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Outline

◮ 1. Optimal Control Applied to Native-Invasive Species
Competition via a PDE Model

◮ 2. Optimal Control of the Growth Coefficient on a Steady
State Population Model
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Optimal Control

Adjust control(s) in a dynamic system to achieve a goal (objective
functional)

System:

◮ Discrete/Difference Equations

◮ Ordinary Differential Equations

◮ Partial Differential Equations

◮ Stochastic Differential Equations
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Parabolic PDEs

1. Optimal Control Applied to Native-Invasive Species Competition
via a PDE Model
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Motivating Example: Native - Invasive Species Competition

Cottonwoods (Populus deltoides)

◮ Native to Southwest

◮ Large trees, 60-100 feet tall

◮ Dominate naturally only along rivers or other areas with
surface water

◮ Rely on natural flooding of rivers

Figure: Cottonwoods
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Salt Cedar (Tamarix)

One of the most significant threats to global biodiversity is the
invasion of plants.

◮ Introduced into New Mexico in 19th century
◮ Spreading shrub or trees, long-lived (50-100 yrs), 6 to 26 feet

(2-8m) tall
◮ More tolerant of drought and fire than cottonwoods
◮ Great reproductive capability, 600, 000 seeds/yr

Figure: Salt Cedar
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Salt Cedar Distribution

Figure: Salt Cedar Distribution

http://www.columbia.edu/itc/cerc/
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Current Situation

Number of young cottonwoods along southwest rivers is declining

Restriction of overbank flooding gives salt cedars competitive
advantage over cottonwoods

Salt cedars occupy nearly every drainage system in arid areas west
of the Great Plains and have been reported in most states

Suggest that salt cedars may exclude cottonwoods
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Mathematical Models: ODEs

D. Kern, S. Lenhart, R. Miller, and J. Yong, Optimal control
applied to native-invasive population dynamics, Journal of
Biological Dynamics, 1:4 (2007) 413-426.

Our Model:

N1(x , t)− Native species (cottonwood)

N2(x , t)− Invasive species (salt cedar)

u(x , t)− Control variable (flooding)

dk
ij (x , t)− Diffusion coefficients k = 1, 2

rki (x , t)− Convective coefficients k = 1, 2

aij−Interaction coefficients indicating how species j affects species i
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The Model: State System

(N1)t =
n

∑

i ,j=1

(

d1
ij (x , t)(N1)xi

)

xj

−
n

∑

i=1

r1i (x , t)(N1)xi

+(θ1(t, u(x , t))− a11N1)N1 − a12N1N2,

(N2)t =

n
∑

i ,j=1

(

d2
ij (x , t)(N2)xi

)

xj
−

n
∑

i=1

r2i (x , t)(N2)xi

+(θ2(t, u(x , t))− a22N2)N2 − a21N1N2,

N1(x , 0) = N10(x), x ∈ Ω,

N2(x , 0) = N20(x), x ∈ Ω,

N1(x , t) = N2(x , t) = 0, ∂Ω× (0,T ).
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The Model: Cont’d

Control set

U = {u ∈ L∞(Ω× Γ) : 0 ≤ u(x , t) ≤ M},

where

Γ =

T
⋃

i=1

[σi , τi ].

The intrinsic growth rates are

θ1(t, u(x , t)) =
(

a1u
2(x , t) + b1u(x , t)

)

χΓ + c1,

θ2(t, u(x , t)) =
(

a2u
2(x , t) + b2u(x , t)

)

χΓ + c2
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Optimal Control Problem

Goal: To maximize the native species at final time subject to
balancing the minimization of the invasive species and the cost to
implement the control.

Our Objective Functional is

J(u) =

∫

Ω

(

AN1(x ,T )− BN2(x ,T )
)

dx

−

∫∫

Ω×Γ

(

B1u(x , t) + B2u
2(x , t)

)

dxdt,
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Existence of Solutions to the State System

Theorem
Given u ∈ U, there exists a unique (N1,N2) in (V × V )

⋂

L∞(Q)
solving the state system.
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Existence of an Optimal Control

Needed since maximizing sequence un converge weakly in L2 but
u2n do not converge weakly in L2.

Theorem
Suppose there exists κ ≥ 0 such that

[

a1
a2

]

= κ

[

b1
b2

]

, B1κ− B2 ≤ 0.

Then there exists an optimal control u∗ in U with corresponding
states N∗

1 ,N
∗

2 that maximizes the objective functional J(u).
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Adjoint Equations

Define the adjoint system as

L
∗

(

p

q

)

=

(

A

−B

)

,

where

L
∗

(

p

q

)

=













−pt −

n
∑

i,j=1

(

d
1
ij (x , t)pxi

)

xj

−

n
∑

i=1

r
1
i (x , t)pxi

−qt −

n
∑

i,j=1

(

d
2
ij (x , t)qxi

)

xj

−

n
∑

i=1

r
2
i (x , t)qxi













+M
T

(

p

q

)

,

M =

(

−(a1u
2 + b1u)χΓ − c1 + 2a11N1 + a12N2 a12N1

a21N2 −(a2u
2 + b2u)χΓ − c2 + 2a22N2 + a21N1

)

p = 0, on ∂Ω× (0,T ), p(x ,T ) = A, x ∈ Ω,

q = 0, on ∂Ω× (0,T ), q(x ,T ) = −B, x ∈ Ω.
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Characterization of Optimal Control

Theorem
If there exists κ ≥ 0, such that B1κ− B2 < 0, ai = κbi , i = 1, 2,
then given an optimal control u∗ and the corresponding states N∗

1

and N∗

2 , there exist solutions p and q to the adjoint system.
Moreover, let S = {(x , t) | B2 − a1N

∗

1p − a2N
∗

2q = 0} and m(S) is
the Lebesgue measure of S, then this optimal control u∗ is
characterized by the following:
(1) if m(S) > 0, then u∗ = M on S .
(2) if m(S) = 0, then for (x , t) 6∈ S ,

u∗ = min{M,max{0,
b1N

∗

1p + b2N
∗

2q − B1

2B2 − 2a1N
∗

1p − 2a2N
∗

2q
}},

and it holds on Ω× Γ a.e.
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Numerical Simulation: 1-D
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(a) Cottonwood - no control
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(b) Salt cedar - no control

Figure: Cottonwood and salt cedar without control, L=1, T=3
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(b) salt cedar

Figure: Cottonwood - Salt cedar with B2 = 5, B1 = 1
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(a) control: B2 = 5
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(b) control: B2 = 10

Figure: Control - flood: B2 = 5, 10, fix B1 = 1
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Conclusions

◮ Optimal control theory can be an appropriate tool for
designing the intervention strategy of the invasive-native
species interaction

◮ Proved existence of the optimal control when the control is
quadratic in the growth function in the PDE system under
certain conditions on the coefficients

◮ Gave numerical examples for different parameter values that
can help natural resource managers to apply the most
appropriate and cost-effective control methods to the
invasive-native species scenario

Wandi Ding Optimal Control Applied to Elliptic and Parabolic PDEs with Biological



Elliptic PDEs

2. Optimal Control of Growth Coefficient on a Steady State
Population Model
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Outline

◮ The Model

◮ Existence of an Optimal Control

◮ Necessary Conditions of Optimal Control

◮ Uniqueness of the Optimal Control

◮ Numerical Results
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The Model







−λ∆u = mu − u2, x ∈ Ω,
∂u

∂n
= 0, x ∈ ∂Ω,

(1)

u(x) : density of the species at location x

λ : dispersal rate, a positive constant

m(x) : intrinsic growth rate, measures the availability of the
resources

Note: for every m ∈ U, (1) has a unique positive solution.
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The Goal

Given 0 < δ < |Ω|, define the control set

U = {m ∈ L∞(Ω) | 0 ≤ m(x) ≤ 1,

∫

Ω
m(x) dx = δ}.

We seek to find m∗ ∈ U, such that J(m∗) = max
m

J(m), where

J(m) =

∫

Ω

[

u − (Bm2)
]

dx , (2)
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Existence of an Optimal Control

Theorem
There exists an optimal control m∗ ∈ U maximizing the objective
functional J(m).

Idea:

◮ Use maximizing sequence argument

◮ Need a priori estimates for u ∈ H1(Ω) and m ∈ L2(Ω)

◮ Show weak convergence of

λ

∫

Ω
∇un ·∇v dx =

∫

Ω
mnunv−(un)2v dx , ∀v ∈ H1(Ω). (3)
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Sensitivity

Lemma
Assume for m ∈ U, the mapping m ∈ U −→ u(m, λ) is
differentiable at m in the following sense: there exists ψ ∈ H1(Ω),
such that

u(m + ǫl , λ)− u(m, λ)

ǫ
⇀ ψ weakly in H1(Ω) as ǫ→ 0,

where m + ǫl ∈ U, l ∈ L∞(Ω). And the sensitivity ψ = ψ(m, l , λ)
satisfies

−λ∆ψ = mψ − 2uψ + lu, (4)

∂ψ

∂n
= 0.
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Necessary Conditions

To handle
∫

Ω
mdx = δ,

we introduce an extra state variable w , denoted by w(m),







∆w = m, x ∈ Ω,
∂w

∂n
=

δ

|∂Ω|
, x ∈ ∂Ω.

(5)
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Necessary Conditions

To handle
∫

Ω
mdx = δ,

we introduce an extra state variable w , denoted by w(m),







∆w = m, x ∈ Ω,
∂w

∂n
=

δ

|∂Ω|
, x ∈ ∂Ω.

(5)

Sensitivity 2:






∆ψ2 = l , x ∈ Ω
∂ψ2

∂n
= 0, x ∈ ∂Ω.

(6)
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Necessary Conditions: Contd

Theorem
Given an optimal control m and corresponding states, u,w, there
exists a solution p1, p2 to the adjoint system, with p1 ∈ H2(Ω) and
p2 constant, satisfying































−λ∆p1 − (m − 2u)p1 = 1, x ∈ Ω,
∂p1
∂n

= 0, x ∈ ∂Ω,

∆p2 = 0, x ∈ Ω,
∂p2
∂n

= 0, x ∈ ∂Ω.

Furthermore, we have

m∗ = min{max{0,
up1 + p2

2B
}, 1}.
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Characterization of Optimal Control for B Large

Theorem

If B >
|Ω|

2δ
, then m∗ = u∗ =

δ

|Ω|
is an optimal control and

corresponding state.

But, if B is small enough, the constant solution m = u =
δ

|Ω|
is no

longer an optimal control.
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Uniqueness of the Optimal Control

Theorem
For B sufficiently large, the optimal control maximizing J(m) is
unique.

Idea:
For m, l ∈ U and 0 ≤ ǫ ≤ 1, we will show that

g(ǫ) = J(ǫl + (1− ǫ)m) = J(m + ǫ(l −m))

is strictly concave, which implies the uniqueness of the optimal
control.
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Optimality System































−λ∆u = mu − u2, x ∈ Ω,
∂u

∂n
= 0, x ∈ ∂Ω,

∆w = m, x ∈ Ω,
∂w

∂n
=

δ

|∂Ω|
, x ∈ ∂Ω.

(7)































−λ∆p1 − (m − 2u)p1 = 1, x ∈ Ω,
∂p1
∂n

= 0, x ∈ ∂Ω,

∆p2 = 0, x ∈ Ω,
∂p2
∂n

= 0, x ∈ ∂Ω.

m∗ = min{max{0,
up1 + p2

2B
}, 1}.
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Nonuniqueness for B <
|Ω|

2δ
= 1
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Figure: An Optimal Control and Corresponding State in 1D for λ = 0.1,
B = 0.5
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Nonuniqueness for B <
|Ω|

2δ
= 1
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Figure: Another Optimal Control and Corresponding State in 1D for
λ = 0.1, B = 0.5
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B = 0.001
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Figure: An Optimal Control and Corresponding State in 1D for λ = 0.1,
B = 0.001
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λ Dependence
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Figure: Optimal Control and State in 1D for λ = 0.011, B = 0.1
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2-D, Nonuniqueness for B small, δ = 0.5
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Figure: An Optimal Control and State in 2D for λ = 0.1, B = 0.1,
δ = 0.5
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δ = 0.1
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Figure: An Optimal Control and State in 2D for λ = 0.1, B = 0.1,
δ = 0.1
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δ = 0.9
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Figure: An Optimal Control and State in 2D for λ = 0.1, B = 0.1,
δ = 0.9
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Conclusions

◮ Studied the control problem of maximizing the total payoff in
the conservation of a single species with a fixed amount of
resource.

◮ The existence of an optimal control is established and
uniqueness and characterization of the optimal control is
investigated.

◮ Some necessary conditions are provided for the
characterization of the optimal control. We introduced an
extra state variable to handle the integral constraint for the
control to get the characterization in the multi-dimensional
space. For 1D case, we present a simpler version of this
technique.
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Discussions

◮ For 1D habitat, the characterization of the optimal control
depends on the choice of the diffusion rate λ. For small λ the
optimal control seems to be symmetric, and so may be unique.

◮ When λ is suitably larger, where the optimal control is not
unique and non-symmetric.

◮ For rectangular domains, the shape of the optimal control
depends on the choice of the amount of total resources, δ.
When the amount is small, the optimal control is
concentrated at one of the corners of the rectangle.

◮ When the amount of total resources is suitably large, for
which the optimal control concentrates at a boundary edge of
the rectangle.
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Open Questions

◮ When B is small, numerical simulations indicate that the
optimal control is close to “bang-bang.” Can one show that
the optimal control is exactly “bang-bang” for B = 0?

◮ It was shown that the total population size
∫

Ω u dx as a
function of the diffusion rate λ, is not monotone. In fact,
∫

Ω u dx is exactly minimized at λ = 0 and λ = ∞ and
maximized at some value of λ = λ∗ ∈ (0,∞). From our
numerical simulations we think that there exists some
connection between λ∗ and the symmetry of the optimal
control for 1D habitat.
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Open Questions Cont’d

◮ For a high-dimensional habitat, we see that the profile of the
optimal control may depend on the amount of total resources.

◮ Will the geometry of the boundary play some role in
determining the optimal control? For example, when the total
amount of resource is small, is it the best strategy to arrange
resources near the most curved part of the boundary? Such
questions seem to be rather challenging even for the simplest
domains.
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