg(¢@x) is the Reeb graph of

Bx : epilpx) = {(x,£) EX xR ox(x) <t} 2R, fx(x,t) =t
and is endowed with @x([x,t]) :=t.
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Connection to interleaving distance
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The category hTop/R=

Let hTop/R= be the category with
e objects: topological spaces X endowed with functions ¢x : X — R
e morphisms: 0-homotopy classes of 0-maps between X and Y

e composition of morphisms: the 0-homotopy class of the
composition of 0-maps:

[g](‘PYv‘PZ) © [f]((PX7(PY) = [go f](ﬁox,(l)z)'
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The category hTop/R=

Let hTop/R= be the category with

e objects: topological spaces X endowed with functions ¢x : X - R
e morphisms: 0-homotopy classes of 0-maps between X and Y

e composition of morphisms: the 0-homotopy class of the
composition of 0-maps:

[8lgv-02) © [Fliox.0v) = & ° Fl(ox.02)-
Every @x : X — R defines a functor hT%% : R — hTop/R=:
e For ue R, hT™(u):= (X", 0%);
o For u<veR, hT(u<v):=[ix"]ps.01)-
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0-maps and natural transformations

Let @x, @y be bounded functions and let hT?%, hT%" be the
induced functors.

Lemma
Every map f : X — Y such that ¢y o f < @x induces a natural
transformation

hET  hT9X = hTOY

such that for every u € R.

f_qelY?
heu = fixs log.op)
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0-maps and natural transformations

Let @x, @y be bounded functions and let hT?%, hT%" be the
induced functors.

Lemma
Every map f : X — Y such that ¢y of < @x induces a natural
transformation

hEF TP = hT¥Y

such that for every u € R.

f_qelY?
heu = fixs log.op)

Reciprocally, for every natural transformation h& : hT?X = hT?
there exists a continuous map f : X — Y such that ¢y of < ¢x and,

YU
for every u € R, h§, = [f|‘xu Jog.00)-
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dyT1 as interleaving distance

Top/R<
op/ on functors

Define interleaving distance d,h
hT%%<:R — hTop/R=

following [Bubenik & Scott].
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dyT1 as interleaving distance

Top/R=

Define interleaving distance d,h on functors

hT9 :R — hTop/R*

following [Bubenik & Scott].

Theorem
For every bounded functions @x : X = R, ¢y : Y - R,

drTop/RS(hT(anhT(pY) = dut(0x, Qy).

Corollary

dVe (PM(gx), PM(@y)) < d'ToP/%" (hTox hTov).
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Open questions

e Possible applications: quantify error in passing from a grayscale 3D
image as a cubical complex to its skeleton?

e Utility of subcategories: applications to Frosini's group invariant
persistence?

e Further lifting of stability, i.e. tighter upper bounds for bottleneck
distance?

e Tighter lower bounds for dyr?
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