Interaction energy between vortices of vector fields on Riemannian surfaces

Radu Ignat¹ Robert L. Jerrard ²

¹Université Paul Sabatier, Toulouse ²University of Toronto

May 1 2017.

We consider 3 related problems for vector fields on 2-dimensounal Riemannian manifolds:

Problem 1: Intrinsic

Let (S, g) be a compact 2-dimensional Riemannian manifold. Consider tangent vector fields u, and minimize the *intrinsic* energy

$$I_{\varepsilon}^{in}(u) \; = \; \frac{1}{2} \int_{\mathcal{S}} \left[|Du|_g^2 + \frac{1}{\varepsilon^2} \left| 1 - |u|_g^2 | \right| \right] \; \mathrm{vol}_g.$$

Here

$$|Du|_g^2(x) := |D_{\tau_1}u|_g^2(x) + |D_{\tau_2}u|_g^2(x)$$

where D_V denotes covariant differentiation and $\{\tau_1, \tau_2\}$ are any orthonormal basis for $T_X S$.

Problem 2: extrinsic, tangent vector fields

Let (S,g) be a compact, connected, oriented 2-dimensional Riemannian manifold isometrically embedded in \mathbb{R}^3 . Consider sections m of the tangent bundle of S, and minimize the *extrinsic* energy

$$I_{\varepsilon}^{ex}(m) \; = \; rac{1}{2} \int_{\mathcal{S}} \left[|ar{D}m|^2 + rac{1}{arepsilon^2} \left| 1 - |m|^2
ight|
ight] d\mathcal{H}^2$$

Here $m \in H^1(S; \mathbb{R}^3)$, with

$$m(x) \in T_x S$$
 for every $x \in S$,

and $|\bar{D}m|^2 := |\bar{D}_{ au_1}\bar{m}|^2 + \bar{D}_{ au_2}\bar{m}|^2$, where

- \bar{m} is an extension of m to a neighborhood of S,
- $\{\tau_1(x), \tau_2(x)\}$ form a basis for $T_x S$,
- \bar{D}_V denotes covariant derivative in \mathbb{R}^3 .

well known: $|\bar{D}m|^2$ is independent of the choice of extension \bar{m} .

Problem 3: extrinsic, S² constraint

Let (S,g) be compact a 2-dimensional Riemannian manifold isometrically embedded in \mathbb{R}^3 . Consider maps $M:S\to\mathbb{S}^2$, and minimize

$$I_{\varepsilon}^{S^2}(M) = \frac{1}{2} \int_{S} \left[|\nabla M|^2 + \frac{1}{\varepsilon^2} (M \cdot \nu)^2 \right] d\mathcal{H}^2$$

Here $|\nabla M|^2 := |\tau_1 \cdot \nabla \bar{M}|^2 + |\tau_2 \cdot \nabla \bar{M}|^2$, where \bar{M} is an extension of S to a neighborhood of S and $\{\tau_1(x), \tau_2(x)\}$ form a basis for T_xS . As usual, $|\nabla M|^2$ is independent of the choice of extension \bar{M}

Remark 1: If M = 1 and m denotes the tangential part of M, then

$$(M \cdot \nu)^2 = 1 - |m|^2 = |1 - |m|^2|.$$

Remark 2:

Let $S \subset \mathbb{R}^3$ be a fixed smooth surface isometrically embedded in \mathbb{R}^3 . A curved magnetic shell is considered occupying the domain

$$\Omega_h := \{ x' + sN(x') : s \in (0, h), x' \in S \}.$$

The magnetization $m: \Omega_h \to \mathbb{S}^2$ is a stable state of the energy functional

$$E^{3D}(m) = \varepsilon^2 \int_{\Omega_h} |\nabla m|^2 + \int_{\mathbb{R}^3} |\nabla U|^2 dx,$$

where $U: \mathbb{R}^3 \to \mathbb{R}$ solves the static Maxwell equation

$$\Delta U = \nabla \cdot \left(m \mathbf{1}_{\Omega} \right) \quad \text{in} \quad \mathbb{R}^3.$$

Carbou (2001) shows that $I_{\varepsilon}^{S^2}$ arises as the Γ -limit of E^{3D} with ε fixed and $h \searrow 0$.

This is the original motivation for our study.

example

$$I_{\varepsilon}^{in}(u_{left}) = 0,$$

 $I_{\varepsilon}^{ex}(u_{left}) = 0,$
 $I_{\varepsilon}^{S^2}(u_{left}) = 0,$

$$I_{\varepsilon}^{in}(u_{right}) = 0,$$

 $I_{\varepsilon}^{ex}(u_{right}) > 0,$
 $I_{\varepsilon}^{S^2}(u_{right}) > 0.$

related problems

simplified Ginzburg-Landau on a manifold

(S,g) abstract manifold, $\psi \in H^1(S;\mathbb{C})$,

$$I_{\varepsilon}(\psi) := rac{1}{2} \int_{\mathcal{S}} \left|
abla \psi
ight|^2 + rac{1}{2 arepsilon^2} (1 - |\psi|^2)^2 d \operatorname{vol}_g.$$

See Baraket (1996). (Compare Bethuel-Brezis-Hélein (1994) for Euclidean case)

Ginzburg-Landau on a complex line bundle

 ψ a section of a complex line bundle E over a Riemann surface S. A a connection on E.

$$G_{\varepsilon}(\psi,A):=rac{1}{2}\int_{\mathcal{S}}|D_A\psi|^2+|F_A|^2+rac{1}{2\varepsilon^2}(1-|\psi|^2)^2d\mathcal{H}^2\;.$$

See Orlandi (1996), Qing (1997). (Compare Bethuel-Rivière (1994) for Euclidean case)

Ginzburg-Landau on thin shells

(S,g) isometrically embedded in \mathbb{R}^3 , $\psi \in H^1(S;\mathbb{C})$,

$$I_{\varepsilon}(\psi) := \frac{1}{2} \int_{\mathcal{S}} |(\nabla - i(A^{\mathbf{e}})^{\tau})\psi|^2 + \frac{1}{2\varepsilon^2} (1 - |\psi|^2)^2 d\mathcal{H}^2.$$

See Contreras-Sternberg (2010), Contreras (2011). Related work Alama-Bronsard-Galvao-Sousa (2010, 2013) (Compare Sandier-Serfaty (late 90s) for Euclidean case)

discrete-to-continuum limit

 (\mathcal{S},g) isometrically embedded in \mathbb{R}^3 , $\mathcal{T}_{arepsilon}:=\ arepsilon$ - triangulation of $\mathcal{S},$

$$I_{arepsilon}^{ extit{disc}}(\psi) := rac{1}{2} \sum_{i
eq i \in \mathcal{T}_{arepsilon}} \kappa_{arepsilon}^{ij} |\psi_{arepsilon}(i) - \psi_{arepsilon}(j)|^2,$$

where $\psi_{\varepsilon}(i) \in T_i S$, $|\psi_{\varepsilon}(i)| = 1$ for all i. Canevari-Segatti (2017)

prior results:

- Euler characteristic nonzero \Rightarrow $\lim \inf_{\varepsilon \searrow 0} I_{\varepsilon}^{\square} = +\infty$. Canevari, Segatti, Veneroni (2015), Segatti, Snarski, Veneroni (2016)
- study of variational problem when Euler characteristic = 0. Segatti, Snarski, Veneroni (2016)

New results (Ignat - J 2017)

- For Problems 1-3, canonical unit vector fields and renormalized energy for prescribed singularities and fluxes, as in Bethuel-Brezis-Hélein (1994).
- in every case, "second-order Γ-convergence".
- Extrinsic Problem 2 (tangent constraint) and Problem 3 (S² constraint) with penalization) have essentially the same asymptotics.
- Problem 1 (intrinsic) admits a "lifting" to a linear problem (with topological considerations).
- Problems 2 and 3 seem to be inescapably nonlinear.
- intrinsic canonical harmonic unit vector field provides Coulomb gauge for the more nonlinear Problems 2,3.

general set-up for intrinsic problem

- always assume S is oriented
- can then define $i: TS \rightarrow TS$ such that
 - *i* isometry of $T_x S$ to itself for every x, and
 - $\{v, iv\}$ properly oriented orthonormal basis of T_xS , or every unit $v \in T_xS$.
- given any vector field u, define 1-form j(u) by

$$j(u)(v) = (D_v u, iu)_g$$

define vorticity associated to u by

$$\omega(u) = dj(u) + \kappa \operatorname{vol}_g, \qquad \kappa = \text{Gaussian curvature}.$$

Remark: if u is a smooth unit vector field in an open set O, then $dj(u) = -\kappa \operatorname{vol}_g$ and thus $\omega(u) = 0$ in O.

canonical harmonic unit vector field

Theorem

For any $a_1, \ldots, a_k \in S$ and $d_1, \ldots, d_k \in \mathbb{Z}$ such that $\sum d_k = \chi(S)$, there exists unit vector field u^* in $W^{1,p}$ for all p < 2, such that

$$\omega(u^*) = 2\pi \sum d_i \delta_{a_i}, \qquad d^* j(u^*) = 0.$$

- If g := genus(S) = 0, then u^* is unique up to a global phase.
- If $\mathfrak{g}:=genus(S)>0$, then u^* is unique up to a global phase, once $2\mathfrak{g}$ "flux integrals" $\Phi_\ell,\ell=1,\ldots,2\mathfrak{g}$ are specified.
- Finally, $\mathcal{L}(a, d) := \{admissible \ values \ of (\Phi_1, \dots, \Phi_{2\mathfrak{g}})\}$ are quantized and depend smoothly on $\sum d_i \delta_{a_i}$

(All results: Ignat - J, 2017)

outline of proof

Given a_i , d_i as above

- Find 1-form j* as described below
- ② find unit vector field u^* such that $j(u^*) = j^*$. If genus > 0 need to pay attention to topology.

Construction of j^* . if $j(u^*) = j^*$, then equations for u^* become

$$egin{aligned} dj^* = -\kappa \operatorname{\mathsf{vol}}_g + 2\pi \sum d_i \delta_{\pmb{a}_i}, \qquad d^*j^* = 0 \end{aligned}.$$

In fact

$$\left|j^{*}= extbf{ extit{d}}^{*}\psi^{*}+
ight.$$
 harmonic 1-form, if $\mathfrak{g}>0$ $ight|$

where

$$-\Delta\psi^* = -\kappa\, \mathsf{vol}_{g} + 2\pi \sum extstyle{d}_i \delta_{ extstyle{a}_i}$$

The condition $j^* = j$ (unit vector field) implies constraints on the harmonic 1-form.

Construction of u^* : To solve find u^* such that $j(u^*) = j^*$:

- choose $p \in S$ and $v \in T_pS$, and set $u^*(p) := v$.
- given $q \in S$, consider $\gamma : [0,1] \to S$ with $\gamma(0) = p, \gamma(1) = q$.
- Let $U(s) \in T_{\gamma(s)}S$ solve

$$D_{\gamma'(s)}U(s)=j(\gamma'(s))\ iU(s),\qquad U(0)=v\in T_{p}S.$$

- Define $u^*(q) = U(1)$.
- check that this is well-defined. This determines $\mathcal{L}(a, d)$.

intrinsic renormalized energy

Theorem

Given a_i, d_i as above, let u^* be the canonical harmonic unit vector field with flux integrals $\{\Phi_k\}$ Then

$$\lim_{r \to 0} \left[\int_{S \setminus \cup B(r,a_i)} \frac{1}{2} |Du^*|_g^2 - (\sum d_i^2) \pi \log \frac{1}{r} \right] = W^{in}(a,d,\Phi)$$

where

$$W^{in}(a,d,\Phi) = 4\pi^2 \sum_{l\neq k} d_l d_k G(a_l,a_k) + 2\pi \sum_{k=1}^n \left[\pi d_k^2 H(a_k,a_k) + d_k \psi_0(a_k) \right] + \frac{1}{2} |\Phi|^2 + C_S,$$

where $G(\cdot,\cdot)$ is the Green's function for the Laplacian with regular part $H(\cdot,\cdot)$, and

$$-\Delta\psi_0 = -\kappa + \bar{\kappa}$$

extrinsic renormalized energy

Theorem

Suppose (S, g) is isometrically embedded in \mathbb{R}^3 .

Let a_i , d_i be given such that $\sum d_i = \chi(S)$, and fix $u^* = u^*(a, d, \Phi)$. Suppose that

$$u = e^{i\alpha}u^*$$
 for some $\alpha \in H^1(S; \mathbb{R})$.

Then for the extrinsic Dirichlet energy,

$$\begin{split} W^{\text{ex}}(a,d,\Phi) &:= \lim_{r \to 0} \left[\int_{S \setminus \cup B(r,a_i)} \frac{1}{2} |\bar{D}u|_g^2 - (\sum d_i^2) \pi \log \frac{1}{r} \right] \\ &= W^{in}(a,d,\Phi) + \int_{S} \left(\frac{1}{2} |\nabla \alpha|_g^2 + Q_{u^*}(\cos \alpha, \sin \alpha) \right) \ \textit{vol}_g \end{split}$$

Here

$$Q_{u^*}(\cos \alpha, \sin \alpha) = |A(e^{i\alpha}u^*)|^2, \qquad A = 2$$
nd fundamental form

is an explicit quadratic function of $\cos \alpha$, $\sin \alpha$.

Theorem (Γ-convergence)

1) (Compactness) Let $(u_{\varepsilon})_{{\varepsilon}\downarrow 0}$ be a family of vector fields on S satisfying

$$I_{\varepsilon}^{\square}(u_{\varepsilon}) \leq N\pi |\log \varepsilon| + C, \qquad {}^{\square} = {}^{in}, {}^{ex}, {}^{S^2}.$$

Then there exists a sequence $\varepsilon \downarrow 0$ such that

$$\omega(u_{\varepsilon}) \longrightarrow 2\pi \sum_{k=1}^{n} d_{k} \delta_{a_{k}} \quad in \ W^{-1,1}, \ as \ \varepsilon \to 0,$$

where $\{a_k\}_{k=1}^n$ are distinct points in S and $\{d_k\}_{k=1}^n$ are nonzero integers satisfying $\sum d_k = \chi(S)$ and $\sum |d_k| \leq N$.

Moreover, if $\sum_{k=1}^{n} |d_k| = N$, then n = N, $|d_k| = 1$ for every k = 1, ..., n and for a subsequence, there exists $\Phi \in \mathcal{L}(a, d)$ such that

$$\Phi(u_{\varepsilon}) := \left(\int_{\mathcal{S}} (j(u_{\varepsilon}), \eta_1)_g \operatorname{\textit{vol}}_g, \ldots, \int_{\mathcal{S}} (j(u_{\varepsilon}), \eta_{2\mathfrak{g}})_g \operatorname{\textit{vol}}_g\right) \to \Phi$$

as $\varepsilon \to 0$. (in particular, $n = \chi(S)$ modulo 2).

Theorem (Γ-convergence, continued)

2) (Γ -liminf inequality) Assume that the vector fields $u_{\varepsilon} \in \mathcal{X}^{1,2}(S)$ satisfy

$$\begin{split} &\omega(\textit{\textbf{u}}_\varepsilon) \longrightarrow 2\pi \sum_{k=1}^n \textit{\textbf{d}}_k \delta_{\textit{\textbf{a}}_k} \quad \text{in } \textit{\textbf{W}}^{-1,1}, \; \textit{as } \varepsilon \to 0, \\ &\Phi(\textit{\textbf{u}}_\varepsilon) \to \Phi \in \mathcal{L}(\textit{\textbf{a}},\textit{\textbf{d}}) \end{split} \tag{1}$$

for n distinct points $\{a_k\}_{k=1}^n \in S^n$ with $|d_k| = 1$. Then

$$\liminf_{\varepsilon\to 0} \left[I_\varepsilon^\square(u_\varepsilon) - n\pi |\log \varepsilon| \right) \right] \geq W^\square(a,d,\Phi) + n\gamma_F.$$

3) (Γ -limsup inequality) For every n distinct points $a_1, \ldots, a_n \in S$ and $d_1, \ldots, d_n \in \{\pm 1\}$ satisfying $\sum d_k = \chi(S)$ and every $\Phi \in \mathcal{L}(a, d)$ there exists a sequence of vector fields u_{ε} on S such that (1) holds and

$$I_{\varepsilon}^{\square}(u_{\varepsilon}) - n\pi |\log \varepsilon| \longrightarrow W^{\square}(a, d, \Phi) + n\gamma_F \quad as \ \varepsilon \to 0.$$

Proofs use

- vortex ball construction
- indirect method in the Calculus of Variations: optimality/lower bounds follow (essentially) from equations that characterize u*:

$$\omega(u^*) = dj(u^*) + \kappa \operatorname{vol}_g = 2\pi \sum_{k=1}^n d_k \delta_{a_k}$$

$$d^*j(u) = 0.$$

careful accounting involving flux integrals Φ.

in Euclidean case, derivation of renormalized energy via 2nd-order Γ convergence: Colliander-J 1999, L i n - X i n 1999, Alicandro-Ponsiglione 2014.

"the indirect method"

From elementary algebra,

$$\int_{S_{r_{\varepsilon}}} e_{\varepsilon}^{in}(u_{\varepsilon}) = \int_{S_{r_{\varepsilon}}} \frac{1}{2} |j_{\varepsilon}^{*}|_{g}^{2} + \frac{1}{2} \left| \frac{j(u_{\varepsilon})}{|u_{\varepsilon}|_{g}} - j_{\varepsilon}^{*} \right|_{g}^{2} + 2(j_{\varepsilon}^{*}, \frac{j(u_{\varepsilon})}{|u_{\varepsilon}|_{g}} - j_{\varepsilon}^{*})_{g} + e_{\varepsilon}^{in}(|u_{\varepsilon}|_{g})$$
Here $S_{r_{\varepsilon}} = S \setminus \bigcup B(a_{k,\varepsilon}, r_{\varepsilon})$.

In fact the integrands are pointwise equal.

• In addition, as $\varepsilon \to 0$,

$$\frac{1}{2}\int_{S_{r_{\varepsilon}}}|j_{\varepsilon}^{*}|^{2}\operatorname{vol}=\pi(\sum_{k}d_{k}^{2})\log\frac{1}{r_{\varepsilon}}+W(a^{\varepsilon},d^{\varepsilon},\Phi^{\varepsilon})+O(\sqrt{r_{\varepsilon}})+O(r_{\varepsilon}^{2}|\Phi^{\varepsilon}|^{2}).$$

- So we only need to estimate $\int_{S_{r}} (j_{\varepsilon}^*, \frac{j(u)}{|u|_g} j_{\varepsilon}^*)_g \operatorname{vol}_g$.
- Equations for j_{ε}^* (with vortex ball construction) imply

$$j_{arepsilon}^* = d^*\psi_{arepsilon} + \sum_{k=1}^{2\mathfrak{g}} \Phi_{arepsilon,k} \eta_k$$

 $d(j(u) - j_{\varepsilon}^*)$ is small

what's left of it, after a long day.....

what's left of it, after a long day......

what's left of it, after a long day......