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Introduction

Nematic liquid crystals are states of matter between a liquid and
a solid. Their molecules tend to align.

Axis of Anisotropy

Nematic
Liquid Crystal




The Frank energy models nematic liquid crystals using a
vector field n(x)

G(n,Vn) = /Q[Kl(div n)® + Ky(n - curl n)?

+ Ksn x curl nf* + Ky(tr (Vn)? — (div n)?)]



De Gennes modeled nematic liquid crystals using () tensors:

Rx) €Sy ={Q eR**?: Q=Q"and tr Q = 0}.



o If () in Sy has eigenvectors uy, us, ug with eigenvalues
Alg)\gg)\g, )\1+)\2—|—)\3:O

e {u3, —us} is the most probable line of alignment.

e {u;, —u,} is the least probable line of alignment.



e () is isotropic if and only if A3 = Ay = A; and this holds
if and only if the \; =0 (Q = 0).

e () is uniaxial if exactly two eigenvalues are equal.

e () is biaxial if all eigenvalues are distinct.



The Landau-de Gennes energy has the form:

F(Q) = / £.(Q(), VQ() + fo(Q(x)]dx

for @ C R? or R and Q in H'(Q2) with values in
So:={Q € R>3: Q = Q" and tr Q = 0}.



This energy can have minimizers with defects




For the bulk energy density in

WweE assuline

e /1(Q) =0
e f,(RQR") = f,(Q) for all R € O(3)
e Typically f,(Q)) = 0 only at a set of uniaxial states.

e An example is:

fu(@) = a tr(Q7) - %b tr(Q) + g(ztr(QQ))2 +d

for certain constants a,b,c,d.



In this case

75(0) = 18(0) = arr(@) — 3 1r(@°) + 5 (1r(QP) +0

: 2 2b : 3 C s 1IN
=a(L A7) - S(EA) +5 (LAY +o.

=1

Indeed, taking b.c = 0, a < %2?, and an appropriate choice of 0, we have ff =0

and f}(Q) = 0if and only if Q € A, where s = -L(b+ /b” — 24ac).

Here

A, ={0€#: Q=s(m@m— 1I) for some m € 5°



A typical elastic energy density f, is:

ZS)(VQ) = [1Qij2,Qije, + L2Qij o, Qik .y
+  L3Qija, Qik,z,

with
D 1 1
L1—|—§L2+6L3>O, L1—§L3>O, Li+L;>0
or
(0. 90) = fDYO) L Licr OO
ld (Qa Q) — ld ( Q) + 45lkalekz,:1:j

+L5Q11Qijz, Qijoo,

where e4; is the Levi-Civita tensor.



Limitations of the Landau-de Gennes energy:

e Connection between () and the statistics of local orientational
order is suggestive.

e F is well posed for a limited class of f.(Q,V(@Q): Ball and Majumdar
have shown that if Ls # 0. minimizers for the Dirichlet problem do not
exist, since the Landau-de Gennes energy among admissible functions
is not bounded below.

But minimizers do exist if we replace the bulk energy term with a
singular Maier-Saupe potential.

e This is the problem we study here.



Maier-Saupe Theory and Constrained Minimizers

e Consider () € 5y of the form
1
1 Q=] (P®p— I)p(p)dp
S2

where

pe LNEHR) 102 0.p(p) = p(—p). | plp) dp =1

e Note only certain () can be written this way, since (1) implies

1 2
—gégQﬁégﬁﬁﬁég

wINo

so that —2 < A\ <Ay < A3 <



1

(1) Q= S2(p<§§>p—§1)p(p)dp

For @ € Sp let A\1(Q) < A2(Q) < A3(Q) denote its eigenvalues.
LetM:{Q€SQZ)\i€(—%,§) fOI'lSZSS}

Then M is an open, bounded, and convex subset of Sj.

One can show:

If () € M then it can be represented as in (1).
If () € OM a representation requires a singular measure.

If Q € Sy \ M then there is no representation.



The Maier-Saupe (bulk) potential f,, is defined as:

fms(Q) = f(Q) = K|Q + by for Q € M,
=| +oo for Q € S\ M

where £(Q) = inf [ p(p)n(p(p))dp.

PEAQ

and Ag :={ peL'(S*R) :pZO,/ p(p) dp =1,
S2

Q= | (@3 Do(p)dp)



This was studied by: Katriel, Kventsel, Luckhurst, and Sluckin;
Ball and Majumdar. They proved that f is well defined and has
the properties:

f is convex and Ql_l)%le(Q) = +o00.

Zarnescu proved that f € C°(M).

We assume without loss of generality that

bo = —ggj&{f(@) — k|Q|*} and hence min f,,, = 0.



Minimizers of Landau-de (Gennes energies
with Maier-Saupe-type bulk term

For the Maier-Saupe bulk energy f;, as above, consider minimizers of

F(Q) = / £.(Q(x), VQX)) + f(Q(x)))dx

for Q € Ay ={Q € H*(Q; M) : Q = Qp on 90}

e Assume that F(Q) < oo for some Q € Aj.

e Note that since QliranM fp(Q) = 400 the energy distinguishes” nonphysical”
%

states Q(x) € OM .



Prior Results [for Minimizers in Ay):

F(Q) = / £.(Q(X), VQX)) + H(Q(x))]dx
for Q € Ay ={Q € HY(Q; M) : Q = Qp on 90}

For  C R, Ball and Majumdar (2010) showed:

e For f, satisfying appropriate coercivity conditions (including the
Ls # 0), minimizers exist.

e Physicality result: If f.(Q,VQ) = K|VQ|?, and if Q) is smooth a
valued in a compact subset of M, then minimizers are smooth
M-—valued. In particular () satisfies its equilibrium equation thrc
out 2.




For 2 C R™, n > 2, Evans, Knuess, and Tran (2016) showed:

o If F = [,[f(Q(x), VQ(x)) + fo(Q(x))]dx is quasi-convex

then minimizers have partial regularity and are M—valued
except in a closed set )y of measure zero.

o If f. = f.(VQ), convex, and f;, satisfies a growth condition
then HP(Qp) =0 for p > n — 2.



Our Main Results:

Consider the energy with ”Maier-Saupe-type” bulk term

F(Q) = / £.(QX), VQX)) + f(Q(x)))dx

with Q) C R2.



Assume that f.(Q, D) is continuous on M x D and there are
constants 0 < o < ay < 00, 0 < My < My < oo so that

(*) OélfD‘Q — M; < fe(QaD) < @2‘D’2 + M,

and

H(Q) = f(Q) — K|Q|* + by for Q € M

with x > 0,
and f is convex and smooth on M with f(Q) — oo as  — OM.




We take boundary conditions:

Q = Qo € C*"'(0Q; M) such that fo(Qo)ds < 0.
o9

Recall
Ao ={Q € H'(4; M): Q = Qo on 00}.

One can show that there exists Q € Ag so that F(Q) < oo.



Under these assumptions we prove:

Theorem 1. Let (Q be a minimizer for F in Ag. Then Q € C?(Q)
for some o > 0.

This result applies to a large class of examples in which
the elastic energy f. is a ” Landau-de Gennes elastic energy.”



In Maiter-Saupe theory the set
ANQ) = {xe:Qx) oM}
= {xe: \(Qx)) e [—% %] for 1 <j<3and

AilQ(x)) € {—%,;} for some 1 € {1,2,3}}

corresponds to locations where perfect nematic order oceurs and this 1s in-

terpreted as not physical.



In Maiter-Saupe theory the set
ANQ) = {xe:Qx) oM}
= {xe: \(Qx)) e [—é %] for 1 < 7 < 3 and

l.:'
A(Q(x)) € {—%,é} for some ¢z € {1,2,3}}

corresponds to locations where perfect nematic order oceurs and this s in-

terpreted as not physical.

Corollary 1. Let () be a minimizer for F in Ag. Since ) is Holder
continuous in €2, A(Q) is a closed subset of measure zero.



From our proof of Theorem 1 (local estimates) we have:

Corollary 2. Assume f, = fis(Q. D) and fi; satisfies our assumptions.
Then:

If B is a disk contained in £), a finite energy local minimizer () €

HY(B; M) for F satisfies Q € C*(B\ A(Q)).

Remark. We can also prove that if B is a ball centered at a boundary point
of Q such that BN A(Q) = 0, then @ is as smooth in B,(0) N as 02 and
Qo allows.

In particular, if B N oQ is of class C*° and Qo € CH*(B N 0N) for some
k>2and 0 <a<1,then Q € C**(B,(0) N Q).




Applications to Landau-de Gennes Elastic Energies

Let f.(Q,D) = fua(Q, D) where fy; is a polynomial in @Q;; and D,y
that is SO(3) invariant.

Example 1. f. = fu(Q,D) = e(;)(D) satisfying

(*) a1|D]? — M; < f.(Q, D) < ay|D|* + Ms.
In this case recall

l(dl)(VQ) = 11Qij2,Qija, + L2Qijz; Qik .z,
+  L3Qij 2, Qik,a;-

Longa showed (*) holds iff the elasticity constants satisfy

5] 1 1
L1—|‘§L2—|—6L3>0,L1—§L3>O,L1—|—L3>O.



Remark: If f, = f;; and (%) holds then there exist minimizers
for F in A,.
[Ball-Majumdar].

Example 2:

D0, vQ) = fVQ) + Licu; QuQuie, + LsQuiQijurs Qi

where €, is the Levi-Civita tensor. There are conditions
on Ly, ..., Ly so that (x) holds as well.



We also prove the following physicality result.
Theorem 3 Let ) be a finite energy local minimizer for F(-; B) for a
ball B C ) where

f(Q.VQ) = Li|\VQ|" + Lygi;Qui, Qi x,
+  Ls Qe Qijxy; Qijxy-

and L, — Ls g if L. >0,
3 )
2L5 ,

Then A(Q) N B = 0 and we have Q € C*(B).




Theorem 3 generalizes the physicality result of Ball and Majumdar for
() a domain in R?, f,(VQ) = L; |[VQI?, and Qg valued in a compact subset
of M, stating that in this case, minimizers @) in Ag are in C'*°(€2) and have

AQ) = 0.




Why include L57

Consider the example:

DQ,vQ) = fVQ) + LsQuQijy Qi

For constants Ly, ..., L5 so that (x) holds.



Consider

F(@) = [ 7/(Q). V) + 5 (Q0)ix

where £,(Q) = fs(Q) — £|QJ? + by for Q € M.

e For k large enough Fatkullin and Slastikov showed:
{fo(Q) =0} =W, :={Q = s(n®n — 3I) for some n € S}

for some s > 0.

e Suppose that Qg C W,. Then for 0 < ¢ << 1, away from defects,

minimizers (x) should be close to Wi.



If locally Q(x) = s(n(x) @ n(x) — £1), then

e(c:z)))(Q, VQ) = K (divn)?+ Ky(n-curl n)’
+ Ksn x curl nf® + (K, + Ky)(tr (Vn)? — (div n)?)

where

1

Li = o(Ks— K+ 3Ky),
S
1

Ly = ?(Kl—Kg—K4),
1

L3 — _2K47
S
1

L5 — 2—83<K3—K1)

Need L5 # 0 to have K3 # K;.



Results in Three-Dimensional Domains

Using some of our methods of proof in 2 dimensions, we extend Ball
and Majumdar’s results to minimizers and local minimizers defined
on a domain {2 C R".



We prove:

Let K C R™ be an open, bounded, convex set where m > 1.
Consider f: KX — R given as f(p) = f(p) — &|p|* where & = 0, f = 0,

f e C*(K) and convex such that lim _f(p) = cc.
p—+OK

Theorem 4 Let 2 be a domain in B" forn > 1, v = 0, and let u(x) €
H(£2;K) be a local minimizer for

Fy(w) = fﬂ IVl + f(w)] dx

such that Fi(u) < oco. Then u(2) C K, u e C*(£2), and u is a solution to
2y Au(x) = Dy f(u(x)) in 2.
Furthermore if 812 is of class C%7 for some 0 < o < 1 and u takes on

boundary values u = ug € C7(92;K), then u(f2) cc K and it follows that
ueC7(K).



Corollary 3. Let D) be a bounded domain in B* and let Q € H(D; M) be a
local minimizer for F(V;D) = [,[Li|VV [ + fy(V)]dx such that F(Q; D) <
0. Then @ € C*(D), Q{ }EM for each x € D and

2L1AQ(x) = [Dofs(Q(x))]"" in D.




Corollary 4. Assume D C R® is a bounded domain with a C*7 boundary and
Qo € H”E(ED M) Co(AD; M) for some 0 < o < 1. If Q 1s a minimizer
for F(V;D) = [[La|VV[* + fi(V)]dx in HY(D; M) subject to Q = Qo on

dD then Q[D} cC M and Q€ C°(D; M).




Remarks on our methods of proof:



Remarks on the proof of Theorem 1: B
Let @) be a minimizer for F in Ag. Then Q) € C?(§2) for some o > 0.

Idea of proof: Given () we need comparison functions in Sy valued
in M. Fix B,(xq) C Q. Let Q" € H'(Q;Sy) so that

Q" = QnQ\B,.
AQ;; = 0in B, for each i, j

Note that by the maximum principle
Q" =Q™" and tr Q" =0, so Q" € S,.

since these hold in Q\ B,.



Next
/\1(@) = minﬁth, )\S(Q) — Igé%g(thga

£€s?

For each ¢ these are linear expressions for the @);;,
gfzﬁngg(X)
Thus by the maximum principle

inf A\ (Q(y)) < inf \(Q"(y)),

yeaBr yeB,
sup A3(Q"(y)) < sup A3(Q(y)),
yEB, y€OB;,

implying Q" (x) € M.



We can compare () and (), on B,.

F(Q; B,) < F(Q; By)

Thus
/HVQPH“ <O/ VQ,|? + f(Q,)] + Br?

By



f is convex and @, is harmonic. Thus f(Q,) is subharmonic. So

[ rei<g [ s@=5[ 1.

OB,

From elliptic estimates
| 9. < ClIQIp 20,

This means we can estimate

r

[ U9+ @) < €U, 5 [ @)



This means we can estimate

| I9QuP + (@) < CUIIEsomy + 5 | £(Q)
B, OB,
Given 5 <r < % these estimates imply that

/B VQP+ @) <  C / L Iver+ s

+ 0182



Next we fill the hole:

(1+0) / IVQP+ Q) < C / IVQP + £(Q)]
Bs/2 Bs
+ 0182

This leads to

f IVOP + £,(Q)] < 1 f IVQP + £,(Q)]
Bs/2 BS
+ O}

where

C

— <1
F= o1




Iterating this we find

/B IVQP + Q)] < Cop™

P

for some 0 < o < 1.

This implies
|@Ql]coxy < Cs for K CC Q



Ideas in proof of Theorem 3: If f, = f\7) then A(Q)(NQ = 0.

where
e(;%Qa VQ) = Li|VQ* + Ls Que Qijry Qijiy-
where
Ll—%>0 it Ly > 0,
2L
Li+2=>0 if Ly < 0.

3



Suppose that xq € M (2. We know

/ IVQP + /(Q)] < Cop™
BP(XO)

for some 0 < o < 1.

Here our elastic energy density has the form

(4

gd) = (L1 + LaQui) Qijwy Qijay.-

Because of this we can use elliptic replacements rather than
just harmonic replacements to get finer estimates and prove
the estimate above for any o < 1.



This leads to

—ur’? < — /BT(XO) fr(Q)dx + r(% - MT")/ fr(Q)ds

0B (x0)

Setting o = % we get

—rTa < (7“_2(1 + 2Mfr3/4)8/3/

By (x0)

fb(Q)dx)'.

Thus
7“_2/ H(Q)dx < C  for0<r <.

Br(x0)

Since lim f,(Q(x)) = oo this is a contradiction.
X—X(0



The 3-d result follows by showing:

Let £ C R™ be an open, bounded, convex set where m = 1.
Consider f: K — R given as f{p} f(p) — &|p|* where & = 0, f = 0

f e C*(K) and convex such that lim _f(p) = cc.
p—+OK

Theorem 4 Let 2 be a domain in B" forn > 1, v = 0, and let u(x) €
H(£2;K) be a local minimizer for

Fl(w}=ﬁ?[’:rl?w|?+f(w}] dx

such that Fi(u) < oco. Then u(2) C K, u e C*(£2), and u is a solution to
2y Au(x) = Dy f(u(x)) in 2.
Furthermore if 812 is of class C%7 for some 0 < o < 1 and u takes on

boundary values u = ug € C7(92;K), then u(f2) cc K and it follows that
ue C7 (2K



Corollary 4. Assume D C R® is a bounded domain with a C*7 boundary and
Qo € H”E(ED M) Co(AD; M) for some 0 < o < 1. If Q 1s a minimizer
for F(V;D) = [[La|VV[* + fi(V)]dx in HY(D; M) subject to Q = Qo on

dD then Q[D} cC M and Q€ C°(D; M).
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