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We consider a system of nonlocal equations driven by a
perturbed periodic potential.

We construct multibump solutions that connect one integer
point to another one in a prescribed way.

In particular: heteroclinic, homoclinic and chaotic trajectories
are constructed.
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Mathematical framework

Given s e (%, 1), we consider an interaction kernel

K : R — [0, +o¢], satisfying the structural assumptions
o K(—x) = K(x),
°

to (1 - S) X[—po,p ](X) @0 (1 — S)
xes o S KX S =

for some pg € (0,1] and ©9 > 6y > 0, and

°
©4

IVK(x)| < [X[2+2s

for some ©4 > 0.
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Mathematical framework

We consider the energy associated to such interaction kernel:
namely, for any measurable function Q : R — R”, with n € N,
n> 1, we define

E(Q) = /RXR K(x — y)|Q(x) - QU)|? dx dy.
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Mathematical framework

We consider the energy associated to such interaction kernel:
namely, for any measurable function Q : R — R”, with n € N,
n> 1, we define

E(Q) = /RXR K(x — y)|Q(x) — Q)| dx dy.

Given an interval J C R, a measurable function Q : R — R”",
with E(Q) < +o0, and f € L'(J,R") we say that Q is a solution
of

LQ)X)+f(x)=0, xed

if,
2 [ Kxp(@-aW)-(6(0-0)) ey [ Fx)-v(x)ox =0
for any ¢ € C3°(J,R").
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Mathematical framework

In the strong version, the operator £(Q) may be interpreted as
the integrodifferential operator

4 / K(x - y) (Qx) - Q) d.
R

with the singular integral taken in its principal value sense.

Prototype:

1-s 1

In this case, the operator £(Q) is (up to multiplicative
constants) the fractional Laplacian (—A)®Q.

The setting considered is very general, since it comprises
operators which are not necessarily homogeneous or isotropic.
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Mathematical framework

The particular equation that we consider is

L(Q)(x)+ a(x) VW (Q(x)) =0 forany x € R.
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Mathematical framework

The particular equation that we consider is

L(Q)(x)+ a(x) VW (Q(x)) =0 forany x € R.

We suppose that W ¢ C"'(R"), that
@ W is 1-periodic:

W(r +¢) = W(r)forany r e R", ¢ € Z",
@ the minima of W are attained at the integers:
W({) =0 forany ¢ € Z" and that W(7) > 0 forany 7 € R" \ Z".

@ the minima of W are “nondegenerate”: there exist
re(0,1/4],co € (0,1) and Cy € (1,400) such that

co|m]2 < W(r) < Col|r]? forany 7 € B,.
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Mathematical framework

The particular equation that we consider is

L(Q)(x)+a(x) VW (Q(x)) =0 forany x € R.
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Mathematical framework

The particular equation that we consider is

L(Q)(x)+a(x) VW (Q(x)) =0 forany x € R.

@ To make a simple and concrete example, we stick to the
case in which

a(x) := a1 + az cos(ex),

with € > 0 to be taken suitably small and a; > a» > 0.
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@ Whenn=1,L=(—A)°and e = 0:
(—A)%(Q)+ W'(Q)=0.

Heteroclinic solutions connecting two consecutive integers
have been constructed in different papers by Cabré and
Sola-Morales (s = 3); Cabré and Sire (s € (0,1));
Palatucci, Savin and Valdinoci (s € (0, 1)).

u
1<‘>
0
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Main result

L(Q)(x)+a(x)VW(Q(x))=0 forany x € R. (1)
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Main result

L(Q)(x)+a(x)VW(Q(x))=0 forany x € R. (1)

Theorem

Let(y € Z" and N € N. There exist (o, ...,(ny € Z" and
bi,...,bon_2 € R, withbj,1 > bj+3 foralli=1,...,2N — 3, and a
solution Q. of (1) such that

Civ1 £ ¢ foranyie {1,...,N—1},

. 1
m _ up Q = < —
xallfoo Q*(X) & xe(s—oo,bd ‘ *(X) <1‘ -4

1 ,
sup |O*(X)_Ci+1|§1 foralli=1,...,N—2,
X€E[bgj,boiy1]

1
sSup |Qi(x) —¢n| < — and lim Q.(x) = (n.
X€E[bon—2,+00) 4 X— 400
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A chaotic trajectory.
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@ For local equations, the local counterpart of our result is a
celebrated result in:

Paul H. Rabinowitz, Periodic and heteroclinic orbits for a
periodic Hamiltonian system, Ann. Inst. H. Poincaré Anal.
Non Linéaire, 6(5):331-346, 1989.

Important related results by: Rabinowitz, Coti-Zelati, Séré,
Bessi, Maxwell; Bolotin, MacKay, Berti, Bolle....

@ Our estimates are uniform for s € (sp, 1), for any sg > % SO
that we recover the results by Rabinowitz as s — 1~.
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Strategy of the proof

Both local and nonlocal case share the variational idea of
looking for constrained minimal orbits and then proving that
they are in fact unconstrained.
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N = 2: Heteroclinic solutions

Constrained minimizer:
@ Define the energy functional

Q) := /RX]R K(x—y)|Q(x)—(?(y)\2dxdy+/R a(x)W(Q(x))dx.

@ Given (4,( € Z", by, b € R with bo > by + 3, and a small
r > 0 one minimizes the energy /(Q) in the set

r(¢y, ¢, b1, bo) = {Q :R — R"s.t. Qis measurable,

Q(x) € B.(¢q) for a.e. x € (—oo, by],
Q(x) € B/((2) for a.e. x € [b2,+oo)}_
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N = 2: Heteroclinic solutions

@ The goal is to construct solutions that emanate from a fixed
(1 € Z" as x — —oo and approach a suitable ¢, € Z" \ {¢1}
as x — +oo.

@ More precisely, fixed (1 # (» € Z" we consider the
minimizer Q, = QS
Let
le, == inf  (Q5%).
6= ety ()
and define A(¢q) the family of all {, € Z" attaining such
minimum. Then A(¢y) consists of a finite number of integer.
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N = 2: Heteroclinic solutions

If (> € A(¢1), then the constrained minimizer that connects (4
and (» is actually a free minimizer:

Theorem

Letsy € (5,1) and s € [sy, 1). There existe, > 0 and

b, > by € R, possibly depending on n, so and the structural
constants of the kernel and the potential, such that if e € (0, e.],
the following statement holds.

Let (q € Z" and (o € A(C1)

Then Q%2 is a solution of

L(Q)(x)+ a(x) VW(Q(x)) =0 for any x € R.
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N = 2: Heteroclinic solutions
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Glueing functions

To prove that the constrained minimizer is unconstrained, we
have to build competitors, by glueing functions.

Let L: (Ty,x] — R"and R : [xp, T2) — R". Define

V(X) L L(X)7 X € (T1,X0]
© | R(x) x€(x0,T2)

How do we estimate the nonlocal energy of V in (Ty, T2) in

terms of the nonlocal energies of L and R respectively in
(T1,%0) and (xo, T2)?
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Glueing functions

@ Given an interval J C R, it is convenient to introduce the
notation

EQ):= [| Kix-ylam-awfacdy. @

For instance, we have that Egr = E.
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Glueing functions

@ Given an interval J C R, it is convenient to introduce the
notation

EQ):= [| Kix-ylam-awfacdy. @

For instance, we have that Eg = E.
@ With this notation, we are able to glue two functions L
and R at a point xp:

o= (i 1o
under the additional assumption that
[L]COJ([xof/a,xo]) <n and [R]C°’1([X07Xo+,3]) <,
for some n > 0, where
B € (0,min{To — Xp, Xo — T1}]
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Glueing functions

Indeed, in this case, one can prove the following estimate

E(T17T2)(V) - E(T1 ,Xo)(L) - E(Xojz)('q)

L 00 n R 00 n
<C (772 53_25‘1' [IL]] ((T17X0)JR%:S—H1 In ((x,T2),R )>’

for some C > 0.
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A notion of clean intervals and clean points

Given p > 0and Q: R — R", we say that an interval J C R is a

“clean interval” for (p, Q) if |J| > | log p| and there exists ¢ € Z"
such that

sup [Q(x) — ¢ < p.

xed

If J is a bounded clean interval for (p, Q), the center of J is
called a “clean point” for (p, Q).
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Glueing functions at clean points

Let Q. be an optimal trajectory connecting the integers (; and

|

Lemma

There exists p. > 0, possibly depending on n and the structural
assumptions of the kernel and the potential, such that if

p € (0, pi] the following statement holds.

Let(y € Z" and (» € A(¢q). Assume that there exists ( € Z"
and a clean point xg € (by, bp — 1) such that Q.(xp) € B,(¢),
then

¢ € {¢, G}
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Glueing functions at clean points

We glue the optimal trajectory Q, to a linear interpolation with
the integer ¢, close to Q.(xp), namely consider

Q.(x) ifx <xp—1,
V(x):=q Qu(x0) (X0 —X) +C{(x =X +1) ifxe(xo—1,x),
C ifXZXo.

In this way, and taking p > 0 suitably small, we know that Qi is
p-close to an integer in [xg — 28, xo + 24], with

_ _ |log pl
B =pB(p) = 5

In particular, Q. is solution of our equation in [xg — 23, Xo + 24].
Consequently,

[Q]C°1[Xo 5Xo+5)<c<523 )’
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Glueing functions at clean points

This says that in this case we can take n := C (# + p) and
get the bound

E(T1,T2)(V) < E(ThXo)(Q*) + 00(1)7

where 0,(1) - 0as p — 0. If

¢ ¢ {¢, ¢}
then
+00 +oo
/ a(x)W(V(x))dx < / a(x)W(Q.(x))dx — c.

Therefore, we obtain
I(V) < I(Q)

which contradicts the fact that Q. is an optimal trajectory.
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Chaotic orbits

Stefania Patrizi



A chaotic trajectory.
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