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Our model problems are:
Problem 1 — Elliptic setting
F(D?u) = f(x) in Bi;

Problem 2 — Parabolic setting

us — F(D?u) = g(x,t) in B x(—1,0)=: Q.



Introduction some assumptions

We work under the following assumptions:

1. The operator F is assumed to be (A, A)—elliptic



Introduction some assumptions

We work under the following assumptions:
1. The operator F is assumed to be (A, A)—elliptic, i.e.,
AN < F(M+ N) — F(M) < A|IN][,

for any M, N € §(d), N >0



Introduction some assumptions

We work under the following assumptions:
1. The operator F is assumed to be (A, A)—elliptic, i.e.,
AN < F(M+ N) — F(M) < A|IN][,

for any M, N € S(d), N > 0;

2. The function f : B; — R is continuous



Introduction some assumptions

We work under the following assumptions:

1. The operator F is assumed to be (A, A)—elliptic, i.e.,
AN < F(M+ N) — F(M) < A|IN][,
for any M, N € §(d), N > 0;

2. The function f : By — R is continuous.

3. The function g : By x (—1,0) — R is continuous



Introduction some assumptions

We work under the following assumptions:

1. The operator F is assumed to be (A, A)—elliptic, i.e.,
AN < F(M+ N) — F(M) < A|IN][,
for any M, N € §(d), N > 0;

2. The function f : By — R is continuous.

3. The function g : By x (—1,0) — R is continuous.

Continuity of the source term: in line with the theory of
continuous viscosity solutions



Introduction some assumptions

We work under the following assumptions:

1. The operator F is assumed to be (A, A)—elliptic, i.e.,
AIN|| < F(M+ N) = F(M) < A|IN|,

for any M, N € §(d), N > 0;
2. The function f : By — R is continuous.
3. The function g : By x (—1,0) — R is continuous.
Continuity of the source term: in line with the theory of

continuous viscosity solutions; however, our results depend on f or
g through their norms in appropriate Lebesgue spaces.
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Krylov and Safonov (79, 80): linear elliptic equations in
nondivergence form;

Harnack inequality and regularity C1©, for some
a € (0,1), unknown;

Linearization argument: fully nonlinear case;

Sharpness: best regularity in the absence of further
structures.

Evans (82) and Krylov (83, 84): convexity assumptions on F;

Solutions to F(D?u) = 0 are locally a priori C>, for
some « € (0,1), unknown;

Theory of classical solutions;
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Elliptic setting - W?P-estimates

Caffarelli (89): launches the foundations of the W?P regularity

theory for
F(x,D?u) = f(x) in By;

1. F(xo, M) is convex (concave) with respect to M, for every xp;

2. For xg € By fixed, F(xo, M) and F(x, M) are close:

|F(x0, M) — F(x, M)]
i

Br(x0,x) == sup
MeB @

is such that
18F (<05 Ml 1omy) < 1.
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Swiech (97): studies regularity of solutions in WP,

Builds upon W?P regularity for
F(x,D?u) = f(x) in B
to produce W?P estimates for the solutions of

F(x,u,Du,D?u) = f(x) in By;

Uniqueness of solutions.

Winter (09): Sobolev regularity up to the boundary.
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Parabolic case - former advances

1t+a

Krylov and Safonov (79, 80): regularity in C1T% 2
The exponent o € (0, 1) is universal;

Scaling (renormalization) affects the regularity.

o 2+a
Krylov (84): regularity in C27% 72" ;
Convexity assumption on the operator.

Tso (90): produces an ABP estimate;

Wang (92, 92a, 92b): extends Caffarelli's perspective to the
parabolic setting;
Harnack inequality, regularity in Holder spaces;
Assumes g € LP(Bj) and proves estimates in
W2LP(By).

loc
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Regularity of solutions - counterexamples

Nadirashivili & VIadut (07, 08, 11): solutions may exhibit
unbounded Hessians, failing to be of class C1!;

Even more surprising : fix 0 < 7 < 1;

Fr-, (A A) — elliptic,

whose solutions fail to be of class C17;

Dong & Kim (14): examples of linear elliptic operators, with
piecewise constant coefficients, for which W?P estimates are not
available;

Caffarelli & Stefanelli (08): parabolic case — solutions may fail to
be of class C%1.
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Approximation argument: the recession function

Aims at relating a given problem to an auxiliary one, through a
genuinely geometric structure;

Caffarelli's argument relating F(x, D?u) to F(xg, D?u);

At the core: to build a path touching the original problem and
connecting it to an auxiliary, model-problem;

Various manners to design such a path: we focus on the idea of
recession function.
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The recession function - definition

Let
F:S(d)—R

be a fully nonlinear elliptic operator;
The recession function associated with F, denoted by F*, is
defined by the limit
F*(M) := lim F,(M) = lim puF (u= ' M);
(M) = lim Fu(M) = lim juF (=" M);

n—0

From the heuristic viewpoint, F* encodes the behavior of F at the
ends of S(d).
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A graphical representation
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Example 1 - Eigenvalue g-momentum operator

Let g € 2N + 1 and consider:

Fq(M) = q()\l,...,)\d) = Z(1+>\7)1/q o

Easily one computes:

d
Zu+Aq ud—Z)\

Hence: Fg is the Laplacian operator.
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Example 2 - Perturbation of the special Lagrangian
equation

Let 0 < ag,....,cg < 400 and consider:

d
F(M) = Z (ajAj + arctan ;).
i=1

As before, one computes:

d

F (M) = (14 ai) A

i=1

Therefore: F* is a perturbation of the Laplacian operator.
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Regularity in W2P(B) - elliptic setting

Theorem (P. & Teixeira, J. Math. Pures Appl., 16)

Let u € C(B1) be a viscosity solution to

F(D?u) = f(x) in B
Suppose that f € LP(By), for p > d and F* has Cj;2(B1)
estimates.

Then, u € W2P(B;) and

loc
lellwese ) < € (Ilulieqay + 1Fllioy ) -

where C > 0 is a universal constant.
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A few remarks

1. The constraint p > d can be slightly relaxed;

There exists € > 0 so that one may require p > d — ¢
Escauriaza's exponent;

2. Variable coefficients, provided

|F*(M,x) — F*(M,xo0)|
BF+(x0,x) :== sup
(0.) MeS(d) 1+ M

satisfies
1BF=(x05 )l oy < 1
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Main ideas behind the proof

Standard results in harmonic analysis and measure theory;

Control norms in W?P by the decay rates of certain sets;
. . . 2,6 )

Universal estimates in W 7(B1);

loc

Finer decay rates: regime-switching from ¢ to p;

1. Cll-estimates: competing inequality;

2. Made rigorous by means of an Approximation Lemma
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Approximation Lemma
Proposition
Let u € C(By) be a viscosity solution to
F.(D?u) = f(x) in Bi.

Suppose that f € LP(By), for p > d and F* has C,lo’i(Bl)
estimates.
Given § > 0, there exists € > 0 such that, if

w1l < &
there exists h € C,lo’i(Bl), solution to
F*(D*u) =0 in By,

satisfying
lu = hlloos, ) < 0
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Improved regularity

Corollary

Let u € C(By) be a viscosity solution to
F(D?u) = f(x) in B.
Suppose that f € p — BMO(By), for p > d and F* is convex.

Then, u € ¢ — BMO(By) and there exists a universal constant
C >0, so that

lellg-smo(z, ) < € (Iulimiy + 1Flo-suomy)

for g > 1.
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Density result

Corollary
Let u € C(B1) be a viscosity solution to

F(D?u) = f(x) in B.

Suppose that f € LP(Bl) for p > d. Given § > 0, there exists a
sequence (Up)neN € W, P(B1)NS(A —4,A+ 4, f), converging
locally uniformly to w.

Main idea of the proof: the sequence (up)nen solve
F"(D?u,) = f(x) in B,

where
F"(M) := max{F(M), Ls(M) — C,}

Ls(M) := (N +9) Ze, (A — 5)Ze,.

>0 <0

with
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Theorem (Castillo & P.)

Let u € C(Q1) be a viscosity solution to
uy — F(D?u) = g(x,t) in Q.

Suppose that g € LP(Qy), for p > d + 1 and F* has C,lo’g;l(Ql)
estimates.

Then, u; and D?u are in Lﬁ)c(Ql) and

lutllio(oys) + 110%ulliogqy < € (Ilullieiany + lEllircn))

where C > 0 is a universal constant.
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Regularity in g-BMO spaces: the parabolic setting

Corollary (Castillo & P.)

Let u € C(Q1) be a viscosity solution to
uy — F(D?u) = g(x,t) in Q.

Suppose that g € p — BMO(Q1), for p>d + 1 and F* has
Cro( Q) estimates.

loc

Then, u; and D?u are in g — BMO(Qy/>) and

2
”uthfBMO(Q:l/z)—i_HD qu—BI\/IO(Ql/Q) <C <HUHL°°(QI) + HqufBMO(Ql)>

for g > 1.
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Escauriaza's parabolic exponent

Proposition

Let u € C(Q1) be a nonnegative viscosity solution to
uy — F(D?u) = g(x,t) in  Q,

for r > 0. Then, there exists C > 0 and €, > 0 such that

< Clinfu+ 2 |f|
Supu S INT u r q Ld+1—a , .
Qr/2 Q’/2 P(Q)

Corollary
Sobolev regularity follows under the condition p > d + 1 — ¢,.



Universal modulus of continuity

Theorem (Castillo & P.)
Let u € C(Q1) be a viscosity solution to

us — F(D?u) = g(x,t) in Q.

Then, we have u € C,O;C’T(Ql) and the following estimate is
satisfied:

N N (e |yf\|Ld+l_E,,(Ql)],
where

. . d — 2¢
of =alldis) = g
p
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Main ingredients of the proof

Step 1 It suffices to verify the existence of a sequence (£,),en such
that

k d725p
sup|u — &p| < p TR,

QK

Step 2 The case k = 1: approximation lemma;

Step 3 Suppose the case k = m has been verified; introduce

u(p™?x, p™t) —
(e, £) 1= AT .
pmd+1—6P

Step 4 Study the equation v,, satisfies and conclude the case
k=m+ 1.
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Concluding remarks

1. Recession strategy produces an approximation strategy;

2. Allows us to modify the operator outside of a large ball:
density results;

3. Recession strategy preserves ellipticity;
4. Further insights into ellipticity-invariant objects;

5. Concrete example: Escauriaza's exponent.



Thank you very much



