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phase problems.
Daniela De Silva
Department of Mathematics, Barnard College, Columbia University,
New York, NY 10027 desilva@math.columbia.edu
Sandro Salsa
Dipartimento di Matematica del Politecnico di Milano, Piazza
Leonardo da Vinci, 32, 20133 Milano, Italy. sandro.salsa@polimi.it

Fausto Ferrari Università di Bologna

.....



Introduction The problem Existence of solutions Strong regularity Higher regularity From C1,γ to C2,γ

Abstract.
In this talk I will deal with some recent results, obtained with Daniela
De Silva and Sandro Salsa, about C1,γ regularity and higher regularity
of free boundaries of solutions of some non-homogeneous elliptic two
phase problems.
Daniela De Silva
Department of Mathematics, Barnard College, Columbia University,
New York, NY 10027 desilva@math.columbia.edu
Sandro Salsa
Dipartimento di Matematica del Politecnico di Milano, Piazza
Leonardo da Vinci, 32, 20133 Milano, Italy. sandro.salsa@polimi.it

Fausto Ferrari Università di Bologna

.....



Introduction The problem Existence of solutions Strong regularity Higher regularity From C1,γ to C2,γ

The two phase problem



∆u = f+ in B+
1 (u),

∆u = f− in B−1 (u),

u+
ν = G(u−ν ) on F(u) := ∂B+

1 (u) ∩ B1.

(1)

Here B1 is the unit ball in Rn, centered at the origin, G is an
increasing function such that G(0) > 0, f± ∈ C (B1) ∩ L∞ (B1) ,

B+
1 (u) := {x ∈ B1 : u(x) > 0}, B−1 (u) := {x ∈ B1 : u(x) ≤ 0}◦.

u+
ν and u−ν denote the normal derivatives in the inward direction to

B+
1 (u) and B−1 (u) respectively.
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Motivations

This type of problem arises in a number of applied contexts: the
Prandtl-Bachelor model in fluid-dynamics (see e.g. [B1],[EM]), the
eigenvalue problem in magnetohydrodynamics ([FL]), or in flame
propagation models ([LW]).
B=Batchelor; EM= Elcrat-Miller; FL=Friedman-Liu;
LW=Lederman-Wolanski
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A bounded 2-dimensional domain is delimited by two simple closed
curves γ,Γ.
For given constants µ < 0, ω > 0, consider functions ψ1, ψ2
satisfying

∆ψ1 = 0 in Ω1, ψ1 = 0 on γ, ψ1 = µ on Γ,

∆ψ2 = ω in Ω2, ψ2 = 0 on γ.

and Ω1 := {ψ1 > 0},Ω2 := {ψ2 < 0}.
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Prandtl-Batchelor flow configuration
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ψ1, ψ2 represent respectively: the stream functions of an irrotational
flow in Ω1 and of a constant vorticity flow in Ω2.
In the model proposed by Batchelor (coming from the limit of large
Reynold number in the steady Navier-Stokes equation).
For the flow of this type is hypothesized that there is a jump in the
tangential velocity along γ, namely

|∇ψ2|2 − |∇ψ1|2 = σ

for some positive constant σ.
γ had to be determined = Free boundary.
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History (recent)

Homogeneous case, i.e. f± = 0 : strong regularity properties of the
f.b., Louis Caffarelli, [C1],[C2].
Existence of Lipschitz viscosity solutions, [C3] based on [ACF].
Inhomogeneous case: Lipschitz regularity was obtained by Caffarelli,
Jerison and Kenig in [CJK].
Further results on homogeneous free boundary problem see for
example: [F1,F2, CFS, FS1,Fe1, W1, W2, MT].
In the case of the non-homogeneous setting: [DFS, DFS2,DFS3,
DFS4, DFS5(submitted)]
DFS=Daniela De Silva, F., Sandro Salsa
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Results

I Existence of Lipschitz viscosity solutions and weak regularity
properties of the free boundary.

I Strong regularity results.
I Higher regularity results for the free boundary.
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Definitions

x0 ∈ F(u) is regular from the right (resp. left) if there is a ball
B ⊂ B+

1 (u) (resp. B−1 (u)), such that B ∩ F(u) = {x0}.
ν = ν (x0) denotes the unit normal to ∂B at x0, pointing towards
B+

1 (u).
Definition of viscosity solution of the f.b.p.
u ∈ C(B1) is a viscosity solution of f.b.p. (1) and for
G(η) =

√
1 + η2 if:

i). ∆u = f+ in B+
1 (u) and ∆u = f− in B−1 (u);

ii). u satisfies the f. b. condition in the following sense:
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1). If x0 ∈ F(u) is regular from the right with tangent ball B then

u+(x) ≥ α〈x− x0, ν〉+ + o(|x− x0|) in B, with α ≥ 0

and

u−(x) ≤ β〈x− x0, ν〉− + o(|x− x0|) in Bc, with β ≥ 0

with equality along every nontangential domain, and
α2 − β2 ≤ 1.

2). If x0 ∈ F(u) is regular from the left with tangent ball B, then

u−(x) ≥ β〈x− x0, ν〉+ + o(|x− x0|) in B, with β ≥ 0

and

u+(x) ≤ α〈x− x0, ν〉− + o(|x− x0|) in Bc, with α ≥ 0

with equality along every nontangential domain, and
α2 − β2 ≥ 1.
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Definition of F
A function w ∈ F if w ∈ C(B1) and:
i) w is a solution to{

∆w ≤ f+ in B+
1 (w),

∆w ≤ f−χ{w<0} in B−1 (w).

ii) If x0 ∈ F(u) is regular from the left, then, near x0,

w+ ≤ α〈x− x0, ν (x0)〉+ + o(| x− x0 |), α ≥ 0,

w− ≥ β〈x− x0, ν (x0)〉− + o(| x− x0 |), β ≥ 0,

with
α2 − β2 < 1.

iii) If x0 ∈ F(w) is not regular from the left, then near x0,

w(x) = o(|x− x0|).

Fausto Ferrari Università di Bologna

.....



Introduction The problem Existence of solutions Strong regularity Higher regularity From C1,γ to C2,γ

Minorant subsolution

We say that a locally Lipschitz function u, defined in B1, is a minorant
if:
a) u is a weak solution to

∆u ≥ f+ in B+
1 (u)

∆u ≥ f−χ{u<0} in B−(u).

b) Every x0 ∈ F(u) is regular from the right and near x0,

u− ≤ β〈x− x0, ν (x0)〉+ + o(| x− x0 |),

u+ ≥ α〈x− x0, ν (x0)〉− + o(| x− x0 |),

with
α2 − β2 > 1.
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Consider the problem,
∆u = f+ in B+

1 (u) ,

∆u = f−χ{u<0} in B−1 (u) ,

|∇u+|2 − |∇u−|2 = 1 on F (u) := ∂B+
1 .

(2)
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Theorem ([DFS2])
Let φ be a continuous function on ∂B1 and u be a minorant of our free
boundary problem, with boundary data φ. Then

u = inf{w : w ∈ F , w ≥ u in B1}

is a locally Lipschitz viscosity solution to (2) such that u = φ on ∂B1,
as long as the set on the right is non-empty. The free boundary F(u)
has finite (n− 1)-dimensional Hausdorff measure and there exist
universal positive constants c,C, r0 such that for every r < r0 and
every x0 ∈ F(u),

crn−1 ≤ Hn−1(F(u) ∩ Br(x0)) ≤ Crn−1.

Moreover, if F∗ (u) denotes the reduced part of F (u),

Hn−1(F(u) \ F∗(u)) = 0.
Fausto Ferrari Università di Bologna
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Theorem (Flatness→ C1,γ , [DFS])
Let u be a solution of our n.h.f.b. problem. There exists a universal
constant δ̄ > 0 such that, if 0 ≤ δ ≤ δ̄ and

{xn ≤ −δ} ⊂ B1 ∩ {u+(x) = 0} ⊂ {xn ≤ δ}, (δ − flatness) (3)

then F(u) is C1,γ in B1/2, with γ universal.

Theorem
Let u be a solution of our n.h.f.b. problem. If F(u) is a Lipschitz graph
in B1, then F(u) is C1,γ in B1/2, with γ universal.
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Then the basic step in the improvement of flatness.
Let

Uβ (t) = αt+ − βt−, β ≥ 0, α = G (β) ≡
√

1 + β2

and ν is a unit vector which plays the role of the normal vector at the
origin. Uβ (x · ν) is a so-called two plane solution.
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The strategy of flatness improvement works nicely in the one phase
case (β = 0) or as long as the two phases u+, u− are, say, comparable
(nondegenerate case).
The difficulties arise when the negative phase becomes very small but
at the same time not negligible (degenerate case.) In this case the
flatness assumption gives a control of the positive phase only, through
the closeness to a one plane solution U0 (xn) = x+

n .
For simplicity we describe the nondegenerate situation.
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Lemma (Main[DFS])
Let u satisfy (1) and

Uβ(xn − ε) ≤ u(x) ≤ Uβ(xn + ε), in B1, 0 ∈ F(u),

with 0 < β ≤ L and
||f ||L∞(B1) ≤ ε2β.

If 0 < r ≤ r0 for r0 universal, and 0 < ε ≤ ε0 for some ε0 depending
on r, then

Uβ′(x · ν1 − r
ε

2
) ≤ u(x) ≤ Uβ′(x · ν1 + r

ε

2
) in Br, (4)

with |ν1| = 1, |ν1 − en| ≤ C̃ε, and |β − β′| ≤ C̃βε for a universal
constant C̃.
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Consequence
Assume the lemma above holds. To prove the Theorem "Flatness
→ C1,γ" in hypotheses of flatness conditions.
We rescale considering a blow up sequence

uk (x) =
u (ρkx)

ρk
ρk = r̄k, x ∈ B1 (5)

for suitable r̄ ≤ min
{

r0,
1
16

}
, ε̃ ≤ ε0 (r̄), as required
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We iterate to get, at the kth step,

Uβk(x · νk − ρkεk) ≤ uk(x) ≤ Uβk(x · νk + ρkεk) in Bρk ,

with εk = 2−kε̃, |νk| = 1, |νk − νk−1| ≤ C̃εk−1,

|βk − βk−1| ≤ C̃βk−1εk−1, εk ≤ βk ≤ L.
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Note that in the non-degenerate case, β ≥ ε̃, at each step we have
the correct inductive hypotheses.
Starting with β = β0 ≥ ε0 = ε̃, if k ≥ 1 and βk−1 ≥ εk−1, then

βk ≥ βk−1(1− C̃εk−1) ≥ 2−k+1ε̃
(
1− C̃2−k+1ε̃

)
≥ 2−kε̃ = εk.
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Thus, since
fk (x) = ρkf (ρkx) , x ∈ B1

(recall that η̄ = ε̃3)

‖fk‖L∞(B1) ≤ ρkε̃
3 ≤ ε̃2

kβk = ε̃2
k min {αk, βk} .

The figure below describes the step from k to k + 1.
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Improvement of flatness (here ρk = 2−k)Fausto Ferrari Università di Bologna
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This implies that F (u) is C1,γ at the origin. Repeating the procedure
for points in a neighborhood of x = 0, (all estimates are universal), we
conclude that there exists a unit vector ν∞ = lim νk and C > 0,
γ ∈ (0, 1], both universal, such that, in the coordinate system
e1, ..., en−1, ν∞, ν∞⊥ej, ej · ek = δjk, F (u) is C1,γ graph, say
xn = g (x′) , with g (0′) = 0 and∣∣g (x′)− ν∞ · x′∣∣ ≤ C

∣∣x′∣∣1+γ

in a neighborhood of x = 0.

Fausto Ferrari Università di Bologna

.....



Introduction The problem Existence of solutions Strong regularity Higher regularity From C1,γ to C2,γ

Proof of Lemma (Main)[DFS]

We argue by contradiction.
Step 1. Fix r ≤ r0, to be chosen suitably. Assume that for a sequence
εk → 0 there is a sequence uk of solutions of our free boundary
problem in B1, with right hand side fk such that
‖fk‖L∞(B1) ≤ ε2

k min{αk, βk}, and

Uβk(xn − εk) ≤ uk(x) ≤ Uβk(xn + εk) in B1, 0 ∈ F (uk) , (6)

with 0 ≤ βk ≤ L, αk =
√

1 + β2
k , but the conclusion of Lemma

(Main) does not hold for every k ≥ 1.

Fausto Ferrari Università di Bologna

.....



Introduction The problem Existence of solutions Strong regularity Higher regularity From C1,γ to C2,γ

Construct the corresponding sequence of renormalized functions

ũk(x) =


uk(x)−αkxn

αkεk
, x ∈ B+

1 (uk) ∪ F(uk)

uk(x)−βkxn
βkεk

, x ∈ B−1 (uk).

Up to a subsequence βk → β̃ so that αk → α̃ =

√
1 + β̃2. At this

point we need compactness to show that the graphs of ũk converge in
the Hausdorff distance to a Hölder continuous ũ in B1/2. The
compactness is provided by the Harnack inequality stated in the
following Theorem (Harnack)

Fausto Ferrari Università di Bologna
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Theorem (Harnack type, [DFS])

Let u be a solution of our f.b.p. in B1 with Lipschitz constant L. There
exists a universal ε̃ > 0 such that, if x0 ∈ B1and u satisfies the
following condition:

Uβ (xn + a0) ≤ u (x) ≤ Uβ (xn + b0) in Br (x0) ⊂ B1 (7)

with ‖f‖L∞(B2) ≤ ε2 min{α, β}, 0 < β ≤ L, and 0 < b0 − a0 ≤ εr
for some 0 < ε ≤ ε̃, then

Uβ (xn + a1) ≤ u (x) ≤ Uβ (xn + b1) in Br/20 (x0)

with a0 ≤ a1 ≤ b1 ≤ b0 and b1 − a1 ≤ (1− c) εr and 0 < c < 1
universal.

Fausto Ferrari Università di Bologna
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Corollary (Harnack type, [DFS])

Let u satisfies at some point x0 ∈ B2

Uβ(xn + a0) ≤ u(x) ≤ Uβ(xn + b0) in B1(x0) ⊂ B2, (8)

for some 0 < β ≤ L, with b0 − a0 ≤ ε, and let
||f ||L∞(B2) ≤ ε2 min{α, β}, 0 < β ≤ L holds, for ε ≤ ε̄, ε̄ universal.
Let us define in B1(x0),

ũε(x) =


u(x)−αxn

αε , in B+
2 (u) ∪ F(u)

u(x)−βxn
βε , in B−2 (u)

Then for all x ∈ B1(x0), with |x− x0| ≥ ε/ε̄

|ũε(x)− ũε(x0)| ≤ C|x− x0|γ .
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Indeed, if u satisfies (7) with, say r = 1, then we can apply Harnack
inequality repeatedly and obtain

Uβ(xn + am) ≤ u(x) ≤ Uβ(xn + bm) in B20−m(x0),

with
bm − am ≤ (1− c)mε

for all m’s such that
(1− c)m20mε ≤ ε̄.
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This implies that for all such m’s, the oscillation of the renormalized
functions ũk in Br(x0), r = 20−m, is less than (1− c)m = 20−γm = rγ .
Since in the proof of Lemma (Harnack type),

−1 ≤ ũk(x) ≤ 1, for x ∈ B1,

Fausto Ferrari Università di Bologna

.....



Introduction The problem Existence of solutions Strong regularity Higher regularity From C1,γ to C2,γ

we can implement previous corollary and use Ascoli-Arzela theorem
to obtain that as εk → 0 the graphs of the ũk converge (up to a
subsequence) in the Hausdorff distance to the graph of a Hölder
continuous function ũ over B1/2.
Thus the improvement of flatness process in the nondegenerate case
can be concluded.
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Step 2: Transmission problem.
ũ solves the "linearized problem" (α̃ 6= 0){

∆ũ = 0 in B1 ∩ {xn 6= 0},
α̃2(ũn)+ − β̃2(ũn)− = 0 on B1 ∩ {xn = 0}. (9)

Fausto Ferrari Università di Bologna
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Moreover according with the following result

Theorem (Regularity of the transmission problem)

Let ũ be a viscosity solution to (9) in B1 such that ‖ũ‖∞ ≤ 1. Then
ũ ∈ C∞

(
B̄±1
)

and in particular, there exists a universal constant C̄
such that

|ũ(x)− ũ(0)− (∇x′ ũ(0) · x′ + p̃x+
n − q̃x−n )| ≤ C̄r2, in Br (10)

for all r ≤ 1/2 and with α̃2p̃− β̃2q̃ = 0.

Fausto Ferrari Università di Bologna
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Step 3 (Contradiction). We can prove the last step.
We can show that (for k large and r ≤ r0)

Ũβ′k
(x · νk − εk

r
2

) ≤ ũk(x) ≤ Ũβ′k
(x · νk + εk

r
2

), in Br

where again we are using the notation:

Ũβ′k
(x) =


Uβ′k

(x)−αkxn

αkεk
, x ∈ B+

1 (Uβ′k
) ∪ F(Uβ′k

)

Uβ′k
(x)−βkxn

βkεk
, x ∈ B−1 (Uβ′k

).

Fausto Ferrari Università di Bologna
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This will clearly imply that

Uβ′k
(x · νk − εk

r
2

) ≤ uk(x) ≤ Uβ′k
(x · νk + εk

r
2

), in Br

leading to a contradiction with the assumption that the thesis of the
Lemma (Main) is false.

Fausto Ferrari Università di Bologna
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Indeed, recalling the Theorem (Regularity of the transmission
problem), it is sufficient to show that in Br :

Ũβ′k
(x · νk − εk

r
2

) ≤ (x′ · ν ′ + p̃x+
n − q̃x−n )− Cr2

and

Ũβ′k
(x · νk + εk

r
2

) ≥ (x′ · ν ′ + p̃x+
n − q̃x−n ) + Cr2.

This can be shown after some elementary calculations as long as
r ≤ r0, r0 universal, and ε ≤ ε0 (r) .
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Theorem ([DFS5 submitted])
Let u be a (Lipschitz) viscosity solution to (1) in B1. There exists a
universal constant η̄ > 0 such that, if

{xn ≤ −η} ⊂ B1 ∩ {u+(x) = 0} ⊂ {xn ≤ η}, for 0 ≤ η ≤ η̄,
(11)

then F(u) is C2,γ∗ in B1/2 for a small γ∗ universal, with the C2,γ∗

norm bounded by a universal constant.
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Theorem ([DFS5 submitted])
Let k be a nonnegative integer. Assume that f± ∈ Ck,γ (B1). Then
F (u) ∩ B1/2 is Ck+2,γ∗ . If f± are C∞ or real analytic in B1, then
F (u) ∩ B1/2 is C∞ or real analytic, respectively.
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We exploit an idea contained in a paper by Kinderlehrer, Nirenberg,
Spruck ([KNS]).
For σ small, the partial hodograph map

y′ = x′, yn = u+(x)

is 1− 1 from B+
1 (u) ∩ Bσ (0) onto a neighborhood of the origin

U ⊂ {yn ≥ 0}, and flattens F(u) into a set Σ ⊂ {yn = 0}.
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The inverse mapping is the partial Legendre transformation

x′ = y′, xn = ψ(y),

where ψ satisfies yn = u+ (y′, ψ (y)) , y ∈ U. The free boundary is the
graph of xn = ψ (y′, 0).
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Differentiating we get

dyn =
(
∇′u+ + ∂xnu+∇′ψ

)
· dy′ + ∂xnu+∂ynψdyn

from which

∂xnu+ (y, ψ (y)) =
1

∂ynψ (y)
, ∇′u+ (y, ψ (y)) = −∇

′ψ (y)

∂ynψ (y)

in U.
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Moreover ∆u+ = f+ transforms into

F1(ψ) :≡ −
∂ynynψ

(∂ynψ)3 +

n−1∑
j=1

(
−∂yj

∂yjψ

∂ynψ
+
∂yjψ

∂ynψ
∂yn

∂yjψ

∂ynψ

)
= f+(y′, ψ(y))

in U.
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Concerning the negative part, let C be a constant larger than

∂ynψ =
1

∂xnu+ (y′, ψ (y))

on Σ.
Introduce the reflection map

x′ = y′, xn = ψ(y)− Cyn,

which is 1− 1 from a neighborhood of the origin U1 ⊆ U onto
B−1 (u) ∩ Bσ (0) (choosing σ smaller, if necessary).
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Define in U1
φ(y) = u−(y′, ψ(y)− Cyn).

Differentiating we get

∇′φ ·dy′+∂ynφdyn = (∇′u−+∂xnu−∇′ψ) ·dy′+∂xnu−(∂ynψ−C)dyn

from which
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∂xnu− =
∂ynφ

∂ynψ − C
, ∇′u− = ∇′φ−

∂ynφ

∂ynψ − C
∇′ψ.

The equation ∆u− = f− in B−1 (u) ∩ Bσ (0) transforms into the
equation
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F2(φ, ψ) ≡ 1
∂ynψ − C

∂yn

(
∂ynφ

∂ynψ − C

)
+

n−1∑
j=1

∂yj

(
∂yjφ−

∂ynφ

∂ynψ − C
∂yjψ

)

−
n−1∑
j=1

∂yjψ

∂ynψ − C
∂yn

(
∂yjφ−

∂ynφ

∂ynψ − C
∂yjψ

)
= f−(y′, ψ(y)− Cyn)

in U1.
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Thus, in U1 we have the following nonlinear system{
F1(ψ) = f+(y′, ψ(y))
F2(φ, ψ) = f−(y′, ψ(y)− Cyn).

(12)

The free boundary conditions

u+ = u− and |∇u+|2 − |∇u−|2 = 1, on F(u)

become
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

φ(y′, 0) = 0

1 + |∇′ψ(y′, 0)|2

(∂ynψ(y′, 0))2 −
(∂ynφ(y′, 0))2

(∂ynψ(y′, 0)− C)2

−||∇′φ(y′, 0)− ∂nφ(y′,0)
∂yn−C ∇

′ψ(y′, 0)||2Rn−1 = 1.

Fausto Ferrari Università di Bologna

.....



Introduction The problem Existence of solutions Strong regularity Higher regularity From C1,γ to C2,γ

That is, after a simple computation,
φ(y′, 0) = 0

(
1 + |∇′ψ(y′, 0)|2

)( 1

(∂ynψ(y′, 0))2 −
(∂ynφ(y′, 0))2

(∂ynψ(y′, 0)− C)2

)
= 1.
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Linearization at y = 0 gives (setting A = C − ∂ynψ(0),)

L1(ψ) = |∇u+(0)|2∂ynynψ +
∑n−1

k=1 ∂ykykψ = 0,

L2(ψ, φ) =
1

A2∂ynynφ+
∑n−1

k=1 ∂ykykφ

−|∇u−(0)|
(

1
A2∂ynynψ +

∑n−1
k=1 ∂ykykψ

)
= 0,

B1(φ) = φ = 0

B2(ψ, φ) =

(
|∇u+(0)|3 +

1
A
|∇u−(0)|2

)
∂ynψ −

1
A
|∇u−(0)|∂ynφ = 0.
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This system is elliptic with coercive boundary conditions under the
natural choices of weights s1 = s2 = 0 and t1 = t2 = 2 for L1 and L2
and r1 = −2, r2 = −1 for B1 and B2, respectively. Indeed

orderLj = sj + tj = 2 (j = 1, 2)

and
orderB1 = t1 + r1 = 0, orderB2 = t2 + r2 = 1.

The theorem follows from the results of [ADN] see [M].
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Given ω ∈ Rn, with |ω| = 1, and
let Sω be an orthonormal basis containing ω.
Let M ∈ Sn×n satisfy

Mω = 0

and define
PM,ω(x) = x · ω − 1

2
xTMx.

Let α > 0, β ≥ 0, a, b ∈ Rn. We define

Vα,βM,ω,a,b (x) = α(1 + a · x)P+
M,ω (x)− β(1 + b · x)P−M,ω (x) .
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These are our two-phase polynomials,
one-phase if β = 0.
In the particular case when M = 0, a = b = 0, ω = en we obtain the
two-plane function:

Uβ(x) = αx+
n − βx−n .

The unit vector ω establishes the “direction of flatness”.
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We shall need to work with a subclass, strictly related to problem (1),
at least at the origin. We denote by Vf± the class of functions of the
form Vα,βM,ω,a,b for which

2αa · ω − αtrM = f+(0)

2βb · ω − βtrM = f−(0) if β 6= 0,

α2 − β2 = 1, if β 6= 0,

and
α2a · ω⊥ = β2b · ω⊥, ∀ω⊥ ∈ Sω.
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The role of the last condition is to make Vα,βM,ω,a,b an “almost" viscosity
subsolution.
When β = 0, then there is no dependence on b and a · ω⊥ = 0. Thus,
we drop the dependence on β, b and f− in our notation above and we
indicate the dependence on aω := a · ω.
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We introduce the following definitions.

Definition ([DFS5])
Let V = Vα,βM,ω,a,b. We say that u is (V, ε, δ) flat in B1 if

V(x− εω) ≤ u(x) ≤ V(x + εω) in B1

and

|a|, |b′|, ‖M‖ ≤ δε1/2, |bn| ≤ δ2, |bn|‖M‖ ≤ δ2ε.
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Definition ([DFS5])
Let V = Vα,βM,ω,a,b. We say that u is (V, ε, δ) flat in Br if the rescaling

ur(x) :=
u(rx)

r

is (Vr,
ε
r , δ) flat in B1.

Notice that if u is (V, ε, δ) flat in Br then

V(x− εω) ≤ u(x) ≤ V(x + εω) in Br.

The parameter ε measures the level of polynomial approximation and
δ is a flatness parameter (also controlling the C0,γ norms of f+ and
f−).
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To obtain uniform point wise C2,γ∗ regularity both for the solution
and the free boundary in B1/2 we have to show that u is (Vk, λ

2+γ∗

k , δ)

flat in Bλk for λk = ηk and all k ≥ 0, for some δ, η small and a
sequence of Vk converging to a final profile V0.
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The starting point in the proof of Theorem 8 is to show that the
flatness condition (3) allows us to normalize our solution so that a
rescaling ur̄ of u is close to a one or two-phase polynomial. This kind
of dichotomy parallels in a sense what happens in the flatness to C1,γ

case but at a quadratic order of approximation. Set

ur(x) :=
u(rx)

r
, f±r(x) = rf±(rx), x ∈ B1.
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Lemma
There exist universal constants ε̄, δ̄, λ̄ such that if u satisfies (3) with
η̄ = η̄(ε̄) then either of these flatness conditions holds with r̄ = r̄(ε̄).

1. Non-degenerate case: ur̄ is (V, λ̄2+γ , δ̄) flat in B1, with
V = Vα,β0,en,a,b ∈ Vf± , a′ = b′ = 0, β ≥ 1

2 δ̄
1/2λ̄2+γ , and

|f+ r̄(x)− f+ r̄(0)| ≤ δ̄|x|γ |f− r̄(x)− f− r̄(0)| ≤ βδ̄|x|γ .

2. Degenerate case: u+
r̄ is (V, λ̄2+γ , δ̄) flat in B1, for

V = V1
0,en,an

∈ Vf+ ,

|u−r̄ +
1
2

f− r̄(0)x2
n| ≤ δ̄1/2λ̄2+γ in B−1 (ur̄)

and
‖f− r̄‖∞ ≤ δ̄, |f± r̄(x)− f± r̄(0)| ≤ δ̄|x|γ .
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We describe the dichotomy as follows.
Case 1. (nondegenerate configuration). The two phases have
comparable size and ur̄ is trapped between two translations of a
genuine two-phase polynomials, with a positive slope β (not too

small).
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Case 2. (degenerate configuration). The negative phase that has either
zero slope or a small one (but not negligible) with respect to u+

r̄ , and
u+

r̄ is trapped between two translations of a one-phase polynomial.
Note that this situation cannot occur if f− ≥ 0 unless u− is identically
zero.
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Next we examine how the initial flatness corresponding to cases 1 and
2 above improves successively at a smaller scale.
We construct the following two “subroutines”, to be implemented in
the course of the final iteration towards C2,γ∗ regularity.
The first one provides a two-phase C2,γ flatness improvement: if u is
(V, λ̄2+γ , δ̄) flat in Bλ then u is (V̄,

(
ηλ̄
)2+γ

, δ̄) flat in Bλ̄η, with V̄
close to V . This result applies to the non-degenerate case.
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Theorem
Two-phase flatness improvement. There exist η̄, δ̄, λ̄ universal, such
that, if for β > 0

u is (V, λ2+γ , δ̄) flat in Bλ, λ ≤ λ̄ (13)

with V = Vα,βM,en,a,b ∈ Vf±,,

|f+(x)− f+(0)| ≤ δ̄|x|γ , |f−(x)− f−(0)| ≤ βδ̄|x|γ (14)

and ∣∣∇u+
∣∣2 − ∣∣∇u−

∣∣2 = 1 on F(u) ∩ B2/3λ

then
u is (V̄, (η̄λ)2+γ , δ̄) in Bη̄λ (15)

with V̄ = V ᾱ,β̄M̄,ν̄,ā,b̄ ∈ Vf± and |β − β̄| ≤ Cλ1+γ for C universal.
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The second one provides a one-phase flatness improvement.
It will be used with the degenerate case, i.e. when the flatness of the
free boundary only guarantees closeness of the positive part u+ to a
quadratic profile. More precisely if u+ is (V, λ̄2+γ , δ̄) flat in Bλ and
|∇u+| is close to α on F (u), then u+ enjoys a C2,γ flatness
improvement, with V̄ close to V.

Fausto Ferrari Università di Bologna

.....



Introduction The problem Existence of solutions Strong regularity Higher regularity From C1,γ to C2,γ

Theorem
There exist η̄, δ̄, λ̄ such that if for β = 0

u+ is (V, λ2+γ , δ̄) flat in Bλ, λ ≤ λ̄ (16)

with V = VαM,en,an
∈ Vf+ ,

|f+(x)− f+(0)| ≤ δ̄|x|γ (17)

and
|
∣∣∇u+

∣∣− α| ≤ δ̄1/2λ1+γ on F(u) ∩ B2/3λ, (18)

in the viscosity sense, then

u+ is (V̄, (η̄λ)2+γ , δ̄) flat in Bη̄λ (19)

with V̄ = VαM̄,ν̄,āν̄ ∈ Vf+ .
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The achievement of the improvements above relies on a higher order
refinement of the Harnack inequalities. This gives the necessary
compactness to pass to the limit in a sequence of renormalized
functions of u of the type (e.g. in the genuine two-phase case)

ṽε(x) =


v(x)− α(1 + a · x)PM,en

αε
, x ∈ B+

1 (u) ∪ F(u)

v(x)− β(1 + b · x)PM,en

βε
, x ∈ B−1 (u), β > 0

0, x ∈ B−1 (u), β = 0.

(20)
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and obtain a limiting transmission or Neumann problem. From the
regularity of the solution of this problem we get the information to
improve the two-phase or one-phase approximation for u or u+

respectively, and hence their flatness.
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Now we can start iterating. As we have seen, according to Case 1
above, after a suitable rescaling, we face a first dichotomy
“degenerate versus nondegenerate”.
In the latter case the two-phase subroutine of Proposition 13 can be
applied indefinitely to reach pointwise C2,γ∗ regularity for some
universal γ∗.
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When u falls into the degenerate case a new kind of dichotomy
appears. First of all, to run the one-phase subroutine in Proposition
14 we need to make sure that the closeness of u− to a purely quadratic
profile makes u+ to be a (viscosity) solution of a one-phase free
boundary problem with |∇u+

ν | close to an appropriate α on F (u) . At
this point two alternatives occur at a smaller scale:
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D1 : either u− is closer to a purely quadratic profile at a proper C2,γ

rate and u+ enjoys a C2,γ flatness improvement;

D2 : or u− is closer (at a C2,γ rate) to a one-phase polynomial profile
with a small non-zero slope but u+ only enjoys an
“intermediate” C2 flatness improvement.

Fausto Ferrari Università di Bologna

.....



Introduction The problem Existence of solutions Strong regularity Higher regularity From C1,γ to C2,γ

To give a precise statement it is convenient to introduce a new class
Qf− of functions, defined as

Qp,q,ω,M = (x · ω − 1
2

xTMx)(p + q · x)− 1
2

(f−(0) + ptrM)(x · ω)2,

with p ∈ R, q ∈ Rn,M ∈ Sn×n, such that

q · ω = 0, Mω = 0, ‖M‖ ≤ 1.
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In the degenerate case, we use these functions to approximate u− in a
C2,γ fashion at a smaller and smaller scale. We have the following
facts.
There exist universal constants λ̄, δ̄, η̄ such that if

u+ is (V, λ2+γ , δ̄) flat in Bλ, λ ≤ λ̄ (21)

with V = V1
M,en,an

∈ Vf+ ,

|f±(x)− f±(0)| ≤ δ̄|x|γ , ‖f−‖∞ ≤ δ̄ (22)

and
|u− − Q0,0,en,0| ≤ δ̄1/2λ2+γ , in B−λ (u) (23)

then either one of the following holds:
D1. There exists V̄ = V1

M̄,ē,āē
∈ Vf+ , such that

u+ is (V̄, (η̄λ)2+γ , δ̄) flat in Bη̄λ, (24)
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and
|u− − Q0,0,ē,0| ≤ δ̄1/2(η̄λ)2+γ , in B−η̄λ(u); (25)

D2. There exists V∗ = Vα
∗

M∗,e∗,a∗e∗
∈ Vf+ , such that

u+ is (V∗, η̄2λ2+γ , δ̄) flat in Bη̄λ,

and
|u− − Qp∗,q∗,e∗,M∗ | ≤ δ̄1/2(η̄λ)2+γ , in B−η̄λ(u),

for (α∗)2 − (p∗)2 = 1 and
p∗ < 0, |p∗| ∼ (δ̄1/2λ1+γ), |q∗| = O(δ̄1/2λγ).
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If D1 occurs indefinitely we are done. If it does not, we prove that the
intermediate improvement in D2 is kept for a while, at smaller and
smaller scale. The final and crucial step is to prove that, at a given
universally small enough scale, the C2,γ one-phase approximation of
u−, together with the intermediate C2 flatness improvement of u+, is
good enough to recover a full C2,γ∗ two-phase improvement of u with
a universal γ∗ < γ.
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More precisely, at the beginning u+ is (V, λ̄2+γ , δ̄) flat while u− is
C2,γ close to a pure quadratic profile. This closeness improves at a
C2,γ rate until (possibly) the slope of the approximating polynomial Q
is no longer zero, say at scale λ. However, to obtain the desired full
flatness of u, we need to reach a scale ρ = λr for r ∼ λ1+1/γ .
It is necessary to exploit also the information that the flatness of u+ is
in fact improving at a C2 rate for a little while, hence allowing us to
continue the iteration on the negative side and to obtain that u− is
C2,γ close to a nondegenarate configuration at an even smaller scale.
We have seen that in the case of the C1,γ estimates this issue is not
present. The key result is the following:
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Theorem
There exist λ̄, δ̄, γ∗ universal such that if

u+ is (V, r2λ2+γ , δ̄) flat in Brλ, λ ≤ λ̄

with V = VαM,en,an
∈ Vf+ , for r such that δ̄1/2rγ ∈ [2η̄γλ1+γ , 2λ1+γ),

and
|u− − Qp,q,en,M| ≤ δ̄1/2(rλ)2+γ , in B−rλ(u),

for α2 − p2 = 1 and p < 0, |p| ∼ δ̄1/2λ1+γ , |q| = O(δ̄1/2λγ), then

u is (V̄, (rλ)2+γ∗ , δ̄) flat in Brλ

with V̄ = Vα,βM,en,a,b ∈ Vf± , β = |p|.
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From this point on we can go back to the two-phase subroutine to
reach pointwise C2,γ∗ regularity.
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