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We consider 3 related problems for vector fields on 2-dimensounal
Riemannian manifolds:

Problem 1: Intrinsic
Let (S,g) be a compact 2-dimensional Riemannian manifold. Consider
tangent vector fields u, and minimize the intrinsic energy

I in
ε (u) =

1
2

∫
S

[
|Du|2g +

1
ε2

∣∣∣1− |u|2g |∣∣∣] volg .

Here
|Du|2g(x) := |Dτ1u|2g(x) + |Dτ2u|2g(x)

where Dv denotes covariant differentiation and {τ1, τ2} are any
orthonormal basis for TxS.
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Problem 2: extrinsic, tangent vector fields
Let (S,g) be a compact, connected, oriented 2-dimensional
Riemannian manifold isometrically embedded in R3. Consider sections
m of the tangent bundle of S, and minimize the extrinsic energy

Iex
ε (m) =

1
2

∫
S

[
|D̄m|2 +

1
ε2

∣∣∣1− |m|2∣∣∣]dH2

Here m ∈ H1(S;R3), with

m(x) ∈ TxS for every x ∈ S,

and |D̄m|2 := |D̄τ1m̄|2 + D̄τ2m̄|2, where
m̄ is an extension of m to a neighborhood of S,
{τ1(x), τ2(x)} form a basis for TxS,
D̄v denotes covariant derivative in R3.

well known: |D̄m|2 is independent of the choice of extension m̄.
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Problem 3: extrinsic, S2 constraint
Let (S,g) be compact a 2-dimensional Riemannian manifold
isometrically embedded in R3. Consider maps M : S → S2, and
minimize

IS2

ε (M) =
1
2

∫
S

[
|∇M|2 +

1
ε2 (M · ν)2

]
dH2

Here |∇M|2 := |τ1 · ∇M̄|2 + |τ2 · ∇M̄|2, where M̄ is an extension of S to
a neighborhood of S and {τ1(x), τ2(x)} form a basis for TxS. As usual,
|∇M|2 is independent of the choice of extension M̄

Remark 1: If M = 1 and m denotes the tangential part of M, then

(M · ν)2 = 1− |m|2 =
∣∣∣1− |m|2∣∣∣.
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Remark 2 :
Let S ⊂ R3 be a fixed smooth surface isometrically embedded in R3.
A curved magnetic shell is considered occupying the domain

Ωh :=
{

x ′ + sN(x ′) : s ∈ (0,h), x ′ ∈ S
}
.

The magnetization m : Ωh → S2 is a stable state of the energy
functional

E3D(m) = ε2
∫

Ωh

|∇m|2 +

∫
R3
|∇U|2 dx ,

where U : R3 → R solves the static Maxwell equation

∆U = ∇ ·
(

m1Ω

)
in R3.

Carbou (2001) shows that IS2

ε arises as the Γ-limit of E3D with ε fixed
and h↘ 0.

This is the original motivation for our study.
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example

I in
ε (uleft ) = 0, I in

ε (uright ) = 0,
Iex
ε (uleft ) = 0, Iex

ε (uright ) > 0,

IS2

ε (uleft ) = 0, IS2

ε (uright ) > 0.
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related problems

simplified Ginzburg-Landau on a manifold

(S,g) abstract manifold, ψ ∈ H1(S;C),

Iε(ψ) :=
1
2

∫
S
|∇ψ|2 +

1
2ε2 (1− |ψ|2)2d volg .

See Baraket (1996). (Compare Bethuel-Brezis-Hélein (1994) for Euclidean case)

Ginzburg-Landau on a complex line bundle
ψ a section of a complex line bundle E over a Riemann surface S.
A a connection on E .

Gε(ψ,A) :=
1
2

∫
S
|DAψ|2 + |FA|2 +

1
2ε2 (1− |ψ|2)2dH2 .

See Orlandi (1996), Qing (1997). (Compare Bethuel-Rivière (1994) for Euclidean case)
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Ginzburg-Landau on thin shells

(S,g) isometrically embedded in R3, ψ ∈ H1(S;C),

Iε(ψ) :=
1
2

∫
S
|(∇− i(Ae)τ )ψ|2 +

1
2ε2 (1− |ψ|2)2dH2 .

See Contreras-Sternberg (2010), Contreras (2011). Related work
Alama-Bronsard-Galvao-Sousa (2010, 2013) (Compare Sandier-Serfaty (late 90s) for

Euclidean case)

discrete-to-continuum limit
(S,g) isometrically embedded in R3, Tε := ε- triangulation of S,

Idisc
ε (ψ) :=

1
2

∑
i 6=j∈Tε

κij
ε|ψε(i)− ψε(j)|2,

where ψε(i) ∈ TiS, |ψε(i)| = 1 for all i . Canevari-Segatti (2017)
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prior results:

Euler characteristic nonzero⇒ lim infε↘0 I�ε = +∞.
Canevari, Segatti, Veneroni (2015), Segatti, Snarski, Veneroni (2016)

study of variational problem when Euler characteristic = 0. Segatti, Snarski,
Veneroni (2016)

New results (Ignat - J 2017)

For Problems 1-3, canonical unit vector fields and renormalized energy
for prescribed singularities and fluxes, as in Bethuel-Brezis-Hélein (1994).

in every case, “second-order Γ-convergence".

Extrinsic Problem 2 (tangent constraint) and Problem 3 (S2 constraint
with penalization) have essentially the same asymptotics.

Problem 1 (intrinsic) admits a “lifting” to a linear problem (with
topological considerations).

Problems 2 and 3 seem to be inescapably nonlinear.

intrinsic canonical harmonic unit vector field provides Coulomb gauge for
the more nonlinear Problems 2,3.
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general set-up for intrinsic problem

always assume S is oriented
can then define i : TS → TS such that

i isometry of TxS to itself for every x , and
{v , iv} properly oriented orthonormal basis of TxS, or every unit
v ∈ TxS.

given any vector field u, define 1-form j(u) by

j(u)(v) = (Dv u, iu)g

define vorticity associated to u by

ω(u) = dj(u) + κ volg , κ = Gaussian curvature.

Remark: if u is a smooth unit vector field in an open set O, then
dj(u) = −κ volg and thus ω(u) = 0 in O.
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canonical harmonic unit vector field

Theorem
For any a1, . . . ,ak ∈ S and d1, . . . ,dk ∈ Z such that

∑
dk = χ(S),

there exists unit vector field u∗ in W 1,p for all p < 2, such that

ω(u∗) = 2π
∑

diδai , d∗j(u∗) = 0.

If g := genus(S) = 0, then u∗ is unique up to a global phase.

If g := genus(S) > 0, then u∗ is unique up to a global phase, once
2g “flux integrals" Φ`, ` = 1, . . . ,2g are specified.

Finally, L(a,d) := {admissible values of (Φ1, . . . ,Φ2g)} are
quantized and depend smoothly on

∑
diδai

(All results: Ignat - J, 2017)
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outline of proof
Given ai ,di as above

1 Find 1-form j∗ as described below
2 find unit vector field u∗ such that j(u∗) = j∗. If genus> 0 need to

pay attention to topology.

Construction of j∗. if j(u∗) = j∗, then equations for u∗ become

dj∗ = −κ volg + 2π
∑

diδai , d∗j∗ = 0 .

In fact
j∗ = d∗ψ∗ + harmonic 1-form, if g > 0

where
−∆ψ∗ = −κ volg + 2π

∑
diδai

The condition j∗ = j(unit vector field) implies constraints on the
harmonic 1-form.
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Construction of u∗: To solve find u∗ such that j(u∗) = j∗:

choose p ∈ S and v ∈ TpS, and set u∗(p) := v .
given q ∈ S, consider γ : [0,1]→ S with γ(0) = p, γ(1) = q.
Let U(s) ∈ Tγ(s)S solve

Dγ′(s)U(s) = j(γ′(s)) iU(s), U(0) = v ∈ TpS.

Define u∗(q) = U(1).
check that this is well-defined. This determines L(a,d).
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intrinsic renormalized energy

Theorem
Given ai ,di as above, let u∗ be the canonical harmonic unit vector field with
flux integrals {Φk} Then

lim
r→0

[∫
S\∪B(r ,ai )

1
2
|Du∗|2g − (

∑
d2

i )π log
1
r

]
= W in(a,d ,Φ)

where

W in(a,d ,Φ) = 4π2
∑
l 6=k

dldk G(al ,ak ) + 2π
n∑

k=1

[
πd2

k H(ak ,ak ) + dkψ0(ak )
]

+
1
2
|Φ|2 + CS ,

where G(·, ·) is the Green’s function for the Laplacian with regular part H(·, ·),
and

−∆ψ0 = −κ+ κ̄
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extrinsic renormalized energy

Theorem
Suppose (S,g) is isometrically embedded in R3.
Let ai ,di be given such that

∑
di = χ(S), and fix u∗ = u∗(a,d ,Φ).

Suppose that
u = eiαu∗ for some α ∈ H1(S;R).

Then for the extrinsic Dirichlet energy,

W ex (a,d ,Φ) := lim
r→0

[∫
S\∪B(r ,ai )

1
2
|D̄u|2g − (

∑
d2

i )π log
1
r

]

= W in(a,d ,Φ) +

∫
S

(
1
2
|∇α|2g + Qu∗(cosα, sinα)

)
volg

Here

Qu∗(cosα, sinα) = |A(eiαu∗)|2, A = 2nd fundamental form

is an explicit quadratic function of cosα, sinα.
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Theorem (Γ-convergence)

1) (Compactness) Let (uε)ε↓0 be a family of vector fields on S satisfying

I�ε (uε) ≤ Nπ| log ε|+ C, � = in, ex , S2
.

Then there exists a sequence ε ↓ 0 such that

ω(uε) −→ 2π
n∑

k=1

dkδak in W−1,1, as ε→ 0,

where {ak}n
k=1 are distinct points in S and {dk}n

k=1 are nonzero integers
satisfying

∑
dk = χ(S) and

∑
|dk | ≤ N.

Moreover, if
∑n

k=1 |dk | = N, then n = N, |dk | = 1 for every k = 1, . . . ,n
and for a subsequence, there exists Φ ∈ L(a,d) such that

Φ(uε) :=

(∫
S

(j(uε), η1)g volg , . . . ,
∫

S
(j(uε), η2g)g volg

)
→ Φ

as ε→ 0. (in particular, n = χ(S) modulo 2).
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Theorem (Γ-convergence, continued)

2) (Γ-liminf inequality) Assume that the vector fields uε ∈ X 1,2(S) satisfy

ω(uε) −→ 2π
n∑

k=1

dkδak in W−1,1, as ε→ 0,

Φ(uε)→ Φ ∈ L(a,d)

(1)

for n distinct points {ak}n
k=1 ∈ Sn with |dk | = 1. Then

lim inf
ε→0

[
I�ε (uε)− nπ| log ε|)

]
≥ W�(a,d ,Φ) + nγF .

3) (Γ-limsup inequality) For every n distinct points a1, . . . ,an ∈ S and
d1, . . . ,dn ∈ {±1} satisfying

∑
dk = χ(S) and every Φ ∈ L(a,d) there

exists a sequence of vector fields uε on S such that (1) holds and

I�ε (uε)− nπ| log ε| −→W�(a,d ,Φ) + nγF as ε→ 0.
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Proofs use

vortex ball construction
indirect method in the Calculus of Variations: optimality/lower
bounds follow (essentially) from equations that characterize u∗:

ω(u∗) = dj(u∗) + κ volg = 2π
n∑

k=1

dkδak

d∗j(u) = 0.

careful accounting involving flux integrals Φ.

in Euclidean case, derivation of renormalized energy via 2nd-order Γ

convergence: Colliander-J 1999, L i n - X i n 1999, Alicandro-Ponsiglione
2014.
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“the indirect method"

From elementary algebra,∫
Srε

ein
ε (uε) =

∫
Srε

1
2
|j∗ε |2g +

1
2

∣∣∣∣ j(uε)|uε|g
− j∗ε

∣∣∣∣2
g

+ 2(j∗ε ,
j(uε)
|uε|g

− j∗ε )g + ein
ε (|uε|g)

Here Srε = S \ ∪B(ak,ε, rε).
In fact the integrands are pointwise equal.

In addition, as ε→ 0,
1
2

∫
Srε

|j∗ε |2 vol = π(
∑

k

d2
k ) log

1
rε

+ W (aε,dε,Φε) + O(
√

rε) + O(r2
ε |Φε|2).

So we only need to estimate
∫

Srε
(j∗ε ,

j(u)
|u|g − j∗ε )g volg .

Equations for j∗ε (with vortex ball construction) imply

j∗ε = d∗ψε +

2g∑
k=1

Φε,kηk

d(j(u)− j∗ε ) is small
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thank you for your attention!
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thank you for your attention!

what’s left of it, after a long day......
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