Chaotic orbits for systems of nonlocal equations

Stefania Patrizi

UT Austin

"Mostly Maximum Principle" B.I.R.S. April 02-07, 2017

・ロト ・聞 と ・ ヨ と ・ ヨ と ・

ъ

Stefania Patrizi

S. Dipierro, S. P. and E. Valdinoci, Chaotic orbits for systems of nonlocal equations, *Commun. Math. Phys.*, **349** (2017), no. 2, 583-626.

ヘロト ヘアト ヘビト ヘビト

3

We consider a system of nonlocal equations driven by a perturbed periodic potential.

We construct multibump solutions that connect one integer point to another one in a prescribed way.

In particular: heteroclinic, homoclinic and chaotic trajectories are constructed.

く 同 と く ヨ と く ヨ と

Mathematical framework

Given $s \in (\frac{1}{2}, 1)$, we consider an interaction kernel $K: \mathbb{R} \to [0, +\infty]$, satisfying the structural assumptions • K(-x) = K(x). ۲ $\frac{\theta_0 \ (1-s) \ \chi_{[-\rho_0,\rho_0]}(x)}{|_{\mathbf{Y}}|^{1+2s}} \leq \mathcal{K}(x) \leq \frac{\Theta_0 \ (1-s)}{|_{\mathbf{X}}|^{1+2s}}$ for some $\rho_0 \in (0, 1]$ and $\Theta_0 \ge \theta_0 > 0$, and ۰ $|\nabla K(\mathbf{x})| \leq \frac{\Theta_1}{|\mathbf{x}|^{2+2s}}$

for some $\Theta_1 > 0$.

ヘロン 人間 とくほ とくほ とう

Mathematical framework

We consider the energy associated to such interaction kernel: namely, for any measurable function $Q : \mathbb{R} \to \mathbb{R}^n$, with $n \in \mathbb{N}$, $n \ge 1$, we define

$$E(Q) := \iint_{\mathbb{R}\times\mathbb{R}} K(x-y) \left|Q(x)-Q(y)\right|^2 dx dy.$$

We consider the energy associated to such interaction kernel: namely, for any measurable function $Q : \mathbb{R} \to \mathbb{R}^n$, with $n \in \mathbb{N}$, $n \ge 1$, we define

$$E(Q) := \iint_{\mathbb{R}\times\mathbb{R}} K(x-y) \left| Q(x) - Q(y) \right|^2 dx \, dy.$$

Given an interval $J \subseteq \mathbb{R}$, a measurable function $Q : \mathbb{R} \to \mathbb{R}^n$, with $E(Q) < +\infty$, and $f \in L^1(J, \mathbb{R}^n)$ we say that Q is a solution of

$$\mathcal{L}(Q)(x) + f(x) = 0, \quad x \in J$$

if,

$$2\iint_{\mathbb{R}\times\mathbb{R}}K(x-y)(Q(x)-Q(y))\cdot(\psi(x)-\psi(y))dxdy+\int_{\mathbb{R}}f(x)\cdot\psi(x)dx=0,$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

for any $\psi \in C_0^{\infty}(J, \mathbb{R}^n)$.

In the strong version, the operator $\mathcal{L}(Q)$ may be interpreted as the integrodifferential operator

$$4\int_{\mathbb{R}}K(x-y)\left(Q(x)-Q(y)\right)dy,$$

with the singular integral taken in its principal value sense.

Prototype:

$$\mathcal{K}(x):=rac{1-s}{|x|^{1+2s}},\quad s\in\left(rac{1}{2},1
ight).$$

In this case, the operator $\mathcal{L}(Q)$ is (up to multiplicative constants) the fractional Laplacian $(-\Delta)^{s}Q$.

The setting considered is very general, since it comprises operators which are not necessarily homogeneous or isotropic.

くロト (過) (目) (日)

Mathematical framework

The particular equation that we consider is

 $\mathcal{L}(Q)(x) + a(x) \nabla W(Q(x)) = 0$ for any $x \in \mathbb{R}$.

イロン イボン イヨン イヨン

ъ

Mathematical framework

The particular equation that we consider is

 $\mathcal{L}(Q)(x) + a(x) \nabla W(Q(x)) = 0$ for any $x \in \mathbb{R}$.

We suppose that $W \in C^{1,1}(\mathbb{R}^n)$, that

• W is 1-periodic:

$$W(\tau + \zeta) = W(\tau)$$
 for any $\tau \in \mathbb{R}^n$, $\zeta \in \mathbb{Z}^n$,

• the minima of W are attained at the integers:

 $W(\zeta) = 0$ for any $\zeta \in \mathbb{Z}^n$ and that $W(\tau) > 0$ for any $\tau \in \mathbb{R}^n \setminus \mathbb{Z}^n$.

• the minima of W are "nondegenerate": there exist $r \in (0, 1/4], c_0 \in (0, 1)$ and $C_0 \in (1, +\infty)$ such that

$$c_0 \, | au|^2 \leq W(au) \leq C_0 \, | au|^2 \qquad ext{ for any } au \in B_r.$$

・ロン ・聞 と ・ ヨ と ・ ヨ と

The particular equation that we consider is

 $\mathcal{L}(Q)(x) + a(x) \nabla W(Q(x)) = 0$ for any $x \in \mathbb{R}$.

イロン 不得 とくほ とくほとう

3

The particular equation that we consider is

 $\mathcal{L}(Q)(x) + a(x) \nabla W(Q(x)) = 0$ for any $x \in \mathbb{R}$.

 To make a simple and concrete example, we stick to the case in which

$$a(x) := a_1 + a_2 \cos(\epsilon x),$$

イロト イポト イヨト イヨト

with $\epsilon > 0$ to be taken suitably small and $a_1 > a_2 > 0$.

• When
$$n=1,$$
 $\mathcal{L}=(-\Delta)^s$ and $\epsilon=0$: $(-\Delta)^s(Q)+W'(Q)=0.$

Heteroclinic solutions connecting two consecutive integers have been constructed in different papers by Cabré and Solà-Morales ($s = \frac{1}{2}$); Cabré and Sire ($s \in (0, 1)$); Palatucci, Savin and Valdinoci ($s \in (0, 1)$).

$\mathcal{L}(Q)(x) + a(x) \nabla W(Q(x)) = 0$ for any $x \in \mathbb{R}$. (1)

・ロト ・四ト ・ヨト ・ヨト

Stefania Patrizi

$$\mathcal{L}(Q)(x) + a(x) \nabla W(Q(x)) = 0$$
 for any $x \in \mathbb{R}$. (1)

Theorem

Let $\zeta_1 \in \mathbb{Z}^n$ and $N \in \mathbb{N}$. There exist $\zeta_2, \ldots, \zeta_N \in \mathbb{Z}^n$ and $b_1, \ldots, b_{2N-2} \in \mathbb{R}$, with $b_{i+1} \ge b_i + 3$ for all $i = 1, \ldots, 2N - 3$, and a solution Q_* of (1) such that

$$\begin{split} \zeta_{i+1} &\neq \zeta_i \text{ for any } i \in \{1, \dots, N-1\},\\ \lim_{x \to -\infty} Q_*(x) &= \zeta_1, \quad \sup_{x \in (-\infty, b_1]} |Q_*(x) - \zeta_1| \leq \frac{1}{4},\\ \sup_{x \in [b_{2i}, b_{2i+1}]} |Q_*(x) - \zeta_{i+1}| \leq \frac{1}{4} \quad \text{ for all } i = 1, \dots, N-2,\\ \sup_{x \in [b_{2N-2}, +\infty)} |Q_*(x) - \zeta_N| \leq \frac{1}{4} \quad \text{ and } \lim_{x \to +\infty} Q_*(x) = \zeta_N. \end{split}$$

A chaotic trajectory.

æ

• For local equations, the local counterpart of our result is a celebrated result in:

Paul H. Rabinowitz, Periodic and heteroclinic orbits for a periodic Hamiltonian system, *Ann. Inst. H. Poincaré Anal. Non Linéaire*, 6(5):331–346, 1989.

Important related results by: Rabinowitz, Coti-Zelati, Séré, Bessi, Maxwell; Bolotin, MacKay, Berti, Bolle....

Our estimates are uniform for s ∈ (s₀, 1), for any s₀ > ¹/₂, so that we recover the results by Rabinowitz as s → 1⁻.

Both local and nonlocal case share the variational idea of looking for constrained minimal orbits and then proving that they are in fact unconstrained.

ヘロト ヘ戸ト ヘヨト ヘヨト

æ

Constrained minimizer:

Define the energy functional

$$I(Q) := \iint_{\mathbb{R}\times\mathbb{R}} K(x-y) |Q(x)-Q(y)|^2 dx dy + \int_{\mathbb{R}} a(x) W(Q(x)) dx.$$

• Given $\zeta_1, \zeta_2 \in \mathbb{Z}^n$, $b_1, b_2 \in \mathbb{R}$ with $b_2 > b_1 + 3$, and a small r > 0 one minimizes the energy I(Q) in the set

$$egin{aligned} & \Gamma(\zeta_1,\zeta_2,b_1,b_2) := \Big\{ Q: \mathbb{R} o \mathbb{R}^n ext{ s.t. } Q ext{ is measurable}, \ & Q(x) \in \overline{B_r(\zeta_1)} ext{ for a.e. } x \in (-\infty,b_1], \ & Q(x) \in \overline{B_r(\zeta_2)} ext{ for a.e. } x \in [b_2,+\infty) \Big\}. \end{aligned}$$

イロト イポト イヨト イヨト

N = 2: Heteroclinic solutions

- The goal is to construct solutions that emanate from a fixed ζ₁ ∈ Zⁿ as x → -∞ and approach a suitable ζ₂ ∈ Zⁿ \ {ζ₁} as x → +∞.
- More precisely, fixed ζ₁ ≠ ζ₂ ∈ Zⁿ we consider the minimizer Q_{*} = Q^{ζ₁,ζ₂}
 Let

$$I_{\zeta_1} := \inf_{\zeta_2 \in \mathbb{Z}^n \setminus \{\zeta_1\}} I(Q_*^{\zeta_1,\zeta_2}).$$

and define $\mathcal{A}(\zeta_1)$ the family of all $\zeta_2 \in \mathbb{Z}^n$ attaining such minimum. Then $\mathcal{A}(\zeta_1)$ consists of a finite number of integer.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

If $\zeta_2 \in \mathcal{A}(\zeta_1)$, then the constrained minimizer that connects ζ_1 and ζ_2 is actually a free minimizer:

Theorem

Let $s_0 \in \left(\frac{1}{2}, 1\right)$ and $s \in [s_0, 1)$. There exist $\epsilon_* > 0$ and $b_2 > b_1 \in \mathbb{R}$, possibly depending on n, s_0 and the structural constants of the kernel and the potential, such that if $\epsilon \in (0, \epsilon_*]$, the following statement holds. Let $\zeta_1 \in \mathbb{Z}^n$ and $\zeta_2 \in \mathcal{A}(\zeta_1)$. Then $Q_*^{\zeta_1, \zeta_2}$ is a solution of

$$\mathcal{L}(Q)(x) + a(x) \,
abla \, W(Q(x)) = 0$$
 for any $x \in \mathbb{R}.$

N = 2: Heteroclinic solutions

Stefania Patrizi

To prove that the constrained minimizer is unconstrained, we have to build competitors, by glueing functions.

Let $L : (T_1, x_0] \rightarrow \mathbb{R}^n$ and $R : [x_0, T_2) \rightarrow \mathbb{R}^n$. Define

$$V(x) := \begin{cases} L(x), & x \in (T_1, x_0] \\ R(x) & x \in (x_0, T_2) \end{cases}$$

イロト イポト イヨト イヨト

How do we estimate the nonlocal energy of V in (T_1, T_2) in terms of the nonlocal energies of L and R respectively in (T_1, x_0) and (x_0, T_2) ?

Glueing functions

Given an interval J ⊆ ℝ, it is convenient to introduce the notation

$$E_J(Q) := \iint_{J \times J} K(x - y) \left| Q(x) - Q(y) \right|^2 dx \, dy. \quad (2)$$

・ロン・西方・ ・ ヨン・ ヨン・

3

For instance, we have that $E_{\mathbb{R}} = E$.

Glueing functions

Given an interval J ⊆ ℝ, it is convenient to introduce the notation

$$E_J(Q) := \iint_{J \times J} K(x - y) \left| Q(x) - Q(y) \right|^2 dx \, dy. \quad (2)$$

For instance, we have that $E_{\mathbb{R}} = E$.

 With this notation, we are able to glue two functions L and R at a point x₀:

$$V(x) := \begin{cases} L(x), & x \in (T_1, x_0] \\ R(x) & x \in (x_0, T_2) \end{cases}$$

under the additional assumption that

$$\label{eq:constraint} \begin{split} [L]_{C^{0,1}([x_0-\beta,x_0])} &\leq \eta \quad \text{ and } \quad [R]_{C^{0,1}([x_0,x_0+\beta])} \leq \eta, \\ \text{for some } \eta > 0, \text{ where } \end{split}$$

$$\beta \in (0, \min\{T_2 - x_0, x_0 - T_1\}]$$

Indeed, in this case, one can prove the following estimate

$$\begin{split} & E_{(T_1,T_2)}(V) - E_{(T_1,x_0)}(L) - E_{(x_0,T_2)}(R) \\ & \leq C \left(\eta^2 \, \beta^{3-2s} + \frac{\|L\|_{L^{\infty}((T_1,x_0),\mathbb{R}^n)} + \|R\|_{L^{\infty}((x_0,T_2),\mathbb{R}^n)}}{\beta^{2s-1}} \right), \end{split}$$

ъ

for some C > 0.

Definition

Given $\rho > 0$ and $Q : \mathbb{R} \to \mathbb{R}^n$, we say that an interval $J \subseteq \mathbb{R}$ is a "clean interval" for (ρ, Q) if $|J| \ge |\log \rho|$ and there exists $\zeta \in \mathbb{Z}^n$ such that

 $\sup_{x\in J} |Q(x)-\zeta| \leq \rho.$

(日) (四) (日) (日) (日)

Definition

If *J* is a bounded clean interval for (ρ, Q) , the center of *J* is called a "clean point" for (ρ, Q) .

Let Q_* be an optimal trajectory connecting the integers ζ_1 and ζ_2 .

Lemma

There exists $\rho_* > 0$, possibly depending on n and the structural assumptions of the kernel and the potential, such that if $\rho \in (0, \rho_*]$ the following statement holds. Let $\zeta_1 \in \mathbb{Z}^n$ and $\zeta_2 \in \mathcal{A}(\zeta_1)$. Assume that there exists $\zeta \in \mathbb{Z}^n$ and a clean point $x_0 \in (b_1, b_2 - 1)$ such that $Q_*(x_0) \in \overline{B_{\rho}(\zeta)}$, then

$$\zeta \in \{\zeta_1, \zeta_2\}.$$

ヘロト ヘアト ヘヨト ヘ

Glueing functions at clean points

We glue the optimal trajectory Q_* to a linear interpolation with the integer ζ , close to $Q_*(x_0)$, namely consider

$$V(x) := \begin{cases} Q_*(x) & \text{if } x \le x_0 - 1, \\ Q_*(x_0) (x_0 - x) + \zeta (x - x_0 + 1) & \text{if } x \in (x_0 - 1, x_0), \\ \zeta & \text{if } x \ge x_0. \end{cases}$$

In this way, and taking $\rho > 0$ suitably small, we know that Q_* is ρ -close to an integer in $[x_0 - 2\beta, x_0 + 2\beta]$, with

$$\beta = \beta(\rho) = \frac{|\log \rho|}{2}.$$

In particular, Q_* is solution of our equation in $[x_0 - 2\beta, x_0 + 2\beta]$. Consequently,

$$[Q_*]_{C^{0,1}([x_0-\beta,x_0+\beta])} \le C\left(\frac{1}{\beta^{2s}}+\rho\right),$$

イロト イポト イヨト イヨト 一臣

Glueing functions at clean points

This says that in this case we can take $\eta := C\left(\frac{1}{\beta^{2s}} + \rho\right)$ and get the bound

$$E_{(T_1,T_2)}(V) \leq E_{(T_1,x_0)}(Q_*) + o_{\rho}(1),$$

where $o_{\rho}(1) \rightarrow 0$ as $\rho \rightarrow 0$. If

 $\zeta \not\in \{\zeta_1,\zeta_2\},$

then

$$\int_{-\infty}^{+\infty} a(x) W(V(x)) dx < \int_{-\infty}^{+\infty} a(x) W(Q_*(x)) dx - c.$$

Therefore, we obtain

$$I(V) < I(Q_*)$$

which contradicts the fact that Q_* is an optimal trajectory.

Figure: Glueing Q_* with the heteroclinic joining ζ_{j+1} to ζ_{j+2} .

★ロト★個と★注と★注と、注

A chaotic trajectory.

æ