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We consider a system of nonlocal equations driven by a
perturbed periodic potential.

We construct multibump solutions that connect one integer
point to another one in a prescribed way.

In particular: heteroclinic, homoclinic and chaotic trajectories
are constructed.
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Mathematical framework

Given s ∈
(1

2 ,1
)
, we consider an interaction kernel

K : R→ [0,+∞], satisfying the structural assumptions
K (−x) = K (x),

θ0 (1− s) χ[−ρ0,ρ0](x)

|x |1+2s ≤ K (x) ≤ Θ0 (1− s)

|x |1+2s

for some ρ0 ∈ (0,1] and Θ0 ≥ θ0 > 0, and

|∇K (x)| ≤ Θ1

|x |2+2s

for some Θ1 > 0.

Stefania Patrizi



Mathematical framework

We consider the energy associated to such interaction kernel:
namely, for any measurable function Q : R→ Rn, with n ∈ N,
n ≥ 1, we define

E(Q) :=

∫∫

R×R
K (x − y)

∣∣Q(x)−Q(y)
∣∣2 dx dy .

Given an interval J ⊆ R, a measurable function Q : R→ Rn,
with E(Q) < +∞, and f ∈ L1(J,Rn) we say that Q is a solution
of

L(Q)(x) + f (x) = 0, x ∈ J

if,

2
∫∫

R×R
K (x−y)

(
Q(x)−Q(y)

)
·
(
ψ(x)−ψ(y)

)
dxdy+

∫

R
f (x)·ψ(x)dx = 0,

for any ψ ∈ C∞0 (J,Rn).
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Mathematical framework

In the strong version, the operator L(Q) may be interpreted as
the integrodifferential operator

4
∫

R
K (x − y) (Q(x)−Q(y)) dy ,

with the singular integral taken in its principal value sense.

Prototype:

K (x) :=
1− s
|x |1+2s , s ∈

(
1
2
,1
)

In this case, the operator L(Q) is (up to multiplicative
constants) the fractional Laplacian (−∆)sQ.

The setting considered is very general, since it comprises
operators which are not necessarily homogeneous or isotropic.
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Mathematical framework

The particular equation that we consider is

L(Q)(x) + a(x)∇W (Q(x)) = 0 for any x ∈ R.

We suppose that W ∈ C1,1(Rn), that
W is 1-periodic:

W (τ + ζ) = W (τ) for any τ ∈ Rn, ζ ∈ Zn,

the minima of W are attained at the integers:

W (ζ) = 0 for any ζ ∈ Zn and that W (τ) > 0 for any τ ∈ Rn \ Zn.

the minima of W are “nondegenerate”: there exist
r ∈ (0, 1/4], c0 ∈ (0,1) and C0 ∈ (1,+∞) such that

c0 |τ |2 ≤W (τ) ≤ C0 |τ |2 for any τ ∈ Br .
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Mathematical framework

The particular equation that we consider is

L(Q)(x) + a(x)∇W (Q(x)) = 0 for any x ∈ R.

To make a simple and concrete example, we stick to the
case in which

a(x) := a1 + a2 cos(εx),

with ε > 0 to be taken suitably small and a1 > a2 > 0.
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When n = 1, L = (−∆)s and ε = 0:

(−∆)s(Q) + W ′(Q) = 0.

Heteroclinic solutions connecting two consecutive integers
have been constructed in different papers by Cabré and
Solà-Morales (s = 1

2); Cabré and Sire (s ∈ (0,1));
Palatucci, Savin and Valdinoci (s ∈ (0,1)).

where u0 is a given function independent on ε and smooth enough.
In order to identify a limit model as ε goes to zero, we also make the following assumption

||W ε − W ||C1(R) → 0 as ε → 0 (2.10)

for some new potential W satisfying the following assumption:
Assumption (A1) {

The potential W satisfies (Ã1) i), ii), iii)
iv) (Non degenerate minima): α := W ′′(0) > 0.

In (2.10), we use the C1 norm, because this is the first derivative of the potential that appears in the

equations. Remark that condition (2.10) can be fulfilled, if we assume for instance that W̃ satisfies assumption

(Ã1) with δ = δε << ε. We also make the following assumption on the stress:
Assumption (A2)
There exists a constant C > 0 such that

|σ| + |σx| + |σxx| ≤ C for all x ∈ R.

3 The Peierls-Nabarro model

3.1 Description of the PN model

In this section we introduce the Peierls-Nabarro model, which is a phase field model (see [20] for a presentation
of this model). In this model, phase transitions describe the dislocation cores. We set

Ω =
{
X = (X1, X2) ∈ R2, X2 > 0

}
.

A function u0(X, t) is said to be a solution of the PN model, if it satisfies the following system

⎧
⎪⎪⎨
⎪⎪⎩

0 = ∆u0 on Ω × (0, +∞)

u0
t = 2ε2σ (ε2X1) − W ′(u0) +

∂u0

∂X2
on ∂Ω × (0, +∞)

(3.1)

with initial data
u0(X, 0) = u0(X) for all X ∈ ∂Ω. (3.2)

The stationary version of this model has been originally introduced in order to propose a method to compute
at the equilibrium a finite stress created by a dislocation. In this model, u0 is the phase transition. For instance,
for a edge dislocation with Burgers vector e1 as presented in Section 2, u0 is a transition between the value
0 on the left to the value 1 on the right (see Figure 3). In the special case u0

t = 0 = σ and for sinusoidal
potentials W , the stationary solution u0 is known explicitely (see for instance [7]), which makes the PN model
very attractive. Let us mention that a physical and numerical study of the evolution problem (3.1) has been
treated in [25].

u
1

0

0 x1
Figure 3: Phase transition for a edge dislocation with Burgers vector e1 for X2 = 0

6

Stefania Patrizi



Main result

L(Q)(x) + a(x)∇W (Q(x)) = 0 for any x ∈ R. (1)

Theorem

Let ζ1 ∈ Zn and N ∈ N. There exist ζ2, . . . , ζN ∈ Zn and
b1, . . . ,b2N−2 ∈ R, with bi+1 ≥ bi + 3 for all i = 1, . . . ,2N − 3, and a
solution Q∗ of (1) such that

ζi+1 6= ζi for any i ∈ {1, . . . ,N − 1},

lim
x→−∞

Q∗(x) = ζ1, sup
x∈(−∞,b1]

|Q∗(x)− ζ1| ≤
1
4
,

sup
x∈[b2i ,b2i+1]

|Q∗(x)− ζi+1| ≤
1
4

for all i = 1, . . . ,N − 2,

sup
x∈[b2N−2,+∞)

|Q∗(x)− ζN | ≤
1
4

and lim
x→+∞

Q∗(x) = ζN .
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A chaotic trajectory.

ζ

ζ

1

2
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Motivations

For local equations, the local counterpart of our result is a
celebrated result in:

Paul H. Rabinowitz, Periodic and heteroclinic orbits for a
periodic Hamiltonian system, Ann. Inst. H. Poincaré Anal.
Non Linéaire, 6(5):331–346, 1989.

Important related results by: Rabinowitz, Coti-Zelati, Séré,
Bessi, Maxwell; Bolotin, MacKay, Berti, Bolle....

Our estimates are uniform for s ∈ (s0,1), for any s0 >
1
2 , so

that we recover the results by Rabinowitz as s → 1−.
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Strategy of the proof

Both local and nonlocal case share the variational idea of
looking for constrained minimal orbits and then proving that
they are in fact unconstrained.
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N = 2: Heteroclinic solutions

Constrained minimizer:
Define the energy functional

I(Q) :=

∫∫

R×R
K (x−y)

∣∣Q(x)−Q(y)
∣∣2dxdy+

∫

R
a(x)W (Q(x))dx .

Given ζ1, ζ2 ∈ Zn, b1,b2 ∈ R with b2 > b1 + 3, and a small
r > 0 one minimizes the energy I(Q) in the set

Γ(ζ1, ζ2,b1,b2) :=
{

Q : R→ Rn s.t. Q is measurable,

Q(x) ∈ Br (ζ1) for a.e. x ∈ (−∞,b1],

Q(x) ∈ Br (ζ2) for a.e. x ∈ [b2,+∞)
}
.
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N = 2: Heteroclinic solutions

The goal is to construct solutions that emanate from a fixed
ζ1 ∈ Zn as x → −∞ and approach a suitable ζ2 ∈ Zn \ {ζ1}
as x → +∞.

More precisely, fixed ζ1 6= ζ2 ∈ Zn we consider the
minimizer Q∗ = Qζ1,ζ2

∗
Let

Iζ1 := inf
ζ2∈Zn\{ζ1}

I(Qζ1,ζ2
∗ ).

and define A(ζ1) the family of all ζ2 ∈ Zn attaining such
minimum. Then A(ζ1) consists of a finite number of integer.
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N = 2: Heteroclinic solutions

If ζ2 ∈ A(ζ1), then the constrained minimizer that connects ζ1
and ζ2 is actually a free minimizer:

Theorem

Let s0 ∈
(1

2 ,1
)

and s ∈ [s0,1). There exist ε∗ > 0 and
b2 > b1 ∈ R, possibly depending on n, s0 and the structural
constants of the kernel and the potential, such that if ε ∈ (0, ε∗],
the following statement holds.
Let ζ1 ∈ Zn and ζ2 ∈ A(ζ1).
Then Qζ1,ζ2

∗ is a solution of

L(Q)(x) + a(x)∇W (Q(x)) = 0 for any x ∈ R.
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N = 2: Heteroclinic solutions

b b
1 2

ζ1

2
ζ

a

a

Figure: The role of the modulating function a (below), compared with
a trajectory with transition too close to b1 and its translation (above).
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Glueing functions

To prove that the constrained minimizer is unconstrained, we
have to build competitors, by glueing functions.

Let L : (T1, x0]→ Rn and R : [x0,T2)→ Rn. Define

V (x) :=

{
L(x), x ∈ (T1, x0]

R(x) x ∈ (x0,T2)

How do we estimate the nonlocal energy of V in (T1,T2) in
terms of the nonlocal energies of L and R respectively in
(T1, x0) and (x0,T2)?
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Glueing functions

Given an interval J ⊆ R, it is convenient to introduce the
notation

EJ(Q) :=

∫∫

J×J
K (x − y)

∣∣Q(x)−Q(y)
∣∣2 dx dy . (2)

For instance, we have that ER = E .

With this notation, we are able to glue two functions L
and R at a point x0:

V (x) :=

{
L(x), x ∈ (T1, x0]

R(x) x ∈ (x0,T2)

under the additional assumption that

[L]C0,1([x0−β,x0])
≤ η and [R]C0,1([x0,x0+β])

≤ η,
for some η > 0, where

β ∈ (0,min{T2 − x0, x0 − T1}]
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Glueing functions

Indeed, in this case, one can prove the following estimate

E(T1,T2)(V )− E(T1,x0)(L)− E(x0,T2)(R)

≤ C
(
η2 β3−2s +

‖L‖L∞((T1,x0),Rn) + ‖R‖L∞((x0,T2),Rn)

β2s−1

)
,

for some C > 0.
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A notion of clean intervals and clean points

Definition

Given ρ > 0 and Q : R→ Rn, we say that an interval J ⊆ R is a
“clean interval” for (ρ,Q) if |J| ≥ | log ρ| and there exists ζ ∈ Zn

such that
sup
x∈J
|Q(x)− ζ| ≤ ρ.

Definition

If J is a bounded clean interval for (ρ,Q), the center of J is
called a “clean point” for (ρ,Q).
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Glueing functions at clean points

Let Q∗ be an optimal trajectory connecting the integers ζ1 and
ζ2.

Lemma
There exists ρ∗ > 0, possibly depending on n and the structural
assumptions of the kernel and the potential, such that if
ρ ∈ (0, ρ∗] the following statement holds.
Let ζ1 ∈ Zn and ζ2 ∈ A(ζ1). Assume that there exists ζ ∈ Zn

and a clean point x0 ∈ (b1,b2 − 1) such that Q∗(x0) ∈ Bρ(ζ),
then

ζ ∈ {ζ1, ζ2}.
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Glueing functions at clean points

We glue the optimal trajectory Q∗ to a linear interpolation with
the integer ζ, close to Q∗(x0), namely consider

V (x) :=





Q∗(x) if x ≤ x0 − 1,
Q∗(x0) (x0 − x) + ζ (x − x0 + 1) if x ∈ (x0 − 1, x0),

ζ if x ≥ x0.

In this way, and taking ρ > 0 suitably small, we know that Q∗ is
ρ-close to an integer in [x0 − 2β, x0 + 2β], with

β = β(ρ) =
| log ρ|

2
.

In particular, Q∗ is solution of our equation in [x0 − 2β, x0 + 2β].
Consequently,

[Q∗]C0,1([x0−β,x0+β])
≤ C

(
1
β2s + ρ

)
,
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Glueing functions at clean points

This says that in this case we can take η := C
(

1
β2s + ρ

)
and

get the bound

E(T1,T2)(V ) ≤ E(T1,x0)(Q∗) + oρ(1),

where oρ(1)→ 0 as ρ→ 0. If

ζ 6∈ {ζ1, ζ2},

then
∫ +∞

−∞
a(x)W (V (x))dx <

∫ +∞

−∞
a(x)W (Q∗(x))dx − c.

Therefore, we obtain
I(V ) < I(Q∗)

which contradicts the fact that Q∗ is an optimal trajectory.
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Chaotic orbits

b b b b2j 2j+1 2j+32j+2

ζ

ζ

ζ

j

j+1

j+2

Figure: Glueing Q∗ with the heteroclinic joining ζj+1 to ζj+2.
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A chaotic trajectory.
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ζ
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