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1. Introduction

Proposal: Study maximum principles and principal eigenvalues for

F(x,D?u) + Aulul** =0 inQeRVN
(EVP) { u=20 on 02

where F = F(x, A) is continuous with F(x,0) = 0 and
@ homogeneous of degree k in A € S(N);

e elliptic in the sense of Krylov [TAMS'95]; increasing in A
along ©(x) € S(N) an elliptic set for each x € Q

Define \] (F,©) as the sup over A € R for which there is a
negative subsolution of (EVP).

© Do suitably defined supersolutions satisfy a minimum principle
for A < \] (F,0)?
@ Exists ¢1 < 0 in Q corresponding to A = A\; (F,0)?
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Test case: k-Hessian operators

For k =1,2,..., N consider F(D?u) = Sx(D?u) defined by

Si(D?u) == oi(M(D?u)) where

oc(MA) = > Ay---X, and

1<ip < <N

AA) = (\(A), ..., An(A)) for A S(N).

o S;(D?u) = tr(D?u): "know everything” about \F*(Au) -
[Berestycki-Nirenberg-Varadhan, CPAM'94]

@ For each k there is a variational structure [Reilly, MMJ'73]

o Sy(D?u) = det (D?u): variational description of
A[ (Sk(D?u)) simple w/ convex eigenfunction 17 < 0 on Q
strictly convex w/ 9Q € C2 - [P.L. Lions, AMPA'85]

@ k=2,...,N: similar result for Q strictly (k — 1)-convex and
with k-convex 11 < 0 - [X.J. Wang, IUMJ'94]
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For k =2,...,N on Q € RN which is (k — 1)-convex and
e C?
© Characterize A\] (Sx(D?u)) by the validity of a minimum
principle.

@ Capture 11 by an iterative viscosity method for A\, A a la
[Birindelli-Demengel, CPAA’07]

In order to do this, we will:

@ encode the needed notions of k-convexity into the language of
elliptic sets © C S(N);

@ define suitable notions of admissible viscosity supersolutions;

@ exploit the boundary convexity for constructing suitable
barriers;

e follow the usual path of [BD].
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2. Notions of k-convexity

Consider the open convex cone (in R") with vertex at the origin
Mei={AeR": 0;(\) >0, j=1,....k}
and define the closed cone in S(N) by
Ok :={AcS(N): \NA) €Ty}

where A(A) = (A1(A), ..., An(A)) € RN are the evals of A
@ Oy is an elliptic set; that is, ©x C S(N) is closed, non empty
and
AcO,,P>0 = A+PcOy

@ Sy is increasing along ©y; that is, for each A€ ©,,P >0
Sk(A+ P) :=ox(AMA+ P)) > ok(A(A)) := Sk(A)

where

a(MA) = D> A,

1<ip <k <N
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k-convex functions on

o For u € C?(Q) one asks that for each x € Q,
Sk(D?u(x)) €0, (& oj(AM(D?u(x))) >0, j=1,...,k)

N.B. For k =1, N, u is subharmonic, convex respectively.

e For u e USC(R) one uses a viscosity definition: for each
xo € Q and for each ¢ € C?(Q)

u — ¢ has a local maximum in xo = Si(D?p(x0)) > 0;

or equivalently, if (p, A) € J>"u(xp) then A € O.

Lemma (Trudinger-Wang AM'99)

u € USC(Q) is k-convex in Q0 if and only if for each Q' € Q and
for each v € C?(Q) N C(Q) such that S (D?v) <0 in Q'

u<vond = u<vin.
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(k — 1)-convex domains

For Q € RN with 9Q € C? denote by (k1(y),...,xn_1(y)) the
principal curvatures at y € JQ; i.e. the eigenvalues of D%¢(y’)
where ¢ : B,(y') € RN"1 — R locally defines 9Q as a graph.

e Q is strictly (k — 1)-convex if

ok-1(k1(y),...,cn=1(y)) >0, for each y € 0Q

N.B. (N — 1)-strict convexity is ordinary strict convexity.
@ Since 0L is compact, there exists R > 0 such that

ok(k1(y), ..., kn-1(y),R) >0, foreach y e 90Q;

ie. (k1(y),.-.,kn—1(y),R) € T for each y € 0.

%
e Equivalently 02 is strictly ©-convex in the sense of
[Harvey-Lawson, CPAM'09]; expressed in terms of a local
defining function p : B,(y) € RN — R for the boundary.
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3. Minimum principle characterization of )\;

With ¢, (Q2) := {p € USC(Q) : ¢ is k-convex and ) < 0 in Q}
define the generalized principle eigenvalue A (Sk, ©y) as

sup{A € R: J¢ € &, (Q) with Sx(D?¥) + Mp[y|*~1 > 0in Q},
where the inequality is in the viscosity sense: V x € Q,p € C?(Q):
Y — p w/ local max in x = Si(D%p(x)) + Mp(x)|(x)]*t > 0.

Theorem (Birindelli-P."17)

Let Q be a strictly (k — 1)-convex domain in RN with
ke€{2,...,N}. Forevery A < A\ (Sk,©x) and for every
u € LSC(Q) admissible viscosity supersolution of

Si(D?u) + Aujulk"t =0 inQ (1)
one has the following minimum principle

u>0 ondl = u>0 InQ

<
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Admissible supersolutions of (1)

The admissibility is in the sense of [Krylov, TAMS'95]; that is,
u € LSC(RQ) is an admissible viscosity supersolution of

Sk(D*u) + Aulul*"1 =0 in Q

if for each xg € Q and for each ¢ € C?(Q) such that u — ¢ has a
local minimum (say zero) in xp then

D?*p(x0) € ©% or Sk(D*p(x0)) + Ap(x0)le(x0)* < 0. (2)
hence

Sk(D*p(x0)) + Ap(x0)e(x0)[* 1 < 0 (if D*p(x0) € ©F).  (3)

@ O}, corresponds to strict k-convexity.

o [Ishii-Lions, JDE'90] use the analog of (3) with D?¢(xg) € O
for supersolutions to Monge-Ampére equations.

@ (2) also reflects duality of [Harvey-Lawson, CPAM'09].
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Remarks on the minimum principle

@ If k is odd, then so is Sk and one has a maximum principle
characterization for A (Sk, —©y) via k-concave functions.

@ The minimum principle shows that A\] (Sk, ©k) agrees w/ the
principal eigenvalue \; of Wang'94 (Lions'85 for k = N)

A= inf {—/ uSi(D?u) dx : [ullr=1(0) = 1}
u€¢é(Q) Q
— ®5(Q) the set of strictly k-convex u € C3(Q) w/ Upn = 0.
Proof Since A1 has a k-convex principal eigenfunction 1 with

Y1 <0in Q and 1 =0 on 09,

one has A1 < Ay (Sk, ©) by definition. If Ay < A] (Sk, ©), then
11 would be an admissible supersolution of (1) with A\ = A\; and
hence 11 > 0 in £ by the minimum principle, which is absurd.
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Idea of proof for the minimum principle

Need u > 0 on Q for supersoln. with 0 < A < A\1(Sk, ©k) of
Sk(D?u) + Aujuls"1 =0 in Q. (4)

Argue by contradiction and compare u with 1) where

) < 0 subsoln. of (4) <> X € (AA]) and v e <0,7 = sup lb)
Q

@ 1) exists: the set of A\ competing for A\] (Sk, ©) is an interval.

@ o/ < oco: use semicontinuity of u, 1 away from 99 and
construct barriers near 9f2.

Find X € Q such that u(X) < 0 and

~ k
N 2 4Rl e $F < (S5) <)% @

Pick v > ~/(A\/X)Y* to contradict (5).



Barriers for S

For § > 0 small enough, there exist C;, C; > 0 such that
P(x) < —Gd(x) and u(x) > —Gd(x),

in Qs :={x € Q: d(x)=dist(x,0Q) < J}.

o Compare ¥ to w € C?(f) standard radial function in an
annular region touching 9Q (Hopf lemma).

e Easy to calculate S on radial functions w(x) = h(|x — xo|).

e Compare u to v(x) = —Mlog (1 + td(x)) with t > 2R where
R ok—1(k1(y),--.,kn-1(y),R) >0 all y € 0.

@ Easy to calculate Sk v for v = g o d in a principal coordinate
system based at yo = y(xp) with xp € Qg,:

_Iilg,(d) _K‘N—lg/(d) //(d)
1—rid 1 —kyo1d ] ’

Sk(Dzv(Xo)) =0 (

where k; = ki(y0), d = d(x0) and 1 — k;d > 0 for § small.



Ishii's Lemma and admissibility

In order to find X € Q such that (5) holds when comparing u, vy,
look at the maximum values of

Wil y) = 7lx) — aly) = Sy B (oy) €Tx T e,

@ W; <0 on the complement of Q x €.

o V;(x,x) > (v —1")¥(x) > 0 where ming u = u(X) <0, so V;
has a positive maximum in (x;, y;) € Q x Q.

@ By Ishii's lemma, 3X;, Y; € S(N) such that

. 2,4 . —2,—
U =y, Xj) € I (%)) and (j(x —yj), ¥j) € I ~qu(y;))
(g.37) = (%.%) and X; <V,
@ X; € O since 1) is k-convex and hence Y| € O, so
M) ¢ < Sk(X) < S(Y7) < Mu(y)|*

and pass to the limit to get (5).



Construction of a principal eigenfunction

We know that a negative k-convex eigenfunction )1 exists
associated to A\; = A] (Sk, ©k), but to prepare for non variational
perturbations of S; seek a maximum principle approach.

Idea: [Birindelli-Demengel] Pick {\,}peny with 0 < X, 7 AT

@ Start with up = 0 and solve inductively

Sk(Dzun) =1- )\nunfl‘unfl‘k_l =1, inQ (6)
u=20 on 0X2

for {up}tnen C C(£2) a decreasing sequence of k-convex solns.
@ The PDE in (6) is proper as u, does not appear explicitly.
@ A strong comparison principle shows that u, < 0 in .

@ Pass to the limit (along a subsequence) as n — +oco using a
uniform Hdlder bound on HUanow(ﬁ) for each n € N and
some v € (0, 1].
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An auxilliary existence and regularity result

Theorem (Birindelli-P."17)

Let Q be strictly (k — 1)-convex of class C? and let f € C(Q) be
nonnegative and bounded. There exists a unique k-convex solution

u € C(RQ) of the Dirichlet problem
Sk(D?u)=finQ and u=0 ondQ.

Moreover, ¥ ~v € (0, 1) there exists C = C(2,7, ||u|oo, ||f||c0) s-t.

lu(x) — u(xo)| < Clx — x0|7, ¥ x,x € Q. (7)

v

@ Existence for 9Q € C2 follows from the main theorem of
[Cirant-P., PM'17] sinc%strict (k — 1)-convexity implies the

_>
needed strict © , and ©, convexity since
H ~
O =0, and O, C O, = —@2.
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Holder regularity via Ishii-Lions technique (JDE'90)

Interior estimate: Fix dp > 0 for the boundary estimate (nice
tubular neighbourhood) and work in Bs(xp) €  with 26 < dp.
e Compare u(x) with vy (x) := u(xp) + C|x — xo|” where
Co67 > 2||ul|oo)-
o u < vy, on dBs(xp).
0 Sk(D?vyy(x)) = CkyKCry i) x — x0[KO2[(y — 2)k + N] and u
is k-convex s.t. Sx(D?u) = f >0
@ Use Trudinger-Wang if (y —2)k + N <0 (k > N/2) and u
(sub)solution with f > 0 otherwise.
Boundary estimate: In Q4, compare u(x) with v(x) := —Cd(x)”
with suitable C = C(do(2),7,||t||ocs ||f||oo) SO that v is k-convex
with
Sk(D?v) > [|f|lec > Sk(D?v) in Qg

Apply comparison for k-convex functions (u = 0 = v on 0Q).
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The existence theorem for 1;

Theorem (Birindelli-P."17)

Let Q be a strictly (k — 1)-convex domain of class C?. If {un}nen
is the sequence of k-convex solutions to the iteration scheme (6)
with 0 < X\, /* A{, then the normalized sequence defined by

Wn = Un/||Un||oo

admits a subsequence which converges uniformly to an
eigenfunction ¢y < 0 of Sy associated to A .

e Follow Birindelli-Demengel scheme.

@ Monotonicity from comparison principle for k-convex
functions.

@ Holder regularity above is the key.
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Concluding remarks

Where do we go from here?
@ Elements of a Fredholm theory and eigenvalue estimates.
@ Anti-maximum principles.
@ Symmetry of solutions.

e Non variational perturbations of Sx(D?u) like
Sik(D?u+ M(x)) + Aulul*"t with M e UC(Q; S(N))

considered by [Cirant-P.] and [Y.Y. Li, CPAM'90].

o The “general case” F(x, D?u) + Au|u[*~! = 0 with F(x, A)
— continuous and F(x,0) =0;
— homogeneous of degree k in A € S(N);
— F(x, A) increasing in Aalong ©:Q — & C S(N) a
uniformly continuous elliptic map;
— uniformly continuous in x € €.
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Thanks to one and allll
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