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Motivation

Traditional design and analysis of algorithms assumes complete
knowledge of the entire input.

This assumption may not be realistic in practice.

Online optimization: deals with input uncertainty.
Makes decisions without any information about the future.
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Online Algorithms Setting

1 Inputs are revealed incrementally over time.

2 Each input needs to be satisfied as soon as revealed.

3 Any decision made earlier cannot be revised.

Many computational problem are intrinsically online as immediate
decisions are required. Examples: scheduling, paging, routing...

Competitive ratio is worst-case ratio between

online objective, and

optimal offline objective.
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Online Primal-Dual Approach

A powerful algorithmic technique applied for a wide variety of problems.
[Alon, Awerbuch, Azar, Buchbinder, Naor 03]...

Formulate a linear programming (LP) relaxation.

Solving the LP online

Obtain an online rounding algorithm for the fractional solution.
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Online Packing-Covering LPs

Special class of LPs with wide applications.

All entries aji , ci are non-negative.

Primal problem: covering

min
n∑

i=1

cixi

s.t.
n∑

i=1

ajixi ≥ 1, ∀j ∈ [m],

x ≥ 0.

Dual problem: packing

max
m∑
j=1

yj

s.t.
m∑
j=1

ajiyj ≤ ci , ∀i ∈ [n],

y ≥ 0.

Covering LPs: Θ(log d)-competitive [Buchbinder, Naor 09] [Gupta, N. 14].

Packing LPs: Θ(log dρ)-competitive [Buchbinder, Naor 09].

d = row sparsity, ρ = amax/amin.
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Online Mixed Packing-Covering LPs

Mixed LPs: O(log t log dρκ) and Ω(log t log d)
[Azar, Bhaskar, Fleischer, Panigrahi 13].

Mixed packing/covering

min λ

s.t.
n∑

i=1

ajixi ≥ 1, ∀j ∈ [m],

n∑
i=1

pkjxj ≤ λ, ∀k ∈ [t],

x ≥ 0.
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Beyond Online LPs

Many online applications with convex/concave objectives:
energy-efficient scheduling [Bansal, Pruhs, Stein 09], matching [Devanur, Jain 12]

paging [Menache, Singh 15] , network routing [Gupta, Krishnaswamy, Pruhs 12],

combinatorial auctions [Blum, Gupta, Mansour, Sharma 11]...

Can we extend the online primal-dual approach by designing online
algorithms for general classes of convex programs?

Recent results by [Azar Cohen Panigrahi 14] [Buchbinder Chan Gupta N. Naor 14]

[Chen Huang Kang 15] and [Eghbali Fazel Mesbahi 16]
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Online Convex Covering

Minimize convex objective s.t. linear covering constraints (online).

Many applications: mixed packing-covering, capacitated facility
location, welfare maximization with production costs.

Prior results limited to convex objectives f : Rn
+ → R+ with a

monotone gradient property: z ≥ y ⇒ ∇f (z) ≥ ∇f (y) pointwise.

Competitive ratio O(p log d)p where p = supx≥0
xT∇f (x)

f (x) .
[Buchbinder Chan Gupta N. Naor 14]

Primal problem: covering

min f (x)

s.t. Ax ≥ 1,

x ≥ 0.

Dual problem: packing

max 1T y − f ∗(µ)

s.t. AT y ≤ µ,
y ≥ 0.
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Online Convex Covering - Previous Technique

[Buchbinder Chan Gupta N. Naor 14]

When constraint k arrives i.e.,
∑n

i=1 akixi ≥ 1 update:

Primal: increase each xi at rate ∂xi
∂τ =

akixi+
1
d

∇i f (x) .

Dual: increase dual yk at rate ∂yk
∂τ = 1, and set µ = AT y .

This leads to O(p log ρd)p ratio where ρ = amax/amin.

Better dual update (needs dual decrease) gives Θ(p log d)p ratio.

Primal problem: covering

min f (x)

s.t. Ax ≥ 1,

x ≥ 0.

Dual problem: packing

max 1T y − f ∗(µ)

s.t. AT y ≤ µ,
y ≥ 0.
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Online Convex Covering - Previous Technique

Analysis idea [Buchbinder Chan Gupta N. Naor 14].

Let x̄ be final primal solution.

Prove pointwise bound AT y ≤ α · ∇f (x̄). Uses gradient monotonicity.

This allows bounding the dual objective by roughly 1T y .

Rest of analysis similar to linear case with cost vector ∇f (x̄).

Primal problem: covering

min f (x)

s.t. Ax ≥ 1,

x ≥ 0.

Dual problem: packing

max 1T y − f ∗(µ)

s.t. AT y ≤ µ,
y ≥ 0.

Other previous results also need monotone gradient assumption.
[Azar Cohen Panigrahi 14] [Chen Huang Kang 15] and [Eghbali Fazel Mesbahi 16]

Q: Good competitive ratios for other convex objectives?
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Our Results

Natural class with non-monotone gradients: sums of `q-norms.

Eg. f (x) = ‖x‖2 ⇒ ∇f (x) = x
‖x‖2

Theorem

There is an O(log dρ)-competitive online algorithm for minimizing sum of
`q-norm objectives subject to linear covering constraints.

d ≈ row-sparsity of constraints. ρ = amax/amin.

Nearly best possible: Ω(log d) lower-bound even in linear special case.

Applications:

Covering: non-uniform multicommodity buy-at-bulk network design.
Improves [Ene, Chakrabarty, Krishnaswamy, Panigrahi 15].

Packing: throughput maximization with `p-norm edge capacities.
Generalizes [Awerbuch, Azar, Plotkin 93] for `∞-norm.
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Sum of `q-Norm Objectives

Primal problem: covering

min
r∑

e=1

ce‖x(Se)‖qe

s.t. Ax ≥ 1,

x ≥ 0.

Each Se ⊆ [n] is any subset of variables.

The dual can be derived using Lagrangian duality.

If all |Se | = 1 then reduces to packing/covering LPs.
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Simplification: disjoint Se

Lemma

If there is a poly-time α-competitive algorithm for instances with disjoint
Se , then there is a poly-time O(α)-competitive algorithm for all instances.

Disjoint Se allows for cleaner algorithm/analysis.

Primal problem: covering

min
r∑

e=1

ce‖x(Se)‖qe

s.t. Ax ≥ 1,

x ≥ 0.

Dual problem: packing

max
m∑

k=1

yk

s.t. AT y = µ,

‖µ(Se)‖pe ≤ ce , ∀e ∈ [r ],

y ≥ 0.
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Weak Duality

min
r∑

e=1

ce‖x(Se)‖qe

s.t. Ax ≥ 1,

x ≥ 0.

max
m∑

k=1

yk

s.t. AT y = µ,

‖µ(Se)‖pe ≤ ce , ∀e ∈ [r ],

y ≥ 0.

For any pair of feasible primal-dual solutions x and (y , µ), we have
r∑

e=1

ce‖x(Se)‖qe ≥
m∑

k=1

yk .

This follows from the following inequalities:

yT1 ≤ yTAx = µT x ≤
r∑

e=1

∑
i∈Se

µi ·xi ≤
r∑

e=1

‖µ(Se)‖pe ·‖x(Se)‖qe ≤
r∑

e=1

ce ·‖x(Se)‖qe

Strong duality also holds since Slater’s condition is satisfied.
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Algorithm

Algorithm for `q-norm packing/covering

When the kth request
∑n

i=1 akixi ≥ 1 arrives
Let τ be a continuous variable denoting the current time.;
while the constraint is unsatisfied, i.e.,

∑n
i=1 akixi < 1 do

For each i with aki > 0, increase xi at rate
∂xi
∂τ =

akixi+
1
d

∇i f (x) =
akixi+

1
d

cex
qe−1
i

‖x(Se)‖qe−1
qe ;

Increase yk at rate ∂yk
∂τ = 1;

Set µ = AT y ;

end

The algorithm is identical to the one in [Azar, Buchbinder, Chan, Chen,

Cohen, Gupta, Huang, Kang, Nagarajan, Naor, Panigrahi 16] for convex functions
with monotone gradients.

New ideas needed in analysis.
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Analysis Outline

min
r∑

e=1

ce‖x(Se)‖qe

s.t. Ax ≥ 1,

∂xi
∂τ

=
akixi + 1

d

∇i f (x)
=

akixi + 1
d

cex
qe−1
i

‖x(Se)‖qe−1
qe

max
m∑

k=1

yk

s.t. AT y = µ,

‖µ(Se)‖pe ≤ ce , ∀e ∈ [r ],

∂yk
∂τ

= 1,
∂µi

∂τ
= aki

Rate of primal increase ≤ 2· rate of dual increase.

Key: dual is O(log ρd) approximately feasible.

Analyze each e separately using potential Φe = ‖x(Se)‖qq =
∑

i∈Se
xqi

Partition time into phases where Φe increases by factor θ

Bound increase in ‖µ(Se)‖p separately for each phase

Choose θ (depends on qe) so that overall increase O(log ρd)
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Covering Application: Non-Uniform Buy-at-Bulk

An undirected graph G = (V ,E ),

Monotone subadditive cost function ge on each edge e ∈ E ,

Source/destination (si , ti ) pairs arrive online.

Find an si − ti path Pi for each i ∈ [m] minimizing
∑

e∈E ge(loade).
loade = number of paths using e.

V. Nagarajan and X. Shen (UM) Online Covering with Norm Objectives BIRS 2017 19 / 25



Covering Application: Non-Uniform Buy-at-Bulk

An undirected graph G = (V ,E ),

Monotone subadditive cost function ge on each edge e ∈ E ,

Source/destination (si , ti ) pairs arrive online.

Find an si − ti path Pi for each i ∈ [m] minimizing
∑

e∈E ge(loade).
loade = number of paths using e.

s1

t1

V. Nagarajan and X. Shen (UM) Online Covering with Norm Objectives BIRS 2017 19 / 25



Covering Application: Non-Uniform Buy-at-Bulk

An undirected graph G = (V ,E ),

Monotone subadditive cost function ge on each edge e ∈ E ,

Source/destination (si , ti ) pairs arrive online.

Find an si − ti path Pi for each i ∈ [m] minimizing
∑

e∈E ge(loade).
loade = number of paths using e.

s1

t1

s2

t2

V. Nagarajan and X. Shen (UM) Online Covering with Norm Objectives BIRS 2017 19 / 25



Covering Application: Non-Uniform Buy-at-Bulk

An undirected graph G = (V ,E ),

Monotone subadditive cost function ge on each edge e ∈ E ,

Source/destination (si , ti ) pairs arrive online.

Find an si − ti path Pi for each i ∈ [m] minimizing
∑

e∈E ge(loade).
loade = number of paths using e.

s1

t1

s2

t2

s3

t3

V. Nagarajan and X. Shen (UM) Online Covering with Norm Objectives BIRS 2017 19 / 25



Prior Work

Theorem (Ene, Chakrabarty, Krishnaswamy, Panigrahi 15 )

There is an O(αβγ log5 n)-competitive randomized online algorithm.

α, β, γ are “simpler” related approximation ratios (all poly-log).

Key component was an O(log3 n)-competitive algorithm for the LP:

min
∑
r∈V

∑
e∈E

ce · xe,r +
∑
r∈V

∑
e∈E

`e ·
∑
u∈T

fr ,u,e

s.t.
∑
r∈V

zir ≥ 1, ∀i ∈ [m]

{fr ,si ,e : e ∈ E} is a flow from si to r of zir units, ∀r ∈ V , i ∈ [m]

{fr ,ti ,e : e ∈ E} is a flow from r to ti of zir units, ∀r ∈ V , i ∈ [m]

fr ,u,e ≤ xe,r , ∀u ∈ T , e ∈ E

x , f , z ≥ 0
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Our Result for Buy-at-Bulk

Using our fractional algorithm, we obtain a tight O(log n)-competitive
ratio for a convex reformulation of the same LP.

min
∑
r∈V

∑
e∈E

ce ·
(

max
u∈T

fr ,u,e

)
+
∑
r∈V

∑
e∈E

`e ·
∑
u∈T

fr ,u,e

s.t.
∑
r∈Rs

fr ,si (Sr ) +
∑
r∈Rt

fr ,ti (Tr ) ≥ 1, ∀i ∈ [m], ∀(Rs ,Rt) partition of V ,

∀Sr : si − r cut, ∀r ∈ Rs , ∀Tr : r − ti cut, ∀r ∈ Rt ,

f ≥ 0.

Theorem (This paper + [Ene, Chakrabarty, Krishnaswamy, Panigrahi 15])

O(αβγ log3 n)-competitive ratio for non-uniform buy-at-bulk.
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Packing Application: Throughput Maximization

A directed graph G = (V ,E ) with edge capacities,

Unit demand requests (si , ti ) arrive online.

Find paths for max number of si − ti requests s.t. loade ≤ ce , ∀e.

Theorem ([Awerbuch, Azar, Plotkin 93] [Buchbinder, Naor 09])

There is an O(logm)-competitive online algorithm where m = # edges.
Assumes that each capacity is Ω(logm).
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Throughput Maximization with `p-norm Capacities

A directed graph G = (V ,E ),

Edge subsets Sj ⊆ E with group capacities cj
Unit demand requests (si , ti ) arrive online.

Maximize number of si − ti requests s.t. ‖loade : e ∈ Sj‖p ≤ cj , ∀j .

s1

t1

s2

t2

s3

t3

s4 t4

S1

S2

S3

Theorem (This paper)

There is an O(logm)-competitive online algorithm where m = # edges.
Assumes that each cj = Ω(logm) · |Sj |1/p.
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Conclusion

General framework for online packing-covering with convex objectives.

Gave nearly tight O(log dρ) ratio for sum of `q-norms. Analysis goes
beyond “monotone gradient” assumption in prior works.
Remove the ρ dependence for the covering problem?

Find right competitive ratio for other convex functions (even norm)?
Super-logarithmic Ω(q log d) lower bound is known for norms of the
form ‖Bx‖q [Azar, Cohen, Panigrahi 14].

More combinatorial optimization applications of framework?

Thank you!
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