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Motivation

Definition and stability of dHT

Connection to interleaving distance
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Metrics on functional spaces

Supremum Distance

For ϕX ,ϕ
′
X : X → R,

‖ϕX −ϕ
′
X‖∞ := sup

x∈X
|ϕX (x)−ϕ

′
X (x)|.

Natural Pseudo-Distance
For ϕX : X → R, ϕY : Y → R, X and Y homeomorphic,

dNP(ϕX ,ϕY ) := inf
h∈Homeo(X ,Y )

‖ϕX −ϕY ◦h‖∞.

dNP extends ‖ · ‖∞: for X = Y , dNP(ϕX ,ϕ
′
X )≤ ‖ϕX −ϕ ′X‖∞.

1st Goal:
Extend dNP to the case when X and Y are only homotopy equivalent.
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Lifting stability results

Stability of Persistence (I)

For ϕX ,ϕ
′
X : X → R, dB(dgm(ϕX ),dgm(ϕ ′X ))≤ ‖ϕX −ϕ ′X‖∞.

Stability of Persistence (II)

For ϕX : X → R, ϕY : Y → R, with X homeomorphic to Y ,

dB(dgm(ϕX ),dgm(ϕY ))≤ dNP(ϕX ,ϕY ).

2nd Goal: Stability of Persistence (III)

For ϕX : X → R, ϕY : Y → R, with X homotopy equivalent to Y ,

dB(dgm(ϕX ),dgm(ϕY ))≤ dHT (ϕX ,ϕY )

and, for X ,Y homeomorphic,

dHT (ϕX ,ϕY )≤ dNP(ϕX ,ϕY )
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α-maps and α-homotopies

Let S be the category such that:

• objects are bounded continuous functions ϕX : X → R,

• morphisms from ϕX to ϕY are all continuous maps f : X → Y such
that ϕY ◦ f ≤ ϕX .

Let α ≥ 0. Any f : X → Y such that ϕY ◦ f ≤ ϕX + α is called an
α-map with respect to (ϕX ,ϕY ).

Given two α-maps f1 : X → Y and f2 : X → Y , an α-homotopy
between f1 and f2 with respect to the pair (ϕX ,ϕY ) is a homotopy
that is an α-map at every instant.
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α-homotopy equivalences

ϕX and ϕY are α-homotopy equivalent if there exist α-maps

f : X → Y and g : Y → X

w.r.t. (ϕX ,ϕY ) and (ϕY ,ϕX ) such that:

• g ◦ f : X → X is 2α-homotopic to idX with respect to (ϕX ,ϕX );

• f ◦g : Y → Y is 2α-homotopic to idY with respect to (ϕY ,ϕY ).
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The persistent homotopy type distance

Definition

dHT (ϕX ,ϕY ) := inf
{

α ∈ R : ϕX and ϕY are α-homotopy equivalent
}

Proposition

• dHT is an extended pseudo-metric.

• If X and Y are homeomorphic, then

dHT (ϕX ,ϕY )≤ dNP (ϕX ,ϕY )

.

• X and Y are homotopy equivalent iff dHT (ϕX ,ϕY ) < ∞.
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Comments on the definition of dHT

• What about defining α-homotopies w/out the condition to be an
α-map at each instant?
◦ The stability property would not lift.

• Is it possible to define dHT via a minimum instead of an infimum?
Is dHT only a pseudo-metric or actually a metric?
◦ Examples where the infimum is 0 and it is not attained.

• Is dHT different from dNP?
◦ X contractible, x ∈ X , c ∈ R: dHT ((X ,c),({x},c)) = 0, dNP = ∞.
◦ Cylinder C and strip M twisted of 2π radians: dHT (C ,M) = 1,

dNP((C ,z),(M,z)) = 2.
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Lifting stability results via dHT

Stability Theorem

X ,Y compact polyhedra, ϕX ,ϕY continuous functions.

dB
(
dgm(ϕX ),dgm(ϕY )

)
≤ dHT

(
ϕX ,ϕY

)
.

Idea of the proof

• Any α-homotopy equivalence induces an α-interleaving of q-tame
persistence modules.

• Any α-interleaving of q-tame persistence modules induces a
bottleneck matching with cost ≤ α (Algebraic Stability Theorem).
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Restricting dHT to subcategories

We can restrict dHT to any sub-category C of S closed with respect
to the α-shift functor. Denote it dC

HT .

• Let X be fixed. Take C whose objects are functions ϕ : X → R,
and between any two objects ϕ,ϕ ′ there is at most one morphism,
idX : X → X , then

dC
HT (ϕ,ϕ ′) = ‖ϕ−ϕ

′‖∞.

• Take C whose objects are those of S, while morphisms from ϕX to
ϕY are the homeomorphisms f such that ϕY ◦ f ≤ ϕX . Then

dC
HT (ϕX ,ϕY ) = dNP(ϕX ,ϕY ).

• Take C be the PL or C∞ subcategory. Then

dC
HT (ϕX ,ϕY ) = dS

HT (ϕX ,ϕY ).
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An application

Use dHT to compare merge trees: mrg(ϕX ) is the Reeb graph of

ϕ̄X : epi(ϕX ) = {(x , t) ∈ X ×R : ϕX (x)≤ t}→ R, ϕ̄X (x , t) = t
and is endowed with ϕ̂X ([x , t]) := t.

Thm.
Let dI be Morozov’s interleaving distance for merge trees. Then,
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The category hTop/R≤

Let hTop/R≤ be the category with

• objects: topological spaces X endowed with functions ϕX : X → R
• morphisms: 0-homotopy classes of 0-maps between X and Y

• composition of morphisms: the 0-homotopy class of the
composition of 0-maps:

[g ](ϕY ,ϕZ ) ◦ [f ](ϕX ,ϕY ) = [g ◦ f ](ϕX ,ϕZ ).

Every ϕX : X → R defines a functor hT ϕX : R→ hTop/R≤:

• For u ∈ R, hT ϕX (u) := (X u,ϕu
X );

• For u ≤ v ∈ R, hT ϕX (u ≤ v) := [iu,vX ](ϕu
X ,ϕ

v
X )

.
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0-maps and natural transformations

Let ϕX , ϕY be bounded functions and let hT ϕX , hT ϕY be the
induced functors.

Lemma
Every map f : X → Y such that ϕY ◦ f ≤ ϕX induces a natural
transformation

hξ
f : hT ϕX ⇒ hT ϕY

such that for every u ∈ R.

hξ
f
u = [f

|Y u

|X u ](ϕu
X ,ϕ

u
Y )

Reciprocally, for every natural transformation hξ : hT ϕX ⇒ hT ϕY

there exists a continuous map f : X → Y such that ϕY ◦ f ≤ ϕX and,

for every u ∈ R, hξu = [f
|Y u

|X u ](ϕu
X ,ϕ

u
Y ).
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dHT as interleaving distance

Define interleaving distance d
hTop/R≤
I on functors

hT ϕX : R→ hTop/R≤

following [Bubenik & Scott].

Theorem
For every bounded functions ϕX : X → R, ϕY : Y → R,

d
hTop/R≤
I (hT ϕX ,hT ϕY ) = dHT (ϕX ,ϕY ).

Corollary

dVectF
I (PM(ϕX ),PM(ϕY ))≤ d

hTop/R≤
I (hT ϕX ,hT ϕY ).

16 of 17



dHT as interleaving distance

Define interleaving distance d
hTop/R≤
I on functors

hT ϕX : R→ hTop/R≤

following [Bubenik & Scott].

Theorem
For every bounded functions ϕX : X → R, ϕY : Y → R,

d
hTop/R≤
I (hT ϕX ,hT ϕY ) = dHT (ϕX ,ϕY ).

Corollary

dVectF
I (PM(ϕX ),PM(ϕY ))≤ d

hTop/R≤
I (hT ϕX ,hT ϕY ).

16 of 17



dHT as interleaving distance

Define interleaving distance d
hTop/R≤
I on functors

hT ϕX : R→ hTop/R≤

following [Bubenik & Scott].

Theorem
For every bounded functions ϕX : X → R, ϕY : Y → R,

d
hTop/R≤
I (hT ϕX ,hT ϕY ) = dHT (ϕX ,ϕY ).

Corollary

dVectF
I (PM(ϕX ),PM(ϕY ))≤ d

hTop/R≤
I (hT ϕX ,hT ϕY ).

16 of 17



Open questions

• Possible applications: quantify error in passing from a grayscale 3D
image as a cubical complex to its skeleton?

• Utility of subcategories: applications to Frosini’s group invariant
persistence?

• Further lifting of stability, i.e. tighter upper bounds for bottleneck
distance?

• Tighter lower bounds for dHT ?
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