FORMALITY NOTIONS FOR SPACES AND GROUPS

Alex Suciu

Northeastern University

Workshop on Nilpotent Fundamental Groups

Banff International Research Station

June 22, 2017

FORMALITY NOTIONS

COMMUTATIVE DIFFERENTIAL GRADED ALGEBRAS

- Let A = (A[•], d) be a commutative, differential graded algebra over a field k of characteristic 0.
 - $A = \bigoplus_{i \ge 0} A^i$, where A^i are k-vector spaces.
 - The multiplication $\therefore A^i \otimes A^j \rightarrow A^{i+j}$ is graded-commutative, i.e., $ab = (-1)^{|a||b|} ba$ for all homogeneous *a* and *b*.
 - The differential d: $A^i \rightarrow A^{i+1}$ satisfies the graded Leibnitz rule, i.e., $d(ab) = d(a)b + (-1)^{|a|}ad(b).$
- The cohomology *H*•(*A*) of the cochain complex (*A*, d) inherits an algebra structure from *A*.
- A cdga morphism φ: A → B is both an algebra map and a cochain map. Hence, φ induces a morphism φ*: H•(A) → H•(B).
- The map φ is a quasi-isomorphism if φ* is an isomorphism. Likewise, φ is a q-quasi-isomorphism (for some q ≥ 1) if φ* is an isomorphism in degrees ≤ q and is injective in degree q + 1.

FORMALITY OF CDGAS

- Two cdgas, A and B, are weakly (q-)equivalent (≃q) if there is a zig-zag of (q-)quasi-isomorphisms connecting A to B.
- (Sullivan 1977) A cdga (A, d) is *formal* (or just *q*-*formal*) if it is (*q*-)weakly equivalent to (*H*•(A), *d* = 0).
- Formality implies uniform vanishing of all Massey products.
- E.g., if *A* is 1-formal, then all triple Massey products in $H^2(A)$ must vanish modulo indeterminancy: if $a, b, c \in H^1(A)$, and ab = bc = 0, then $\langle a, b, c \rangle = 0$ in $H^{\bullet}(A)/(a, c)$.
- (Halperin–Stasheff 1979) Let K/k be a field extension. A k-cdga
 (A, d) with H[•](A) of finite-type is formal if and only if the K-cdga
 (A ⊗ K, d ⊗ id_K) is formal.
- (S.-He Wang 2015) Suppose dim H^{≤q+1}(A) < ∞ and H⁰(A) = k. Then (A, d) is *q*-formal iff (A ⊗ K, d ⊗ id_K) is *q*-formal.

ALGEBRAIC MODELS FOR SPACES

- To a large extent, the rational homotopy type of a space can be reconstructed from algebraic models associated to it.
- If the space is a smooth manifold *M*, the standard ℝ-model is the de Rham algebra Ω_{dR}(*M*).
- More generally, any (path-connected) space X has an associated Sullivan Q-cdga, A_{PL}(X). In particular, H[●](A_{PL}(X)) = H[●](X, Q).
- An algebraic (q-)model (over k) for X is a k-cgda (A, d) which is (q-) weakly equivalent to A_{PL}(X) ⊗_Q k.
- For instance, every smooth, quasi-projective variety X admits a finite-dimensional, rational model $A = A(\overline{X}, D)$, constructed by Morgan from a normal-crossings compactification $\overline{X} = X \cup D$.

FORMALITY OF SPACES

- A space X is (q-)formal if $A_{PL}(X)$ has this property, i.e., $(H^{\bullet}(X, \mathbb{Q}), d = 0)$ is a (q-)model for X.
- Spheres, Lie groups and their classifying spaces, homogeneous spaces G/K with rkG = rkK, and K(π, n)'s with n ≥ 2 are formal.
- Formality is preserved under (finite) direct products and wedges of spaces, as well as connected sums of manifolds.
- The 1-formality property of X depends only on $\pi_1(X)$.
- (Macinic 2010) If X is a q-formal CW-complex of dimension at most q + 1, then X is formal.
- A Koszul algebra is a graded k-algebra such that Tor^A_s(k, k)_t = 0 for all s ≠ t.
- (Papadima–Yuzvinsky 1999) Suppose H[●](X, k) is a Koszul algebra. Then X is formal if and only if X is 1-formal.

ALEX SUCIU (NORTHEASTERN)

FORMALITY NOTIONS

GEOMETRY AND FORMALITY

- (Stasheff 1983) Let X be a k-connected CW-complex of dimension n. If n ≤ 3k + 1, then X is formal.
- (Miller 1979) If *M* is a closed, *k*-connected manifold of dimension $n \le 4k + 2$, then *M* is formal. In particular, all simply-connected, closed manifolds of dimension at most 6 are formal.
- (Fernández–Muñoz 2004) There exist closed, simply-connected, non-formal manifolds of dimension 7.
- (Deligne–Griffiths–Morgan–Sullivan 1975) All compact Kähler manifolds are formal.
- (Papadima–S. 2015) If *M* is a compact Sasakian manifold of dimension 2*n* + 1, then *M* is (2*n* 1)-formal.

PURITY IMPLIES FORMALITY

- (Morgan 1978) Let X be a smooth, quasi-projective variety. If *W*₁*H*¹(X, ℂ) = 0, then X is 1-formal.
- (Dupont 2016) More generally, suppose either
 - $H^k(X)$ is pure of weight k, for all $k \leq q + 1$, or
 - $H^k(X)$ is pure of weight 2k, for all $k \leq q$.

Then X is q-formal.

- In particular, complements of hypersurfaces in CPⁿ are 1-formal. Thus, complements of plane algebraic curves are formal.
- Complements of linear and toric arrangements are formal, but complements of elliptic arrangements may be non-1-formal.

RESONANCE VARIETIES OF A CDGA

- Assume the cdga (A, d) is connected, i.e., A⁰ = k, and of finite-type, i.e., dim Aⁱ < ∞ for all i ≥ 0.
- For each $a \in Z^1(A) \cong H^1(A)$, we have a cochain complex,

$$(A^{\bullet}, \delta_a): A^0 \xrightarrow{\delta_a^0} A^1 \xrightarrow{\delta_a^1} A^2 \xrightarrow{\delta_a^2} \cdots,$$

with differentials $\delta_a^i(u) = a \cdot u + d u$, for all $u \in A^i$.

- The resonance varieties of (A, d) are the sets $\mathcal{R}^{i}(A) = \{a \in H^{1}(A) \mid H^{i}(A^{\bullet}, \delta_{a}) \neq 0\}.$
- An element a ∈ H¹(A) belongs to Rⁱ(A) if and only if rank δⁱ⁺¹_a + rank δⁱ_a < b_i(A).

• If d = 0, then the resonance varieties of *A* are homogeneous.

COHOMOLOGY JUMP LOCI OF SPACES

- The resonance varieties of a connected, finite-type CW-complex X are the subsets Rⁱ(X) := Rⁱ(H[●](X, C), d = 0) of H¹(X, C).
- The variety $\mathcal{R}^1(X)$ depends only on the group $G = \pi_1(X)$; in fact, only on the second nilpotent quotient $G/\gamma_3(G)$.
- The *characteristic varieties* of *X* are the Zariski closed sets of the character group of *G* given by

$$\mathcal{V}^{i}(\boldsymbol{X}) = \{ \rho \in \operatorname{Hom}(\boldsymbol{G}, \mathbb{C}^{*}) \mid \boldsymbol{H}^{i}(\boldsymbol{X}, \mathbb{C}_{\rho}) \neq \boldsymbol{0} \}.$$

- The variety $\mathcal{V}^1(X)$ depends only on the group $G = \pi_1(X)$; in fact, only on the second derived quotient G/G''.
- Given any subvariety W ⊂ (C*)ⁿ, there is a finitely presented group G such that G_{ab} = Zⁿ and V¹(G) = W.

THE TANGENT CONE THEOREM

• (Libgober 2002, Dimca-Papadima-S. 2009)

 $au_1(\mathcal{V}^i(X)) \subseteq \mathsf{TC}_1(\mathcal{V}^i(X)) \subseteq \mathcal{R}^i(X).$

• Here, if $W \subset (\mathbb{C}^*)^n$ is an algebraic subset, then

 $\tau_1(W) := \{ z \in \mathbb{C}^n \mid \exp(\lambda z) \in W, \text{ for all } \lambda \in \mathbb{C} \}$

is a finite union of rationally defined linear subspaces of \mathbb{C}^n .

• (DPS 2009/DP 2014) If X is q-formal, then, for all $i \leq q$,

 $\tau_1(\mathcal{V}^i(\boldsymbol{X})) = \mathsf{TC}_1(\mathcal{W}^i(\boldsymbol{X})) = \mathcal{R}^i(\boldsymbol{X}).$

• This theorem yields a very efficient formality test.

FORMALITY NOTIONS

EXAMPLE

Let $G = \langle x_1, x_2 | [x_1, [x_1, x_2]] \rangle$. Then $\mathcal{V}^1(\pi) = \{t_1 = 1\}$, and so $\mathsf{TC}_1(\mathcal{V}^1(\pi)) = \{x_1 = 0\}$. But $\mathcal{R}^1(\pi) = \mathbb{C}^2$, and so π is not 1-formal.

EXAMPLE

Let $G = \langle x_1, \ldots, x_4 | [x_1, x_2], [x_1, x_4][x_2^{-2}, x_3], [x_1^{-1}, x_3][x_2, x_4] \rangle$. Then $\mathcal{R}^1(\pi) = \{z \in \mathbb{C}^4 | z_1^2 - 2z_2^2 = 0\}$: a quadric which splits into two linear subspaces over \mathbb{R} , but is irreducible over \mathbb{Q} . Thus, π is not 1-formal.

EXAMPLE

Let $Conf_n(E)$ be the configuration space of *n* labeled points of an elliptic curve. Then

$$\mathcal{R}^{1}(\operatorname{Conf}_{n}(E)) = \left\{ (x, y) \in \mathbb{C}^{n} \times \mathbb{C}^{n} \middle| \begin{array}{l} \sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} y_{i} = 0, \\ x_{i}y_{j} - x_{j}y_{i} = 0, \text{ for } 1 \leq i < j < n \end{array} \right\}$$

For $n \ge 3$, this is an irreducible, non-linear variety (a rational normal scroll). Hence, $Conf_n(E)$ is not 1-formal.

ALEX SUCIU (NORTHEASTERN)

Associated graded Lie Algebras

- The *lower central series* of a group *G* is defined inductively by $\gamma_1 G = G$ and $\gamma_{k+1} G = [\gamma_k G, G]$.
- This forms a filtration of *G* by characteristic subgroups. The LCS quotients, *γ_kG/γ_{k+1}G*, are abelian groups.
- The group commutator induces a graded Lie algebra structure on

 $\operatorname{gr}(\boldsymbol{G}, \Bbbk) = \bigoplus_{k \ge 1} (\gamma_k \boldsymbol{G} / \gamma_{k+1} \boldsymbol{G}) \otimes_{\mathbb{Z}} \Bbbk.$

- Assume G is finitely generated. Then gr(G, k) is also finitely generated (in degree 1) by gr₁(G, k) = H₁(G, k).
- For instance, if *F_n* is the free group of rank *n*, then gr(*F_n*; k) is the free graded Lie algebra Lie(kⁿ).

HOLONOMY LIE ALGEBRAS

- Let A be a commutative graded algebra with A⁰ = k and dim A¹ < ∞. Set A_i = (Aⁱ)*.
- The multiplication map $A^1 \otimes_{\Bbbk} A^1 \to A^2$ factors through a linear map $\mu_A \colon A^1 \wedge A^1 \to A^2$.
- Dualizing, and identifying (A¹ ∧ A¹)* ≅ A₁ ∧ A₁, we obtain a linear map, μ^{*}_A: A₂ → A₁ ∧ A₁ ≅ Lie₂(A₁).
- The holonomy Lie algebra of A is the quotient

 $\mathfrak{h}(\boldsymbol{A}) = \operatorname{Lie}(\boldsymbol{A}_1) / \langle \operatorname{im} \boldsymbol{\mu}_{\boldsymbol{A}}^* \rangle.$

- $\mathfrak{h}(A)$ is a quadratic Lie algebra, which depends only on the quadratic closure, $\overline{A} := \bigwedge (A^1) / \langle \ker \mu_A \rangle$. In fact, $U(\mathfrak{h}(A)) = \overline{A}!$.
- For a f.g. group G, set h(G, k) := h(H[•](G, k)). There is then a canonical surjection h(G, k) → gr(G, k), which is an isomorphism precisely when gr(G, k) is quadratic.

ALEX SUCIU (NORTHEASTERN)

FORMALITY NOTIONS

MALCEV LIE ALGEBRAS

• Let *G* be a f.g. group. The successive quotients of *G* by the terms of the LCS form a tower of finitely generated, nilpotent groups,

 $\cdots \longrightarrow G/\gamma_4 G \longrightarrow G/\gamma_3 G \longrightarrow G/\gamma_2 G = G_{ab}$.

- (Malcev 1951) It is possible to replace each nilpotent quotient N_k by N_k ⊗ k, the (rationally defined) nilpotent Lie group associated to the discrete, torsion-free nilpotent group N_k/tors(N_k).
- The inverse limit, $\mathfrak{M}(G; \Bbbk) = \lim_{k \to K} (G/\gamma_k G) \otimes \Bbbk$, is a prounipotent, filtered Lie group, called the *prounipotent completion* of *G* over \Bbbk .
- The pronilpotent Lie algebra

$$\mathfrak{m}(G; \Bbbk) := \varprojlim_{k} \mathfrak{Lie}((G/\gamma_{k}G) \otimes \Bbbk),$$

endowed with the inverse limit filtration, is called the *Malcev Lie* algebra of G (over \Bbbk).

ALEX SUCIU (NORTHEASTERN)

- The group-algebra $\Bbbk G$ has a natural Hopf algebra structure, with comultiplication $\Delta(g) = g \otimes g$ and counit the augmentation map.
- (Quillen 1968) The *I*-adic completion of the group-algebra, $\widehat{\Bbbk G} = \lim_{k} \underline{\& G} / I^k$, is a filtered, complete Hopf algebra.
- An element $x \in \widehat{\Bbbk G}$ is called *primitive* if $\widehat{\Delta}x = x \widehat{\otimes}1 + 1 \widehat{\otimes}x$. The set of all such elements, with bracket [x, y] = xy yx, and endowed with the induced filtration, is a complete, filtered Lie algebra.
- We then have

 $\mathfrak{m}(G) \cong \mathsf{Prim}(\widehat{\Bbbk G}).$

 $\operatorname{\mathsf{gr}}(\operatorname{\mathfrak{m}}({\boldsymbol{G}}))\cong\operatorname{\mathsf{gr}}({\boldsymbol{G}}).$

• (Sullivan 1977) The group *G* is 1-formal if and only if its Malcev Lie algebra is quadratic.

GRADED AND FILTERED FORMALITY

- The group *G* is *graded-formal* if its associated graded Lie algebra gr(G) is quadratic.
- The group *G* is *filtered formal* if its Malcev Lie algebra is filtered formal, i.e.,

 $\mathfrak{m}(G) \cong \widehat{\operatorname{gr}(\mathfrak{m}(G))}$

- G is 1-formal \iff G is both graded-formal and filtered-formal.
- The group $G = \langle x_1, x_2 | [x_1, [x_1, x_2]] = 1 \rangle$ is filtered-formal. Yet G has a non-trivial 3MP of the form $\langle x_1, x_1, x_2 \rangle$. Hence, G is not graded-formal.
- The group $G = \langle x_1, \dots, x_5 | [x_1, x_2][x_3, [x_4, x_5]] = 1 \rangle$ is graded-formal. Yet *G* has a non-trivial 3MP of the form $\langle x_3, x_4, x_5 \rangle$. Hence, *G* is not filtered-formal.

ALEX SUCIU (NORTHEASTERN)

FORMALITY PROPERTIES

THEOREM (S.–WANG 2015)

Let $H \leq G$ be a subgroup which admits a split monomorphism $H \rightarrow G$. If G is graded-/filtered-/1-formal then H is graded-/filtered-/1-formal.

THEOREM (SW)

Let G_1 and G_2 be two f.g. groups. TFAE:

- G₁ and G₂ are graded-/filtered-/1-formal.
- G₁ * G₂ is graded-/filtered-/1-formal.
- $G_1 \times G_2$ is graded-/filtered-/1-formal.

THEOREM (SW)

Suppose $\varphi: G_1 \to G_2$ is a homomorphism between two f.g. groups, inducing an isomorphism $H_1(G_1; \Bbbk) \to H_1(G_2; \Bbbk)$ and an epimorphism $H_2(G_1; \Bbbk) \to H_2(G_2; \Bbbk)$. Then:

- If G_2 is 1-formal, then G_1 is also 1-formal.
- If G_2 is filtered-formal, then G_1 is also filtered-formal.
- If G_2 is graded-formal, then G_1 is also graded-formal.

THEOREM (SW)

Let \mathbb{K}/\mathbb{k} be a field extension. A f.g. group G is graded-/filtered-/1-formal over \mathbb{k} if and only if G is graded-/filtered-/1-formal over \mathbb{K} .

EXPANSIONS IN GROUPS

- Let gr(kG) be the associated graded algebra of kG with respect to the augmentation ideal, and let gr(kG) be its degree completion.
- (D. Bar-Natan) A multiplicative expansion of a group G is a map

 $E \colon G \to \widehat{\mathsf{gr}}(\Bbbk G)$

such that the induced algebra morphism, $\overline{E} : \Bbbk G \to \widehat{\text{gr}}(\Bbbk G)$, is filtration-preserving and induces the identity on associated graded algebras.

• Such a map *E* is called a *Taylor expansion* if it sends all elements of *G* to group-like elements of the Hopf algebra $\hat{gr}(\Bbbk G)$.

- *G* is said to be *residually torsion-free nilpotent* if any non-trivial element of *G* can be detected in a torsion-free nilpotent quotient.
- If *G* is finitely generated, the RTFN condition is equivalent to the injectivity of the canonical map *G* → 𝔐(*G*, k).

THEOREM (SW)

Let G be a finitely generated group. Then:

- *G* is filtered-formal iff *G* has a Taylor expansion $G \to \widehat{gr}(\Bbbk G)$.
- *G* is 1-formal iff *G* has a Taylor expansion and gr(k*G*) is a quadratic algebra.
- G has an injective Taylor expansion iff G is residually torsion-free nilpotent and filtered-formal.

NILPOTENT GROUPS AND FORMALITY

- (Hasegawa 1989) A nilmanifold M^n is formal iff M is an *n*-torus.
- Let G be a finitely generated nilpotent group.
 - (Macinic–Papadima 2007) $\mathcal{V}^{i}(\mathbf{G}) \subseteq \{1\}.$
 - (Macinic 2010) If *G* is *q*-formal, then H^{≤q+1}(G, k) is generated by H¹(G, k). The converse holds if *G* is 2-step nilpotent.
- Let G be a finitely generated, torsion-free, nilpotent group.
 - (Carlson–Toledo 1995, Plantiko 1996) Suppose there is a non-zero decomposable element in the kernel of
 ∪: H¹(G, k) ∧ H¹(G, k) → H²(G, k); then G is not graded-formal.
 - (SW) Suppose G is filtered-formal. Then G is abelian if and only if $U(gr(G, \Bbbk))$ is Koszul.
 - (SW) If *G* is 2-step nilpotent, and *G*_{ab} is torsion-free, then *G* is filtered-formal.

THEOREM (SW)

Let G be a finitely generated, filtered-formal group. Then all the nilpotent quotients $G/\gamma_i(G)$ are filtered-formal.

- Consequently, all the *n*-step, free nilpotent groups $F_k/\gamma_n F_k$ are filtered-formal.
- The unipotent groups U_n(Z) of integer, upper triangular n × n matrices with 1's along the diagonal are filtered-formal, but not graded-formal for n ≥ 3.
- All nilpotent Lie algebras of dimension 4 or less are filtered-formal (or, "Carnot").
- (Cornulier 2016) There is a 5-dimensional, 3-step nilpotent Lie algebra which is not filtered-formal.

SOLVABLE QUOTIENTS AND FORMALITY

THEOREM (SW)

Let *G* be a finitely generated group. For each $i \ge 2$, the quotient map $G \rightarrow G/G^{(i)}$ induces a natural epimorphism of graded \Bbbk -Lie algebras,

 $\operatorname{gr}(G, \Bbbk) / \operatorname{gr}(G, \Bbbk)^{(i)} \longrightarrow \operatorname{gr}(G/G^{(i)}, \Bbbk)$.

Moreover,

- If G is filtered-formal, then each solvable quotient $G/G^{(i)}$ is also filtered-formal, and the above map is an isomorphism.
- If G is 1-formal, then $\mathfrak{h}(G, \Bbbk)/\mathfrak{h}(G, \Bbbk)^{(i)} \cong \operatorname{gr}(G/G^{(i)}, \Bbbk)$.

THEOREM (SW)

The quotient map $G \twoheadrightarrow G/G''$ induces a natural epimorphism of graded Lie algebras,

$$\operatorname{gr}(G, \Bbbk) / \operatorname{gr}(G, \Bbbk)^{''} \longrightarrow \operatorname{gr}(G/G^{''}, \Bbbk)$$
.

Moreover, if G is filtered-formal, this map is an isomorphism.

THEOREM (PAPADIMA–S. 2004, SW)

There is a natural epimorphism of graded Lie algebras,

$$\mathfrak{h}(G, \Bbbk)/\mathfrak{h}(G, \Bbbk)^{''} \longrightarrow \operatorname{gr}(G/G^{''}, \Bbbk)$$
.

Moreover, if G is 1-formal, then this map is an isomorphism.