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Optimal Transport Problems

Given a cost functional ¢(y, x) on some product measure space Xp x X1, and
two probability measures 1 on Xy and v on Xj, we consider the optimal
transport problem and its dual:

inf { .y c(y,x))dmm € K(p,v)}

— sup{ / $1(x) d(x) — / do(y) dpu(y); 1.0 € K(0)},

> K(u,v) is the set of probability measures = on X, x X; whose marginal
on Xy (resp. on Xi) is i (resp., v) (the transport plans).

» K(c) is the set of functions ¢¢ € L'(Xy,v) and ¢o € L'(Xo, ) such that
d1(X) — go(y) < c(y,x) forall (y,x) e Xo x Xi.

» Pairs of functions in K(c) can be assumed to satisfy

$1(x) = inf c(y,x) + do(y) and ¢o(y) = sup ¢1(x) — c(y, X).
YEXy XEX4

Say that ¢o (resp., ¢1) is an initial (resp., final) Kantorovich potential.

Nassif Ghoussoub, University of British Columbia Optimal Mass transport as a natural extension of classical mechanics to



Quadratic cost-Brenier Theorem

Minimizing for c(y, x) = 3|y — x|?. Same as maximixing for b(y, x) = (y, x).

sup { (y,x)dmm e K(p,v)}

M x M*
—inf{ [ o1 av(x)+ [ anly) duly)i o1,00 € K(@)},
M* M
that is ,over all ¢1, ¢o such that
$1(x) + do(y) > (y,x) forall (y,x) € M x M*.

o1(x) = sup{(y, x) — ¢o(y); ¥ € M} = ¢5(x) (Legendre transform of ¢y).
An optimal 7 is supported on the set

{(y,x) € M x M™; 65 (x) + ¢o(y) = (X, 1)},

hence on the graph of the subdifferential of a convex function d¢y.
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Two dynamic costs

Given a Lagrangian L: [0, T] x M x M* — R,
The fixed-end cost on M x M
T
cr(y, x) = inf{/ L(t,7(1), () dt;y € C'([0, T), M);4(0) = x,7(T) = y}
0

and the ballistic cost on M* x M

;
br(v, x) :=inf{{v, 7(0)>+/0 L(t. (1), (1) dt; v € C([0, T), M); 7(T) = x},
are both formally solutions to (HJ).

Actually, for a given function g, the value function

Vy(t, x)

inf { g(+(0)) + /0 L(s.7().4(5)) ds: 7 € C'([0, T), My (1) = x}.
V0.x) = g(x).
is formally a solution of the Hamilton-Jacobi equation,
(HJ) OV + H(t,x,VxV)=0 on]0,T] x M,
where H is the associated Hamiltonian on [0, T] x T*M, i.e.,

H(t, y,x) = sup{{v,x) — L(t,y, v)}.
veTM
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Hopf-Lax and Dual Hopf-Lax formula

Both costs can be seen as "Kernels" that can be used to generate general
solutions for (HJ).

» General Hopf-Lax—Lower kernel:
Vo(t, x) = inf{g(y) + c(t,y.X): y € M}
» General Dual Hopf-Lax formula—Upper kernel:
Vo(t, x) = sup{b(t,v,x) — g"(v); ve M"}

provided the Lagrangian L is jointly convex and the initial function
g is convex.

» Classical Hopf-Lax and Dual Hopf-Lax formulae
If L(x, v) = Lo(v) and Lo convex, then

ey, x) = tLo(%|x —yl) and  by(v,x) = (v,x) — tHo(v).
and
Vo(t, ) = inf{g(y) + tho( 1x — yI): y € M} = (g + tH6)"

When defined, the upper kernel is much better than the lower kernel.
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Ballistic cost satisfies two H-J equations

» One consequence is that the Legendre transform of the value functional
x — Vy(t, x) :=inf{g(y) + c(t,y, x); y € M} is another value functional

Vo- (t,w) = inf{g" (v) + E(t, v, w); v € M"},
which yields that

b(t, v, x) =inf{{v,y)+c(t,y, x); y € M} = sup{{w, x)—¢&(t,v,w),w € M"}.

» So, x — b(v, x) was a "solution" of the HJ equation

Otb+ H(t,x,Vxb) = 0 on [0,T]x M,
bo(x) = (v.x).
» Now v — b(v, x) is also a solution for another H-J equation:
Ob—H(t,Vyb,v) = 0 on [0,T]x M,
br(v) = (v,x).
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The Optimal Transport Problem for fixed-end cost

The associated transport problem is

C'r(l/()7 I/T) = |nf{ CT(V7 X) dm; w € ’C(V(), IJT)}.
MxM

Theorem (Bernard-Buffoni & Fathi-Figalli): Under suitable assumptions on L.
1. The following duality holds:

Cr(vo, vr) = sup{ /M S7(x) dvr(x) — /M 6o(y) dvo(y): ¢ solution of (HJ)}.

{ otd+ H(t,x,Vx¢) = O0on[0,T]x M,
¢(O,X) = ¢0(X),

2. There exists a function ¢ : M — R such that
Crtvavr) = [ orly.x" @iy, Tuy))du(),
M

where &/ is the Hamiltonian flow from O to T.
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The Ballistic Optimal Transport Problem

The associated transport problems will be

E'r(,u,o7 Z/T) = SUp{ bT(V7 X) drm, € K:(/J,(), I/T)},
M*xM

ET(M(),I/T) = |nf{ bT(V,X) dm; w e IC(,uo,l/T)},
M*xM
where o (resp., vr) is a probability measure on M* (resp., M), and K(uo, v1)
is the set of probability measures = on M* x M whose marginal on M* (resp.
on M) is uo (resp., vr) (the transport plans).
Note that when T = 0, we have by(x, v) = (v, x), which is exactly the case
considered by Brenier, that is

W (o, o) := sup{ (v, x) dm; m € K(po, v0)},
M*xM

W(uo, o) :=inf{ (v, x)dm; © € K(uo,10)},
M*xM

This is the dynamic version of the Wasserstein distance.
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One of the Kantorovich Potentials is nice

Br(po, o) : = inf{ b(v, x)) dm; 7 € K(uo,vr)}
M*xM

SUD{/¢>1(X ) dvr(x / do(Vv) duo(v); 1,00 € K(b)}.
The Kantorovich functions in (c) can be assumed to satisfy

G100) = 0t b(v,x) +go(v) and go(v) = SUp 1 (x) — b(Y. X).

v

br(v, x) is concave in v and convex in x. It is also Lipschitz continuous.

v

In the case of B (uo, v7), the initial Kantorovich potential ¢q is convex,
though nothing can be said about ¢1.

v

For Br(uo, v1), the final potential is convex. Nothing can be said for ¢1.

v

Even though c(y, x) is jointly convex, nothing can be said about the
Kantorovich potentials of Cr(uo, 07) including the case where
L(x,v) = |v|P (p > 1), thatis when ¢ (y, x) = |x — y|P.
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Minimizing Map for Ballistic Cost

Theorem (A): Under suitable assumptions on the Lagrangian L. Let uo, v7 be
probabilities on M*, M such that p is absolutely continuous with respect to
Lebesgue measure. Then,

1. The following duality holds:

Brluor) = sup{ [ or(dur(0+ [ do(v)dhov)

¢o concave & ¢; solution of (HJ)} .

{ Otp+ H(t,x,Vx¢) = O0on[0,T]x M,
#(0, x) bo(X),
2. There exists a concave function ¢, : M — R and a bounded locally

Lipschitz vector field X(x, t) : Mx]0, T[— M) such that, if
oL (s, 1) €]0, T[2 is the flow of X from time s to time ¢, then

Br(po,vr) = br(v, ®§ o Vo(v)duo(v).
M*

Brlpo.vr) = [ br(v,w of(Vio(v), v)ua(v).
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A dual cost function

» Introduce another cost functional
T
er(u,v) = inf{/ L(t,v(),4(t)) dt;y € C'([0, T), M);7(0) = u,v(T) = v},
0

The new Lagrangian L is defined on M x M* by
L(t,x,p) := L*(t,p,x) = sup{(p,y)+(x, @)~ L(t,¥,9): (¥,q) € MxM"}.
The corresponding Hamiltonian is H; is then given by

Hl(xvy) = 7H(Y7X)'

» Recall Bolza’s duality: (P) = —(P), where
(P)  inf{Jy L(x(s),4(s)) ds + £(7(0),7(T)) over all y € C'([0, T), M)}
and its dual
(75) inf{fOT [(7(3)7 4(s)) ds + £*(v(0), —(T)) over all v € C! ([0, T),M).}

This has several consequences
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Maximizing Map for Ballistic Cost

Theorem (B): Under suitable assumptions on the Lagrangian L. Let uo, v be
probabilities on M*, M such that vr is absolutely continuous with respect to
Lebesgue measure. Then,

1. The following duality holds:

Brun.vr) = int{ [ 300dbr(0+ [ vo(v) duo(v
17 convex & v solution of (dual-HJ)} .
{ Oy — H(Vyp,v) = O0onl0,T]x M,
(T, v) = ¢r(v),

2. There exists a convex function v : M — R and a bounded locally
Lipschitz vector field Y(x, t) : Mx]0, T[— M) such that, if
Wi (s, 1) €]0, T[? is the flow of Y from time s to time t, then

Br(uo,vr) = /M br(v, V" o W3 (v)duo(v)
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Hopf-Lax Formula for the minimal cost

Theorem (C): Assume M = RY and that L satisfies hypothesis (A1), (A2) and
(A3), and let po (resp. vr) be a probability measure on M* (resp., M). If uo is
absolutely continuous with respect to Lebesgue measure, then

1. The following Hopf-Lax formula holds:
By (0, vr) = int{W(po,v) + Cr(v,vr); v € P(M)}.

2. The infimum is attained at some probability measure vy on M.
3. The initial Kantorovich potential for Cr(vo, v7) is concave.

e Worth noting: If L(x, v) = §|v[? (i.e., c(y, x) = %|x — y[?), the initial
Kantorovich potential for Cr(vo, v7) is then of the form

do(y) =9(y) — %\y|2 where g is a convex function.

But ¢ can still be concave if 0 < D?g < I, which is what occurs above in (3).
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Reverse Hopf-Lax Formula

However this formula doesn't lift:
c(t,y,x) = sup{b(t,v,x) — (v,y);v € M'}.

Theorem (D): Assume vy and v are probability measures on M such that v
is absolutely continuous with respect to Lebesgue measure. Then, TFAE:
1. The initial Kantorovich potential of Cr (v, vr) is concave.

2. The following holds:
Cr(vo,vr) = sup{Br(u,v1) = W(wo, )i p € P(M")}.

and the sup is attained at some probability measure 1o on M*.

Corollary: Consider the cost c(y, x) = ¢(x — y), where c is a convex function
on M and let vy, 1 be probability measures on M such that the initial
Kantorovich potential associated to Cr(vo, v7) is concave. Then, there exist
concave functions ¢o : M — R and ¢1 : M* — R such that

Ci(vo,11)—K = / o(V10Vdo(y)—y)duo(y) = /M (Vo1(9)~Vo(y).y) duo(y),

where K = K(c) is a constant and ¢ is the concave Legendre transform of ¢.
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Brenier-Benamou Type formula

Theorem (E): For fixed probability measures po on M* and vt on M,
e As a function of the end measure:

)
By(no,vr) = inf{ﬂ(#o,ﬂo)Jr | [ w0 decoat (Q,W)GP(O,T;I/T)}

where P(0, T; vr) is the set of pairs (o, w) such that t — o € P(M),
t — w: € R" are paths of Borel vector fields such that

oo+ V-(ew) = 0 inD'((0,T)x M)
or = vr.
e As a function of the initial measure:
.
Br(uo.vr) = sup { W(vr, pr) - / / L (x, we(x)) deu(x)clt; (0. w) € P(0, T o)
0 M
where P(0, T; o) is the set of pairs (g, w) such that
{ Oo+V-(ow) = 0 inD’((O, T) x M)
Qo = Mo
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Lifting a value function to a value function on Wasserstein space

Started with ¢o(y) = (v, y) and defined b, (t, x) as a Value functional

bt = int{m(0)+ [ L(s.7(9).4(5)) d: 7 € ([0, T), M) (1) = x}
= inf {¢o(y) +c(y, x);y € M} (Hopf — Lax formula).
It satisfies the Hamilton-Jacobi equation on M.
Otb+ H(t,x,Vxb)=0 on|0,T] x M,
We then lifted b, to Wasserstein space by defining B, (t,v) = B,(uo, v).
By, (t,v) = inf{{W(uo,?)+ Ci(?,v); v € P(M)} (Hopf — Lax formula)

t
inf{l, (00) +/ Lo, w)dt; (0, w) € P(0, t; v)}(Value functional )
0

1. Do they satisfy a Hamilton-Jacobi equation on Wasserstein space?
2. Do they provide solutions to mean field games?
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Under technical conditions

(Ambrosio-Feng) (at least in a particular case): Value functionals on
Wasserstein space yield a unique metric viscosity solution for

B+ H(t,v,V.B(t,1n)) =0,
B(O’ V) = ﬂ(,uo, V)
Here the Hamiltonian on Wasserstein space is defined as

H(v,C) = sup} / (€. €y — L(v,€); € € TH(P(M))}

(Gangbo-Swiech) Value functions on Wasserstein space with suitable initial
data yield solutions to the so-called Master equation for mean field games
without diffusion and without potential term.

Theorem (Gangbo-Swiech) Assume Uy : P(M) = R, Up : M x P(M) — R are
such that Vqlo(q, 1) = V,.Uo(1)(q) Vg € M p € P(M), and consider the
value functional,

t
M(L V) (Q,W)g}’(o,t;u)/o [/(97 W)dt+UO(QO)

Then, there exists U : [0, T] x M x P(M) — R such that
VqUi(q, 1) = Vulhi(p)(q) Vg €M p e P(M).
and U satisfies the Master equation (but without diffusion)
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Mean Field Equation

This yields the existence for any probabilities .o, 7, a function
B:[0, T] x M x P(M) — R such that

ViB(t, X, n) = VuByuo(t, n)(X) VX € M p € P(M).
There exists p € AC?((0, T) x P(M)) such that
OB+ [(VuB(t, X, 1) - VH(X, ViB)) dp + H(x, Vx(t, x, n)) = 0,
A+ V(pVH(x,VxB3)) = 0,
B(0,-,-)=Bo, p(T,)=vrr,

where So(X, p) = ¢,(x), where ¢, is the convex function such that V¢,
pushes o into p.

What about solutions to mean field games that include diffusions?
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Stochastically dynamic mass transport

~pug XEA XT~vT

-
B (uo,vr) = jnf _inf Ep{(V,X0)+/O L(t,X(t),ﬁ(t,X))dt},

where A is the class of all R?-valued continuous semimartingales (X:)o<i<t
on a complete filtered probability space (2, F, (Ft), P) such that there exists
a Borel measurable 8x : [0, T] x C([0, T]) — R satisfying

1. w — Bx(t, w)is B(C(]0, t]))+-measurable for all t, where B(C(][0, t])
denotes the Borel o-field on C([0, t]).

2. X(t) = X(0) + [y Bx(s, X) ds + Wx(t), where Wx(t) is a
o[X(s); 0 < s < {]-Brownian motion.

The fixed end measures cost has been studied by Mikami, Thieulin, Leonard.

-
C?—(l/o7 Z/T) = infEp {/ I_(t, X(t),ﬂ(t, X)) at; X € A, X(O) ~ Z/o,X(T) ~ I/T} s
0
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Theorem (F): Under suitable conditions on L
1. Duality:

Bi(uor) = sup{ [ o100 dur(0+ [ Go(v) dua(v);
¢o concave & ¢; solution of (HJB)} .

{ od+ 30¢+ H(t,x,Vxp) = 0onl0,T] x M,
¢(O7X) = ¢0(X)7

2. For any probability measure v on M, we have
T
B (u0.0) = int {Weao,po)+ [ [ Lit.x. b))t (2.0) € P(0.Tin)
0 M

where P(0, T; vr) is the set of pairs (o, b) such that t — o € P(M),
t — br € R" are paths of Borel vector fields such that

{8;9—%Ap+v-(gb) = 0 inD'((0,T) x M)
or = v

Nassif Ghoussoub, University of British Columbia Optimal Mass transport as a natural extension of classical mechanics to



Diffusive Mean Field Games

There exists 5 : [0, T] x M x P(M) — R and p € AC?((0, T) x P(M)) such
that

8fﬁ - %AﬁJrf(V#,ﬁ'(t,X,,u) : VH(X7 VX/B)> d/L+ H(t7X7 VXB(taX7 ,LL)) = 07
8!0 - %AP + v(va(t7 X, VXﬁ)) = 07
5(07'7'):ﬁ07 ‘D(T,'):l/'['7

where 5o(x, p) = ¢,(x), where ¢, is the convex function such that V¢,
pushes o into p.
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