Cohomological invariants of G-Galois algebras

Eva Bayer-Fluckiger

EPFL

June 20, 2017

Hendrik LENSTRA (1987) :

Let k be a field, and let K/k be a Galois extension of finite degree. Set G = Gal(K/k).

Hendrik LENSTRA (1987) :

Let k be a field, and let K/k be a Galois extension of finite degree. Set G = Gal(K/k).

Let $(ge)_{g\in G}$ be a normal basis of K/k, for some $e \in K^{\times}$. Let

Hendrik LENSTRA (1987) :

Let k be a field, and let K/k be a Galois extension of finite degree. Set G = Gal(K/k).

Let $(ge)_{g\in G}$ be a normal basis of K/k, for some $e \in K^{\times}$. Let

 $q_K : K \times K \to k$

 $q_{\mathcal{K}}(x,y) = \operatorname{Tr}_{\mathcal{K}/k}(xy)$

Hendrik LENSTRA (1987) :

Let k be a field, and let K/k be a Galois extension of finite degree. Set G = Gal(K/k).

Let $(ge)_{g\in G}$ be a normal basis of K/k, for some $e \in K^{\times}$. Let

 $q_K : K \times K \to k$

$$q_{K}(x,y) = \mathrm{Tr}_{K/k}(xy)$$

be the trace form of K/k.

We say that $(ge)_{g \in G}$ is a self-dual normal basis of K/k if for all $g, h \in G$ we have

We say that $(ge)_{g \in G}$ is a self-dual normal basis of K/k if for all $g, h \in G$ we have

$$q_K(ge, ge) = 1$$

and

$$q_{\mathcal{K}}(ge, he) = 0$$
 if $g \neq h$.

ABELIAN EXTENSIONS

Theorem. (Lenstra) Assume that G is abelian.

• $\operatorname{char}(k) \neq 2$. Then K/k has a self-dual normal basis \iff the order of G is odd.

ABELIAN EXTENSIONS

Theorem. (Lenstra) Assume that G is abelian.

• $\operatorname{char}(k) \neq 2$. Then K/k has a self-dual normal basis \iff the order of G is odd.

• char(k) = 2. Then K/k has a self-dual normal basis $\iff G$ has no element of order 4.

NON ABELIAN EXTENSIONS

G non abelian ?? In particular,

NON ABELIAN EXTENSIONS

G non abelian ?? In particular,

G has odd order $\implies K/k$ has a self-dual normal basis ??

NON ABELIAN EXTENSIONS

G non abelian ?? In particular,

G has odd order $\implies K/k$ has a self-dual normal basis ??

Theorem. (E.B - Lenstra, 1990, 1989)

If the order of G is odd, then K/k has a self-dual normal basis.

CHARACTERISTIC 2

Theorem. (Serre, 2014) Assume that char(k) = 2. Then K/k has a self-dual normal basis $\iff G$ is generated by elements of odd order and elements of order 2.

CHARACTERISTIC 2

Theorem. (Serre, 2014) Assume that char(k) = 2. Then K/k has a self-dual normal basis $\iff G$ is generated by elements of odd order and elements of order 2.

Only depends of the group G , and not of the extension K/k !

EXAMPLE

Example. (E.B. - Serre 1994) $k = \mathbf{Q}$, $G = A_4$. There exist Galois extensions with and without self-dual normal basis.

EXAMPLE

Example. (E.B. - Serre 1994) $k = \mathbf{Q}$, $G = A_4$. There exist Galois extensions with and without self-dual normal basis.

E.B. - Serre 1994 : necessary and sufficient conditions for the existence of a self-dual normal basis when the 2-Sylow subgroups are elementary abelian, or quaternionian of order 8.

EXAMPLE

Example. (E.B. - Serre 1994) $k = \mathbf{Q}$, $G = A_4$. There exist Galois extensions with and without self-dual normal basis.

E.B. - Serre 1994 : necessary and sufficient conditions for the existence of a self-dual normal basis when the 2-Sylow subgroups are elementary abelian, or quaternionian of order 8.

The conditions involve cohomological invariants.

Assume from now on that $char(k) \neq 2$. Let G be a finite group.

Assume from now on that $char(k) \neq 2$. Let G be a finite group.

Instead of only Galois extensions, consider more generally G-Galois algebras :

Assume from now on that $char(k) \neq 2$. Let G be a finite group.

Instead of only Galois extensions, consider more generally G-Galois algebras :

- étale k-algebra L of finite rank,
- with a (left) action of G such that $L \simeq k[G]$.

Assume from now on that $char(k) \neq 2$. Let G be a finite group.

Instead of only Galois extensions, consider more generally G-Galois algebras :

- étale k-algebra L of finite rank,
- with a (left) action of G such that $L \simeq k[G]$.

Examples.

- Galois extension with group G;
- Split G-Galois algebra $k \times \cdots \times k$.

 k_s : a separable closure of k, $\Gamma_k = \text{Gal}(k_s/k)$.

G-Galois algebra \rightarrow continuous homomorphism $\phi: \Gamma_k \rightarrow G$.

 k_s : a separable closure of k, $\Gamma_k = \text{Gal}(k_s/k)$.

G-Galois algebra \rightarrow continuous homomorphism $\phi: \Gamma_k \rightarrow G$.

Examples.

- ϕ surjective \iff Galois extension;
- $\phi = 1 \iff$ split *G*-Galois algebra.

L a G-Galois algebra,

L a G-Galois algebra,

 $q_L: L \times L \to k$

$$q_L(x,y) = \mathrm{Tr}_{L/k}(xy)$$

L a G-Galois algebra,

$$q_L: L \times L \to k$$

$$q_L(x,y) = \mathrm{Tr}_{L/k}(xy)$$

the trace form of L. We say that $(ge)_{g \in G}$ is a self-dual normal basis of L over k if for all $g, h \in G$ we have

$$q_L(ge, ge) = 1$$

and

$$q_L(ge, he) = 0$$
 if $g \neq h$.

Theorem. (E.B - Lenstra, 1990, 1989)

If the order of G is odd, then every G - Galois algebra has a self-dual normal basis.

Theorem. (E.B - Lenstra, 1990, 1989)

If the order of G is odd, then every G - Galois algebra has a self-dual normal basis.

G abelian - Lenstra's result does not hold in general for G-Galois algebras, only for Galois extensions.

Theorem. (E.B - Lenstra, 1990, 1989)

If the order of G is odd, then every G - Galois algebra has a self-dual normal basis.

G abelian - Lenstra's result does not hold in general for G-Galois algebras, only for Galois extensions.

Question : Necessary and sufficient condition for the existence of self-dual normal bases.

Theorem. (E.B - Lenstra, 1990, 1989)

If the order of G is odd, then every G - Galois algebra has a self-dual normal basis.

G abelian - Lenstra's result does not hold in general for G-Galois algebras, only for Galois extensions.

Question : Necessary and sufficient condition for the existence of self-dual normal bases.

Open even for *G* abelian.

COHOMOLOGICAL INVARIANTS

 Γ a (finite or profinite) group, set $H^n(\Gamma) = H^n(\Gamma, \mathbb{Z}/2\mathbb{Z})$.

COHOMOLOGICAL INVARIANTS

 Γ a (finite or profinite) group, set $H^n(\Gamma) = H^n(\Gamma, \mathbb{Z}/2\mathbb{Z})$.

 $H^n(k) = H^n(\Gamma_k).$

COHOMOLOGICAL INVARIANTS

 Γ a (finite or profinite) group, set $H^n(\Gamma) = H^n(\Gamma, \mathbb{Z}/2\mathbb{Z})$.

 $H^n(k) = H^n(\Gamma_k).$

Cohomological invariants :

L a G-Galois algebra, corresponding to

$$\phi: \Gamma_k \to G.$$

We obtain

$$\phi^*: H^n(\mathbf{G}) \to H^n(\mathbf{k})$$

*H*¹-INVARIANTS

L a *G*-Galois algebra, $\phi : \Gamma_k \to G$.

$$\phi^*: H^1(\mathcal{G}) o H^1(k)$$

 $x \mapsto x_l$

*H*¹-INVARIANTS

L a *G*-Galois algebra, $\phi : \Gamma_k \to G$.

$$\phi^*: H^1(\mathsf{G}) \to H^1(\mathsf{k})$$
$$x \mapsto x_L$$

Proposition. *L* has a self-dual normal basis $\implies x_L = 0$ for all $x \in H^1(G)$.

*H*¹-INVARIANTS

L a *G*-Galois algebra, $\phi : \Gamma_k \to G$.

$$\phi^*: H^1(\mathsf{G}) \to H^1(\mathsf{k})$$

 $x \mapsto x_L$

Proposition. *L* has a self-dual normal basis $\implies x_L = 0$ for all $x \in H^1(G)$.

H^1 -CONDITION :

$$x_L = 0$$
 for all $x \in H^1(G)$.

H¹-CONDITION

 $x_L = 0$ for all $x \in H^1(G)$.

Theorem. (E.B. - Serre, 1994) : Assume that $cd_2(k) \leq 1$. Then

L has a self-dual normal basis \iff the H^1 -condition holds.

H¹-CONDITION

 $x_L = 0$ for all $x \in H^1(G)$.

Theorem. (E.B. - Serre, 1994) : Assume that $cd_2(k) \leq 1$. Then

L has a self-dual normal basis \iff the H^1 -condition holds.

E.B. - Parimala : Define H^2 -invariants, H^2 -condition.

H¹-CONDITION

 $x_L = 0$ for all $x \in H^1(G)$.

Theorem. (E.B. - Serre, 1994) : Assume that $cd_2(k) \leq 1$. Then

L has a self-dual normal basis \iff the H^1 -condition holds.

E.B. - Parimala : Define H^2 -invariants, H^2 -condition.

Theorem. (E.B. - Parimala, 2017) : Assume that $cd_2(k) \le 2$.

L has a self-dual normal basis \iff the H^1 -condition holds and the H^2 -condition holds.

COHOMOLOGICAL REFORMULATION

 $\sigma: k[G] \rightarrow k[G]$ the canonical involution of k[G],

$$\sigma(g) = g^{-1}$$
 for all $g \in G$.

 U_G : linear algebraic group

$$U_{G}(E) = \{x \in E[G] \mid x\sigma(x) = 1\}$$

for all commutative k-algebras E.

L a G-Galois algebra

 $\Gamma_k \longrightarrow G \rightarrow U_G(k_s)$

 $u(L) \in H^1(k, U_G).$

COHOMOLOGICAL REFORMULATION

 $u(L) \in H^1(k, U_G).$

L has a self-dual normal basis $\iff u(L) = 0$.

 $U_G = ?$

k[G]/(radical) = product of simple algebras, stable or exchanged by σ .

A simple algebra, $\sigma(A) = A$.

• $\sigma \mid$ (center of A) = identity.

Then A is either orthogonal or symplectic. Set E_A = center of A.

COHOMOLOGICAL REFORMULATION

• $\sigma \mid$ (center of A) \neq identity.

Then A is unitary. Set F_A = center of A, and let E_A be the fixed field of σ in F_A .

In both cases, U_A is a linear algebraic group over E_A .

$$H^1(k, U_G) = \prod_A H^1(E_A, U_A)$$

 $u(L) \mapsto (u_A(L)).$

STRATEGY

L a G-Galois algebra, $\phi : \Gamma_k \to G$.

• Assume that the H^1 -condition holds. This implies $\phi(\Gamma_k) \subset G^2$. Set

$$H = \phi(\Gamma_k).$$

- Define *H*²-invariants, as follows :
- For each orthogonal and unitary factor A, define $e_A \in H^2(H)$.
- Apply $\phi^* : H^2(H) \to H^2(k)$.

A an orthogonal factor, U_A .

A an orthogonal factor, U_A .

 U_A^0 : connected component of the identity, \tilde{U}_A : Spin group,

$$1 \to C_2 \to \tilde{U}_A \stackrel{s}{\to} U^0_A \to 1.$$

A an orthogonal factor, U_A .

 U^0_A : connected component of the identity, $ilde{U}_A$: Spin group,

$$1 \to C_2 \to \tilde{U}_A \stackrel{s}{\to} U^0_A \to 1.$$

L a *G*-Galois algebra, $\phi : \Gamma_k \to G$. Assume H^1 -condition. Set

 $\boldsymbol{H}=\phi(\boldsymbol{\Gamma}_k).$

Define

 $e_A \in H^2(H)$

$$V_{A} = \tilde{U}_{A}(E_{A}) \times_{U_{A}^{0}(E_{A})} H,$$

central extension

$$1 \to C_2 \to \mathbf{V}_{\mathbf{A}} \to \mathbf{H} \to 1,$$

gives

 $e_A \in H^2(H).$

 $\phi^*: H^2(H) \to H^2(k)$. Set

$$c_{\mathcal{A}}(L) = \phi^*(e_{\mathcal{A}}) \in H^2(k).$$

Invariant of L, not necessarily of the trace form q_L .

 $\phi^*: H^2(H) \to H^2(k)$. Set

$$c_{\mathcal{A}}(L) = \phi^*(e_{\mathcal{A}}) \in H^2(k).$$

Invariant of L, not necessarily of the trace form q_L .

Clifford invariant of q_L at A:

 $\operatorname{clif}_A(q_A) \in \operatorname{Br}_2(E_A)/ < A > .$

 $\phi^*: H^2(H) \to H^2(k)$. Set

$$c_{\mathcal{A}}(L) = \phi^*(e_{\mathcal{A}}) \in H^2(k).$$

Invariant of L, not necessarily of the trace form q_L .

Clifford invariant of q_L at A:

$$\operatorname{clif}_A(q_A) \in \operatorname{Br}_2(E_A)/\langle A \rangle$$
.

$${\it Res}_{{\it E}_A/k}: {\it H}^2(k)
ightarrow {\it H}^2({\it E}_A) \simeq {
m Br}_2({\it E}_A)$$

 $\phi^*: H^2(H) \to H^2(k)$. Set

$$c_{\mathcal{A}}(L) = \phi^*(e_{\mathcal{A}}) \in H^2(k).$$

Invariant of L, not necessarily of the trace form q_L .

Clifford invariant of q_L at A:

$$\operatorname{clif}_A(q_A) \in \operatorname{Br}_2(E_A)/ < A > .$$

$${\it Res}_{{\it E}_A/k}: {\it H}^2(k)
ightarrow {\it H}^2({\it E}_A) \simeq {
m Br}_2({\it E}_A)$$

Theorem. The image of $c_A(L)$ in $\operatorname{Br}_2(E_A)/\langle A \rangle$ is $clif_A(q_A)$.

$$\operatorname{Res}_{E_A/k}: H^2(k) \to H^2(E_A) \simeq \operatorname{Br}_2(E_A)$$

Theorem. The image of $c_A(L)$ in $Br_2(E_A)/\langle A \rangle$ is $clif_A(q_A)$.

$$\operatorname{\mathsf{Res}}_{\operatorname{\mathsf{E}}_A/k}: \operatorname{\mathsf{H}}^2(k) o \operatorname{\mathsf{H}}^2(\operatorname{\mathsf{E}}_A) \simeq \operatorname{Br}_2(\operatorname{\mathsf{E}}_A)$$

Theorem. The image of $c_A(L)$ in $\operatorname{Br}_2(E_A)/\langle A \rangle$ is $clif_A(q_A)$.

L has self-dual normal basis \implies

 $\operatorname{Res}_{E_A/k}(c_A(L)) = 0$ in $\operatorname{Br}_2(E_A)/\langle A \rangle$.

A a unitary factor, F_A : center of A.

```
A a unitary factor, F_A: center of A.

F_A^1 = \{x \in F_A^{\times} | x\sigma(x) = 1\},\

s : F_A^1 \to F_A^1

x \mapsto x^2.
```

A a unitary factor, F_A : center of A. $F_A^1 = \{x \in F_A^{\times} | x\sigma(x) = 1\},\$ $s : F_A^1 \to F_A^1$ $x \mapsto x^2$

L a *G*-Galois algebra, $\phi : \Gamma_k \to G$. Assume H^1 -condition. Set

 $\boldsymbol{H}=\phi(\boldsymbol{\Gamma}_k).$

Define

 $e_A \in H^2(H)$

$$V_{A} = F_{A}^{1} \times_{F_{A}^{1}} H,$$

central extension

$$1 \to C_2 \to \mathbf{V}_{\mathbf{A}} \to \mathbf{H} \to 1,$$

gives

 $e_A \in H^2(H).$

$$d_{\mathcal{A}}(L) = \phi^*(e_{\mathcal{A}}) \in H^2(k).$$

Invariant of L, not necessarily of the trace form q_L .

$$d_{\mathcal{A}}(L) = \phi^*(e_{\mathcal{A}}) \in H^2(k).$$

Invariant of L, not necessarily of the trace form q_L .

$$Res_{E_A/k}(d_A(L)) = disc_A(q_L) \in H^2(E_A).$$

$$d_{\mathcal{A}}(L) = \phi^*(e_{\mathcal{A}}) \in H^2(k).$$

Invariant of L, not necessarily of the trace form q_L .

$$\operatorname{Res}_{E_A/k}(d_A(L)) = \operatorname{disc}_A(q_L) \in H^2(E_A).$$

L has self-dual normal basis \implies

 $Res_{E_A/k}(d_A(L)) = 0.$

H²-CONDITION

 $Res_{E_A/k}(c_A(L)) = 0$ in $Br_2(E_A)/\langle A \rangle$ for all orthogonal A,

and

 $Res_{E_A/k}(d_A(L)) = 0$ for all unitary A.

H²-CONDITION

 $Res_{E_A/k}(c_A(L)) = 0$ in $Br_2(E_A)/ < A >$ for all orthogonal A,

and

 $Res_{E_A/k}(d_A(L)) = 0$ for all unitary A.

L has self-dual normal basis \implies H^2 -condition hold.

Theorem. (E.B. - Parimala, 2017) : Assume that $cd_2(k) \le 2$.

L has a self-dual normal basis \iff the H^1 -condition holds and the H^2 -condition holds. **Theorem.** (E.B. - Parimala, 2017) : Assume that $cd_2(k) \le 2$.

L has a self-dual normal basis \iff the H^1 -condition holds and the H^2 -condition holds.

Theorem. (E.B. - Parimala, 2017) : If G is abelian, then

L has a self-dual normal basis \iff the H^1 -condition holds and the H^2 -condition holds. (i) L has a self-dual normal basis;

(ii) $x_L = 0$ for all $x \in H^n(G)$, all n > 0.

- (i) L has a self-dual normal basis;
- (ii) $x_L = 0$ for all $x \in H^n(G)$, all n > 0.
- If $cd_2(k) \leq 1$, we have (i) \iff (ii).

- (i) *L* has a self-dual normal basis;
- (ii) $x_L = 0$ for all $x \in H^n(G)$, all n > 0.
- If $cd_2(k) \leq 1$, we have (i) \iff (ii).
- If $cd_2(k) \leq 2$, there are examples with (i) but not (ii).

(i) L has a self-dual normal basis;

(ii) $x_L = 0$ for all $x \in H^n(G)$, all n > 0.

- If $cd_2(k) \leq 1$, we have (i) \iff (ii).
- If $cd_2(k) \leq 2$, there are examples with (i) but not (ii).
- If $cd_2(k) \leq 3$, there are examples with (ii) but not (i),

G quaternionian of order 8.

Invariant in $H^3(k)$, not x_L .

COHOMOLOGICAL DIMENSION 2

Assume that $\operatorname{cd}_2(k) \leq 2$.

 $x_L = 0$ for all $x \in H^1(G)$ and for all $x \in H^2(H) \implies L$ has a self-dual normal basis.

COHOMOLOGICAL DIMENSION 2

Assume that $\operatorname{cd}_2(k) \leq 2$.

 $x_L = 0$ for all $x \in H^1(G)$ and for all $x \in H^2(H) \implies L$ has a self-dual normal basis.

Question. $x_L = 0$ for all $x \in H^1(G)$ and for all $x \in H^2(G) \implies L$ has a self-dual normal basis ?

COHOMOLOGICAL DIMENSION 2

Assume that $\operatorname{cd}_2(k) \leq 2$.

 $x_L = 0$ for all $x \in H^1(G)$ and for all $x \in H^2(H) \implies L$ has a self-dual normal basis.

Question. $x_L = 0$ for all $x \in H^1(G)$ and for all $x \in H^2(G) \implies L$ has a self-dual normal basis ?

Theorem. (E.B. - Serre, 1994) $H^1(G) = H^2(G) = 0 \implies L$ has a self-dual normal basis.

EXAMPLE

 $G = C_8$ cyclic group of order 8,

k does not contain the 4th roots of unity.

 $A = k[X]/(X^4 + 1)$ unitary, $F_A = A$, $E_A = k(\sqrt{2})$.

 $G = C_8$ cyclic group of order 8,

k does not contain the 4th roots of unity.

$$A = k[X]/(X^4 + 1)$$
 unitary, $F_A = A$, $E_A = k(\sqrt{2})$.

 $L = \operatorname{Ind}_{C_2}^{C_8}(K)$, with K/k quadratic extension; $K = k(\sqrt{z})$.

 $G = C_8$ cyclic group of order 8,

k does not contain the 4th roots of unity.

$$A = k[X]/(X^4 + 1)$$
 unitary, $F_A = A$, $E_A = k(\sqrt{2})$.

 $L = \text{Ind}_{C_2}^{C_8}(K)$, with K/k quadratic extension; $K = k(\sqrt{z})$.

 $d_A(L) = (z)(-1) \in H^2(k), Res_{E_A/k}(d_A(L)) = (z)(-1) \in H^2(E_A).$

 $G = C_8$ cyclic group of order 8,

k does not contain the 4th roots of unity.

$$A = k[X]/(X^4 + 1)$$
 unitary, $F_A = A$, $E_A = k(\sqrt{2})$.

 $L = \text{Ind}_{C_2}^{C_8}(K)$, with K/k quadratic extension; $K = k(\sqrt{z})$.

 $d_A(L) = (z)(-1) \in H^2(k), Res_{E_A/k}(d_A(L)) = (z)(-1) \in H^2(E_A).$

 $G = C_8$ cyclic group of order 8,

k does not contain the 4th roots of unity.

$$A = k[X]/(X^4 + 1)$$
 unitary, $F_A = A$, $E_A = k(\sqrt{2})$.

 $L = \text{Ind}_{C_2}^{C_8}(K)$, with K/k quadratic extension; $K = k(\sqrt{z})$.

$$d_A(L) = (z)(-1) \in H^2(k), Res_{E_A/k}(d_A(L)) = (z)(-1) \in H^2(E_A).$$

 $d_A(L) = 0 \iff z$ is a sum of two squares in k,

 $\operatorname{Res}_{E_A/k}(d_A(L)) = 0 \iff z \text{ is a sum of two squares in } E_A = k(\sqrt{2}).$

L has a self-dual normal basis $\iff z$ is a sum of two squares in $k(\sqrt{2})$.

 $G = C_8$ cyclic group of order 8,

k does not contain the 4th roots of unity.

 $A = k[X]/(X^4 + 1)$ unitary, $F_A = A$, $E_A = k(\sqrt{2})$.

 $G = C_8$ cyclic group of order 8,

k does not contain the 4th roots of unity.

$$oldsymbol{A}=k[X]/(X^4+1)$$
 unitary, $F_{oldsymbol{A}}=A,~E_{oldsymbol{A}}=k(\sqrt{2}).$

 $L = \text{Ind}_{C_4}^{C_8}(K)$, with K/k cyclic extension of degree 4.

 $G = C_8$ cyclic group of order 8, k does not contain the 4th roots of unity. $A = k[X]/(X^4 + 1)$ unitary, $F_A = A$, $E_A = k(\sqrt{2})$. $L = \text{Ind}_{C_4}^{C_8}(K)$, with K/k cyclic extension of degree 4. $a, b, c, \epsilon \in k$ with $a^2 - b^2 \epsilon = c^2 \epsilon$, $c \neq 0$, ϵ not a square. $x = \sqrt{\epsilon}$, $K = k(\sqrt{a + bx})$.

 $G = C_8$ cyclic group of order 8, k does not contain the 4th roots of unity. $A = k[X]/(X^4 + 1)$ unitary, $F_A = A$, $E_A = k(\sqrt{2})$. $L = \operatorname{Ind}_{C_4}^{C_8}(K)$, with K/k cyclic extension of degree 4. a, b, c, $\epsilon \in k$ with $a^2 - b^2 \epsilon = c^2 \epsilon$, $c \neq 0$, ϵ not a square. $x = \sqrt{\epsilon}$. $K = k(\sqrt{a + bx})$.

 $d_A(L) = (-1)(a) + (2)(\epsilon), \operatorname{Res}_{E_A/k}(d_A(L)) = \operatorname{Res}_{k(\sqrt{2})/k}((-1)(a)).$

 $G = C_8$ cyclic group of order 8, k does not contain the 4th roots of unity. $A = k[X]/(X^4 + 1)$ unitary, $F_A = A$, $E_A = k(\sqrt{2})$. $L = \text{Ind}_{C_{k}}^{C_{k}}(K)$, with K/k cyclic extension of degree 4. a, b, c, $\epsilon \in k$ with $a^2 - b^2 \epsilon = c^2 \epsilon$, $c \neq 0$, ϵ not a square. $x = \sqrt{\epsilon}$. $K = k(\sqrt{a + bx})$.

 $d_{A}(L) = (-1)(a) + (2)(\epsilon), \operatorname{Res}_{E_{A}/k}(d_{A}(L)) = \operatorname{Res}_{k(\sqrt{2})/k}((-1)(a)).$

L has a self-dual normal basis $\iff a$ is a sum of two squares in $k(\sqrt{2})$.

LOCAL FIELDS

Assume that k is a local field.

L has a self-dual normal basis \iff the H^1 -condition holds, and

(i) For all orthogonal A such that $[E_A : k]$ is odd and A is split, we have $c_A(L) = 0$ in $Br_2(k)$.

(ii) For all unitary A such that $[E_A : k]$ is odd, we have $d_A(L) = 0$ in $Br_2(k)$.

GLOBAL FIELDS

E.B - Parimala - Serre (2013) : The Hasse principle holds for the existence of self-dual normal bases.

Thank you