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We consider 3 related problems for vector fields on 2-dimensounal
Riemannian manifolds:

Problem 1: Intrinsic

Let (S, g) be a compact 2-dimensional Riemannian manifold. Consider
tangent vector fields u, and minimize the intrinsic energy

: 1 1
I"u) = 2/3 [|Duy§+€2]1 - yu\g\” volg.

Here
|Dul5(x) = |Dr ul5(x) + | Drul5(x)

where D, denotes covariant differentiation and {1, 2} are any
orthonormal basis for T,S.
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Problem 2: extrinsic, tangent vector fields

Let (S, g) be a compact, connected, oriented 2-dimensional
Riemannian manifold isometrically embedded in R3. Consider sections
m of the tangent bundle of S, and minimize the extrinsic energy

1 [z 1
1#(m) = 2/5 [|Dm|2+62’1 —|m]2” aH?

Here m € H'(S;R3), with
m(x) € TxS for every x € S,
and |Dm? .= |D,,m|? + D,,m[?, where
@ mis an extension of m to a neighborhood of S,

@ {11(x), m2(x)} form a basis for TS,
@ D, denotes covariant derivative in R3.

well known: |Dm|? is independent of the choice of extension m.
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Problem 3: extrinsic, S? constraint

Let (S, g) be compact a 2-dimensional Riemannian manifold
isometrically embedded in R3. Consider maps M : S — S?, and
minimize .

’
15°(M) = 2/8[’VM’2+€2(M'V)2 dH?

Here [VM|? := |71 - VM2 + |12 - VM|?, where M is an extension of S to
a neighborhood of S and {r(x), 72(x)} form a basis for T, S. As usual,
|VM|? is independent of the choice of extension M

Remark 1: If M = 1 and m denotes the tangential part of M, then

(M-v2=1—|mp = )1 - |m]2‘.
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Remark 2 :
Let S C R? be a fixed smooth surface isometrically embedded in R3.
A curved magnetic shell is considered occupying the domain

Qp:={xX' +sN(x') : s€(0,h), X' € S}.

The magnetization m : Q, — S? is a stable state of the energy
functional

EP(m)=¢2 | |Vmf? +/ VU2 dx,
Qp R3
where U : R® — R solves the static Maxwell equation

AU:V-<m1Q> in RS,

Carbou (2001) shows that li_:82 arises as the I'-limit of £3P with ¢ fixed
and h 0.

This is the original motivation for our study.
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example
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I (Uert) = 0, lén(uright) =0,
IZ(uerr) = 0, I (Urignt) > 0,
le’;sz(uleff) = Oa lfz(uright) > 0.
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related problems

simplified Ginzburg-Landau on a manifold
(S, g) abstract manifold, ¢» € H'(S; C),

1 1
k() = Z/SIWJ!ZJF 521 []?)2d volg .

See Baraket (1996). (Compare Bethuel-Brezis-Hélein (1994) for Euclidean case)

v

Ginzburg-Landau on a complex line bundle

1 a section of a complex line bundle E over a Riemann surface S.
A a connection on E.

1 1
Gu(1A) = 5 [[IDAVE +1Fal® + (1 = 0Pl

See Orlandi (1996), Qing (1997). (Compare Bethuel-Riviére (1994) for Euclidean case)

v
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Ginzburg-Landau on thin shells
(S, g) isometrically embedded in R3, ¢ € H'(S;C),

1 1
/ — _ — (A8 2., 1 2\2 2 )
(6) =5 LIV = AR + gz (1 = [0 P
See Contreras-Sternberg (2010), Contreras (2011). Related work

Alama-Bronsard-Galvao-Sousa (2010, 2013) (Compare Sandier-Serfaty (late 90s) for

Euclidean case)

discrete-to-continuum limit
(S, g) isometrically embedded in R®, 7. := - triangulation of S,

| \

- 1 _— .
12159 (4p) =3 > wl(i) = ()P,

i#jE€Te

where (i) € T;S, |1c(i)| = 1 for all i. Canevari-Segatti (2017)

N
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prior results:

@ Euler characteristic nonzero = liminf.\ o P = +oo.
Canevari, Segatti, Veneroni (2015), Segatti, Snarski, Veneroni (2016)

@ study of variational problem when Euler characteristic = 0. Segatti, Snarski,
Veneroni (2016)

§

New results (Ignat - J 2017)

@ For Problems 1-3, canonical unit vector fields and renormalized energy
for prescribed singularities and fluxes, as in Bethuel-Brezis-Hélein (1994).

@ in every case, “second-order I'-convergence".

@ Extrinsic Problem 2 (tangent constraint) and Problem 3 (S? constraint
with penalization) have essentially the same asymptotics.

¢

@ Problem 1 (intrinsic) admits a “lifting” to a linear problem (with
topological considerations).

@ Problems 2 and 3 seem to be inescapably nonlinear.

@ intrinsic canonical harmonic unit vector field provides Coulomb gauge for
the more nonlinear Problems 2,3.
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general set-up for intrinsic problem

@ always assume S is oriented
@ can then define i : TS — TS such that

e iisometry of TS to itself for every x, and
o {v,iv} properly oriented orthonormal basis of TS, or every unit
v e T,S.

@ given any vector field u, define 1-form j(u) by
j(u)(v) = (Dyu, iu)g
@ define vorticity associated to u by
w(u) = dj(u) + xvolg, x = Gaussian curvature.

Remark: if u is a smooth unit vector field in an open set O, then
dj(u) = —rvolg and thus w(u) =0in O.
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canonical harmonic unit vector field

Forany ay,...,ax € Sandd,,...,dx € Z such that ) dx = x(S),
there exists unit vector field u* in W'-P for all p < 2, such that

wu*) =21y dds,  dY(ur)=0.

@ Ifg = genus(S) = 0, then u* is unique up to a global phase.

@ Ifg:= genus(S) > 0, then u* is unique up to a global phase, once
2g “flux integrals" ®,,¢ = 1,...,2g are specified.

@ Finally, L(a, d) := {admissible values of (¥, ..., ®s,)} are
quantized and depend smoothly on )" d;d,,

(All results: Ignat - J, 2017)
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outline of proof

Given a;, d; as above
@ Find 1-form j* as described below

@ find unit vector field u* such that j(u*) = j*. If genus> 0 need to
pay attention to topology.

Construction of j*. if j(u*) = j*, then equations for u* become

df* = —kVolg + 21 Y dida, d** =0\

In fact

j* = d*¢¥* + harmonic 1-form, if g > 0‘

where

—AY* = —kvolg + 27 Z dida,

The condition j* = j(unit vector field) implies constraints on the

harmonic 1-form.
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Construction of u*: To solve find u* such that j(u*) = j*:

@ choose pc Sand v € T,S, and set u*(p) := v.
@ given g € S, consider v : [0,1] — S with v(0) = p,v(1) = q.
@ Let U(s) € TS solve

DyU(s) =j(v(s)) iU(s),  U(0)=v e TpS.

@ Define u*(q) = U(1).
@ check that this is well-defined. This determines L(a, d).
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intrinsic renormalized energy

Given a;, d; as above, let u* be the canonical harmonic unit vector field with
flux integrals {®«} Then

lim
r—0

1 1 .
210U 2 = (S " dP)rlog — | = Win(a, d, &
Lo omay 31015~ ) g,] (2.d,9)

where
' n
W"(a,d,®) = 47 Z didkG(ay, ax) + 271’2 [ﬂ'd,%H(ak, ag) + dk1/10(ak)]
Ik k=1
1 2
+ 507+ Cs,

where G(-, ) is the Green’s function for the Laplacian with regular part H(-,-),
and

—Awo =—K+kK
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extrinsic renormalized energy

Suppose (S, g) is isometrically embedded in R3.

Let a;, d; be given such that > d; = x(S), and fix u* = u*(a, d, ).
Suppose that

u=e°u for some a € H'(S; R).
Then for the extrinsic Dirichlet energy,

W®(a,d,®) := lim / —Du d?)rlo
( ) HO[ S\uB(a 2 |Duls — Z g ]

_ Win(a7 d, )+ /S (%|VO&2 + Qu(cos a, sin a)) VOIg

W
Here

Qu-(cos a,sina) = |A(e"“u*)?, A = 2nd fundamental form

is an explicit quadratic function of cos «, sin a.
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Theorem (I'-convergence)
1) (Compactness) Let (u.)-j0 be a family of vector fields on S satisfying
O _ in ex Szl

IP(u.) < Nr|loge| + C, = U e

Then there exists a sequence ¢ | 0 such that

n
w(u:) — 27Tzdk5ak in W1 as e —0,
k=1

where {ax}y_, are distinct points in S and {dx};_, are nonzero integers

satisfying > dk = x(S) and }_ |dk| < N.

Moreover, if >p_, |dk| = N, thenn= N, |dx| =1 foreveryk =1,...,n

and for a subsequence, there exists ¢ € L(a, d) such that

O(ue) = (/S(/(ue),m)g VO/g,...7/S(j(uE),nzg)g vo/g) = o

as e — 0. (in particular, n = x(S) modulo 2).

16/21
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Theorem (I'-convergence, continued)

2) (T-liminf inequality) Assume that the vector fields u. € X'2(S) satisfy

n
w(u:) — 27TZd;¢5ak in W, as e >0, )
k=1

d(u.) —» ¢ € L(a,d)

for n distinct points {ax}7_, € S” with |dx| = 1. Then

lim inf [IE(UE)—nﬂ logel)| > W2(a, d, )+ ne.
E=

3) (T-limsup inequality) For every n distinct points ay, . ..,a, € S and
di,...,d, € {£1} satisfying > dix = x(S) and every ® € L(a,d) there
exists a sequence of vector fields u. on S such that (1) holds and

IP(u.) — nr|loge| — WS(a,d,®) +nyr  as e — 0.
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Proofs use

@ vortex ball construction

@ indirect method in the Calculus of Variations: optimality/lower
bounds follow (essentially) from equations that characterize u*:

n
w(u*) = dj(u*) + kvolg = 21 Y ~ dkda,
k=1
d*j(u) = 0.

@ careful accounting involving flux integrals .
in Euclidean case, derivation of renormalized energy via 2nd-order I

convergence: Colliander-d 1999, Lin-Xin 1999, Alicandro-Ponsiglione
2014.
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“the indirect method"

@ From elementary algebra,

[ erwr= [ 3irses

Here S, = S\ UB(ax.,:).
In fact the integrands are pointwise equal.

1(U‘|E) _jg (* j( )

B)

—J5)g + €l(luclg)

|Uelg

@ In addition, as ¢ — 0,

1 . 1 e e
5 [ lPvol = 730 d)log - + W(a, o, %) + OVE) + O ).
re k €

@ So we only need to estimate fs U, W — J2)g volg.

@ Equations for j* (with vortex ball construction) imply
2g

= d*% + Z cl>e,k"7k

k=1
d(j(u) —j) issmall
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thank you for your attention!
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thank you for your attention!

what's left of it,
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