Chaotic orbits for systems of nonlocal equations

Stefania Patrizi

UT Austin

"Mostly Maximum Principle"
B.I.R.S.

April 02-07, 2017
S. Dipierro, S. P. and E. Valdinoci, Chaotic orbits for systems of nonlocal equations, Commun. Math. Phys., 349 (2017), no. 2, 583-626.

We consider a system of nonlocal equations driven by a perturbed periodic potential.

We construct multibump solutions that connect one integer point to another one in a prescribed way.

In particular: heteroclinic, homoclinic and chaotic trajectories are constructed.

Mathematical framework

Given $s \in\left(\frac{1}{2}, 1\right)$, we consider an interaction kernel $K: \mathbb{R} \rightarrow[0,+\infty]$, satisfying the structural assumptions

- $K(-x)=K(x)$,

$$
\frac{\theta_{0}(1-s) \chi_{\left[-\rho_{0}, \rho_{0}\right]}(x)}{|x|^{1+2 s}} \leq K(x) \leq \frac{\Theta_{0}(1-s)}{|x|^{1+2 s}}
$$

for some $\rho_{0} \in(0,1]$ and $\Theta_{0} \geq \theta_{0}>0$, and
-

$$
|\nabla K(x)| \leq \frac{\Theta_{1}}{|x|^{2+2 s}}
$$

for some $\Theta_{1}>0$.

Mathematical framework

We consider the energy associated to such interaction kernel: namely, for any measurable function $Q: \mathbb{R} \rightarrow \mathbb{R}^{n}$, with $n \in \mathbb{N}$, $n \geq 1$, we define

$$
E(Q):=\iint_{\mathbb{R} \times \mathbb{R}} K(x-y)|Q(x)-Q(y)|^{2} d x d y
$$

Mathematical framework

We consider the energy associated to such interaction kernel: namely, for any measurable function $Q: \mathbb{R} \rightarrow \mathbb{R}^{n}$, with $n \in \mathbb{N}$, $n \geq 1$, we define

$$
E(Q):=\iint_{\mathbb{R} \times \mathbb{R}} K(x-y)|Q(x)-Q(y)|^{2} d x d y .
$$

Given an interval $J \subseteq \mathbb{R}$, a measurable function $Q: \mathbb{R} \rightarrow \mathbb{R}^{n}$, with $E(Q)<+\infty$, and $f \in L^{1}\left(J, \mathbb{R}^{n}\right)$ we say that Q is a solution of

$$
\mathcal{L}(Q)(x)+f(x)=0, \quad x \in J
$$

if,
$2 \iint_{\mathbb{R} \times \mathbb{R}} K(x-y)(Q(x)-Q(y)) \cdot(\psi(x)-\psi(y)) d x d y+\int_{\mathbb{R}} f(x) \cdot \psi(x) d x=0$,
for any $\psi \in C_{0}^{\infty}\left(J, \mathbb{R}^{n}\right)$.

Mathematical framework

In the strong version, the operator $\mathcal{L}(Q)$ may be interpreted as the integrodifferential operator

$$
4 \int_{\mathbb{R}} K(x-y)(Q(x)-Q(y)) d y
$$

with the singular integral taken in its principal value sense.

Prototype:

$$
K(x):=\frac{1-s}{|x|^{1+2 s}}, \quad s \in\left(\frac{1}{2}, 1\right)
$$

In this case, the operator $\mathcal{L}(Q)$ is (up to multiplicative constants) the fractional Laplacian $(-\Delta)^{s} Q$.

The setting considered is very general, since it comprises operators which are not necessarily homogeneous or isotropic.

Mathematical framework

The particular equation that we consider is

$$
\mathcal{L}(Q)(x)+a(x) \nabla W(Q(x))=0 \quad \text { for any } x \in \mathbb{R}
$$

Mathematical framework

The particular equation that we consider is

$$
\mathcal{L}(Q)(x)+a(x) \nabla W(Q(x))=0 \quad \text { for any } x \in \mathbb{R} .
$$

We suppose that $W \in C^{1,1}\left(\mathbb{R}^{n}\right)$, that

- W is 1 -periodic:

$$
W(\tau+\zeta)=W(\tau) \text { for any } \tau \in \mathbb{R}^{n}, \zeta \in \mathbb{Z}^{n},
$$

- the minima of W are attained at the integers:

$$
W(\zeta)=0 \text { for any } \zeta \in \mathbb{Z}^{n} \text { and that } W(\tau)>0 \text { for any } \tau \in \mathbb{R}^{n} \backslash \mathbb{Z}^{n} .
$$

- the minima of W are "nondegenerate": there exist $r \in(0,1 / 4], c_{0} \in(0,1)$ and $C_{0} \in(1,+\infty)$ such that

$$
c_{0}|\tau|^{2} \leq W(\tau) \leq C_{0}|\tau|^{2} \quad \text { for any } \tau \in B_{r} .
$$

Mathematical framework

The particular equation that we consider is

$$
\mathcal{L}(Q)(x)+a(x) \nabla W(Q(x))=0 \quad \text { for any } x \in \mathbb{R}
$$

Mathematical framework

The particular equation that we consider is

$$
\mathcal{L}(Q)(x)+a(x) \nabla W(Q(x))=0 \quad \text { for any } x \in \mathbb{R}
$$

- To make a simple and concrete example, we stick to the case in which

$$
a(x):=a_{1}+a_{2} \cos (\epsilon x)
$$

with $\epsilon>0$ to be taken suitably small and $a_{1}>a_{2}>0$.

- When $n=1, \mathcal{L}=(-\Delta)^{s}$ and $\epsilon=0$:

$$
(-\Delta)^{s}(Q)+W^{\prime}(Q)=0
$$

Heteroclinic solutions connecting two consecutive integers have been constructed in different papers by Cabré and Solà-Morales $\left(s=\frac{1}{2}\right)$; Cabré and Sire $(s \in(0,1))$; Palatucci, Savin and Valdinoci $(s \in(0,1))$.

Main result

$$
\begin{equation*}
\mathcal{L}(Q)(x)+a(x) \nabla W(Q(x))=0 \quad \text { for any } x \in \mathbb{R} \tag{1}
\end{equation*}
$$

Main result

$$
\begin{equation*}
\mathcal{L}(Q)(x)+a(x) \nabla W(Q(x))=0 \quad \text { for any } x \in \mathbb{R} \tag{1}
\end{equation*}
$$

Theorem

Let $\zeta_{1} \in \mathbb{Z}^{n}$ and $N \in \mathbb{N}$. There exist $\zeta_{2}, \ldots, \zeta_{N} \in \mathbb{Z}^{n}$ and $b_{1}, \ldots, b_{2 N-2} \in \mathbb{R}$, with $b_{i+1} \geq b_{i}+3$ for all $i=1, \ldots, 2 N-3$, and a solution Q_{*} of (1) such that

$$
\begin{aligned}
& \zeta_{i+1} \neq \zeta_{i} \text { for any } i \in\{1, \ldots, N-1\}, \\
& \lim _{x \rightarrow-\infty} Q_{*}(x)=\zeta_{1}, \quad \sup _{x \in\left(-\infty, b_{1}\right]}\left|Q_{*}(x)-\zeta_{1}\right| \leq \frac{1}{4}, \\
& \sup _{x \in\left[b_{2}, b_{2 i+1}\right]}\left|Q_{*}(x)-\zeta_{i+1}\right| \leq \frac{1}{4} \quad \text { for all } i=1, \ldots, N-2, \\
& \sup _{x \in\left[b_{2 N-2},+\infty\right)}\left|Q_{*}(x)-\zeta_{N}\right| \leq \frac{1}{4} \quad \text { and } \lim _{x \rightarrow+\infty} Q_{*}(x)=\zeta_{N} .
\end{aligned}
$$

A chaotic trajectory.

Motivations

- For local equations, the local counterpart of our result is a celebrated result in:

Paul H. Rabinowitz, Periodic and heteroclinic orbits for a periodic Hamiltonian system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6(5):331-346, 1989.

Important related results by: Rabinowitz, Coti-Zelati, Séré, Bessi, Maxwell; Bolotin, MacKay, Berti, Bolle....

- Our estimates are uniform for $s \in\left(s_{0}, 1\right)$, for any $s_{0}>\frac{1}{2}$, so that we recover the results by Rabinowitz as $s \rightarrow 1^{-}$.

Strategy of the proof

Both local and nonlocal case share the variational idea of looking for constrained minimal orbits and then proving that they are in fact unconstrained.

$N=2:$ Heteroclinic solutions

Constrained minimizer:

- Define the energy functional

$$
I(Q):=\iint_{\mathbb{R} \times \mathbb{R}} K(x-y)|Q(x)-Q(y)|^{2} d x d y+\int_{\mathbb{R}} a(x) W(Q(x)) d x .
$$

- Given $\zeta_{1}, \zeta_{2} \in \mathbb{Z}^{n}, b_{1}, b_{2} \in \mathbb{R}$ with $b_{2}>b_{1}+3$, and a small $r>0$ one minimizes the energy $I(Q)$ in the set

$$
\begin{aligned}
\Gamma\left(\zeta_{1}, \zeta_{2}, b_{1}, b_{2}\right):=\{Q: & \mathbb{R} \rightarrow \mathbb{R}^{n} \text { s.t. } Q \text { is measurable, } \\
& Q(x) \in \overline{B_{r}\left(\zeta_{1}\right)} \text { for a.e. } x \in\left(-\infty, b_{1}\right], \\
& \left.Q(x) \in \overline{B_{r}\left(\zeta_{2}\right)} \text { for a.e. } x \in\left[b_{2},+\infty\right)\right\} .
\end{aligned}
$$

$N=2:$ Heteroclinic solutions

- The goal is to construct solutions that emanate from a fixed $\zeta_{1} \in \mathbb{Z}^{n}$ as $x \rightarrow-\infty$ and approach a suitable $\zeta_{2} \in \mathbb{Z}^{n} \backslash\left\{\zeta_{1}\right\}$ as $x \rightarrow+\infty$.
- More precisely, fixed $\zeta_{1} \neq \zeta_{2} \in \mathbb{Z}^{n}$ we consider the minimizer $Q_{*}=Q_{*}^{\zeta_{1}, \zeta_{2}}$ Let

$$
I_{\zeta_{1}}:=\inf _{\zeta_{2} \in \mathbb{Z}^{n} \backslash\left\{\zeta_{1}\right\}} I\left(Q_{*}^{\zeta_{1}, \zeta_{2}}\right)
$$

and define $\mathcal{A}\left(\zeta_{1}\right)$ the family of all $\zeta_{2} \in \mathbb{Z}^{n}$ attaining such minimum. Then $\mathcal{A}\left(\zeta_{1}\right)$ consists of a finite number of integer.

$N=2:$ Heteroclinic solutions

If $\zeta_{2} \in \mathcal{A}\left(\zeta_{1}\right)$, then the constrained minimizer that connects ζ_{1} and ζ_{2} is actually a free minimizer:

Theorem

Let $s_{0} \in\left(\frac{1}{2}, 1\right)$ and $s \in\left[s_{0}, 1\right)$. There exist $\epsilon_{*}>0$ and $b_{2}>b_{1} \in \mathbb{R}$, possibly depending on n, s_{0} and the structural constants of the kernel and the potential, such that if $\epsilon \in\left(0, \epsilon_{*}\right]$, the following statement holds.
Let $\zeta_{1} \in \mathbb{Z}^{n}$ and $\zeta_{2} \in \mathcal{A}\left(\zeta_{1}\right)$.
Then $Q_{*}^{\zeta_{1}, \zeta_{2}}$ is a solution of

$$
\mathcal{L}(Q)(x)+a(x) \nabla W(Q(x))=0 \quad \text { for any } x \in \mathbb{R}
$$

$N=2:$ Heteroclinic solutions

Stefania Patrizi

Glueing functions

To prove that the constrained minimizer is unconstrained, we have to build competitors, by glueing functions.

Let $L:\left(T_{1}, x_{0}\right] \rightarrow \mathbb{R}^{n}$ and $R:\left[x_{0}, T_{2}\right) \rightarrow \mathbb{R}^{n}$. Define

$$
V(x):= \begin{cases}L(x), & x \in\left(T_{1}, x_{0}\right] \\ R(x) & x \in\left(x_{0}, T_{2}\right)\end{cases}
$$

How do we estimate the nonlocal energy of V in $\left(T_{1}, T_{2}\right)$ in terms of the nonlocal energies of L and R respectively in (T_{1}, x_{0}) and (x_{0}, T_{2})?

Glueing functions

- Given an interval $J \subseteq \mathbb{R}$, it is convenient to introduce the notation

$$
\begin{equation*}
E_{J}(Q):=\iint_{J \times J} K(x-y)|Q(x)-Q(y)|^{2} d x d y . \tag{2}
\end{equation*}
$$

For instance, we have that $E_{\mathbb{R}}=E$.

Glueing functions

- Given an interval $J \subseteq \mathbb{R}$, it is convenient to introduce the notation

$$
\begin{equation*}
E_{J}(Q):=\iint_{J \times J} K(x-y)|Q(x)-Q(y)|^{2} d x d y . \tag{2}
\end{equation*}
$$

For instance, we have that $E_{\mathbb{R}}=E$.

- With this notation, we are able to glue two functions L and R at a point x_{0} :

$$
V(x):= \begin{cases}L(x), & x \in\left(T_{1}, x_{0}\right] \\ R(x) & x \in\left(x_{0}, T_{2}\right)\end{cases}
$$

under the additional assumption that

$$
[L]_{C^{0,1}\left(\left[x_{0}-\beta, x_{0}\right]\right)} \leq \eta \quad \text { and } \quad[R]_{C^{0,1}\left(\left[x_{0}, x_{0}+\beta\right]\right)} \leq \eta,
$$

for some $\eta>0$, where

$$
\beta \in\left(0, \min \left\{T_{2}-x_{0}, x_{0}-T_{1}\right\}\right]
$$

Glueing functions

Indeed, in this case, one can prove the following estimate

$$
\begin{aligned}
& E_{\left(T_{1}, T_{2}\right)}(V)-E_{\left(T_{1}, x_{0}\right)}(L)-E_{\left(x_{0}, T_{2}\right)}(R) \\
& \leq C\left(\eta^{2} \beta^{3-2 s}+\frac{\|L\|_{L^{\infty}\left(\left(T_{1}, x_{0}\right), \mathbb{R}^{n}\right)}+\|R\|_{L \infty}\left(\left(x_{0}, T_{2}\right), \mathbb{R}^{n}\right)}{\beta^{2 s-1}}\right),
\end{aligned}
$$

for some $C>0$.

A notion of clean intervals and clean points

Definition

Given $\rho>0$ and $Q: \mathbb{R} \rightarrow \mathbb{R}^{n}$, we say that an interval $J \subseteq \mathbb{R}$ is a "clean interval" for (ρ, Q) if $|J| \geq|\log \rho|$ and there exists $\zeta \in \mathbb{Z}^{n}$ such that

$$
\sup _{x \in J}|Q(x)-\zeta| \leq \rho
$$

Definition

If J is a bounded clean interval for (ρ, Q), the center of J is called a "clean point" for (ρ, Q).

Glueing functions at clean points

Let Q_{*} be an optimal trajectory connecting the integers ζ_{1} and ζ_{2}.

Lemma

There exists $\rho_{*}>0$, possibly depending on n and the structural assumptions of the kernel and the potential, such that if $\rho \in\left(0, \rho_{*}\right]$ the following statement holds.
Let $\zeta_{1} \in \mathbb{Z}^{n}$ and $\zeta_{2} \in \mathcal{A}\left(\zeta_{1}\right)$. Assume that there exists $\zeta \in \mathbb{Z}^{n}$ and a clean point $x_{0} \in\left(b_{1}, b_{2}-1\right)$ such that $Q_{*}\left(x_{0}\right) \in \overline{B_{\rho}(\zeta)}$, then

$$
\zeta \in\left\{\zeta_{1}, \zeta_{2}\right\}
$$

Glueing functions at clean points

We glue the optimal trajectory Q_{*} to a linear interpolation with the integer ζ, close to $Q_{*}\left(x_{0}\right)$, namely consider

$$
V(x):=\left\{\begin{array}{cc}
Q_{*}(x) & \text { if } x \leq x_{0}-1, \\
Q_{*}\left(x_{0}\right)\left(x_{0}-x\right)+\zeta\left(x-x_{0}+1\right) & \text { if } x \in\left(x_{0}-1, x_{0}\right), \\
\zeta & \text { if } x \geq x_{0} .
\end{array}\right.
$$

In this way, and taking $\rho>0$ suitably small, we know that Q_{*} is ρ-close to an integer in [$x_{0}-2 \beta, x_{0}+2 \beta$], with

$$
\beta=\beta(\rho)=\frac{|\log \rho|}{2} .
$$

In particular, Q_{*} is solution of our equation in $\left[x_{0}-2 \beta, x_{0}+2 \beta\right]$. Consequently,

$$
\left[Q_{*}\right]_{C^{0,1}\left(\left[x_{0}-\beta, x_{0}+\beta\right]\right)} \leq C\left(\frac{1}{\beta^{2 s}}+\rho\right),
$$

Glueing functions at clean points

This says that in this case we can take $\eta:=C\left(\frac{1}{\beta^{2 s}}+\rho\right)$ and get the bound

$$
E_{\left(T_{1}, T_{2}\right)}(V) \leq E_{\left(T_{1}, X_{0}\right)}\left(Q_{*}\right)+o_{\rho}(1),
$$

where $o_{\rho}(1) \rightarrow 0$ as $\rho \rightarrow 0$. If

$$
\zeta \notin\left\{\zeta_{1}, \zeta_{2}\right\},
$$

then

$$
\int_{-\infty}^{+\infty} a(x) W(V(x)) d x<\int_{-\infty}^{+\infty} a(x) W\left(Q_{*}(x)\right) d x-c .
$$

Therefore, we obtain

$$
I(V)<I\left(Q_{*}\right)
$$

which contradicts the fact that Q_{*} is an optimal trajectory.

Chaotic orbits

Figure: Glueing Q_{*} with the heteroclinic joining ζ_{j+1} to ζ_{j+2}.

A chaotic trajectory.

