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Motivation

@ Traditional design and analysis of algorithms assumes complete
knowledge of the entire input.

@ This assumption may not be realistic in practice.
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Motivation

@ Traditional design and analysis of algorithms assumes complete
knowledge of the entire input.

@ This assumption may not be realistic in practice.

@ Online optimization: deals with input uncertainty.
Makes decisions without any information about the future.
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Online Algorithms Setting

@ Inputs are revealed incrementally over time.
@ Each input needs to be satisfied as soon as revealed.

© Any decision made earlier cannot be revised.
Many computational problem are intrinsically online as immediate
decisions are required. Examples: scheduling, paging, routing...

Competitive ratio is worst-case ratio between
@ online objective, and

o optimal offline objective.
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Online Primal-Dual Approach

A powerful algorithmic technique applied for a wide variety of problems.
[Alon, Awerbuch, Azar, Buchbinder, Naor 03]...

e Formulate a linear programming (LP) relaxation.
@ Solving the LP online

@ Obtain an online rounding algorithm for the fractional solution.
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Online Primal-Dual Approach

A powerful algorithmic technique applied for a wide variety of problems.
[Alon, Awerbuch, Azar, Buchbinder, Naor 03]...

e Formulate a linear programming (LP) relaxation.
@ Solving the LP online — highly nontrivial (unlike offline setting).

@ Obtain an online rounding algorithm for the fractional solution.
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Online Packing-Covering LPs

@ Special class of LPs with wide applications.

@ All entries aji, ¢; are non-negative.

Primal problem: covering Dual problem: packing

n m
min E CiXi max E Yj
i=1 j=1

n m
s.t. Zaj,-x,- >1, Vje[m], s.t. Zaj,-yj <g¢, Vie]ln],
i=1 J=1
x> 0. y > 0.
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Online Packing-Covering LPs

@ Special class of LPs with wide applications.

@ All entries aj;, ¢; are non-negative.

Primal problem: covering Dual problem: packing

n m
min E CiXi max E Yj
i=1 Jj=1

n m
s.t. Zaj,-x,- >1, Vje[m], s.t. Zaj,-yj <g¢, Vie]ln],
i=1 J=1
x> 0. y > 0.

- y

e Covering LPs: ©(log d)-competitive [Buchbinder, Naor 09] [Gupta, N. 14].

e Packing LPs: ©(log dp)-competitive [Buchbinder, Naor 09].

d = row sparsity, p = amax/amin-
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Online Mixed Packing-Covering LPs

@ Mixed LPs: O(logt log dpr) and Q(log t log d)
[Azar, Bhaskar, Fleischer, Panigrahi 13].

Mixed packing/covering
min A

n
s.t. Zaj,-x,- >1, Vje[m],
i=1

n
D pix <A, Vket],
i=1

x > 0.
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Beyond Online LPs

e Many online applications with convex/concave objectives:
energy-efficient scheduling [Bansal, Pruhs, Stein 09], matching [Devanur, Jain 12]
paging [Menache, Singh 15] , network routing [Gupta, Krishnaswamy, Pruhs 12],

combinatorial auctions [Blum, Gupta, Mansour, Sharma 11]...

@ Can we extend the online primal-dual approach by designing online
algorithms for general classes of convex programs?
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Beyond Online LPs

e Many online applications with convex/concave objectives:
energy-efficient scheduling [Bansal, Pruhs, Stein 09], matching [Devanur, Jain 12]
paging [Menache, Singh 15] , network routing [Gupta, Krishnaswamy, Pruhs 12],

combinatorial auctions [Blum, Gupta, Mansour, Sharma 11]...

@ Can we extend the online primal-dual approach by designing online
algorithms for general classes of convex programs?

@ Recent results by [Azar Cohen Panigrahi 14] [Buchbinder Chan Gupta N. Naor 14]
[Chen Huang Kang 15] and [Eghbali Fazel Mesbahi 16]
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Online Convex Covering

@ Minimize convex objective s.t. linear covering constraints (online).

@ Many applications: mixed packing-covering, capacitated facility
location, welfare maximization with production costs.

Primal problem: covering Dual problem: packing
min  f(x) max 1Ty — f*(p)
st. Ax>1, st. ATy <y,

x> 0. y > 0.
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@ Minimize convex objective s.t. linear covering constraints (online).

@ Many applications: mixed packing-covering, capacitated facility
location, welfare maximization with production costs.

@ Prior results limited to convex objectives f : R} — R with a
monotone gradient property: z > y = Vf(z) > Vf(y) pointwise.
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Online Convex Covering

@ Minimize convex objective s.t. linear covering constraints (online).

@ Many applications: mixed packing-covering, capacitated facility
location, welfare maximization with production costs.

@ Prior results limited to convex objectives f : R} — R with a
monotone gradient property: z > y = Vf(z) > Vf(y) pointwise.
T
Competitive ratio O(plog d)P where p = sup,~q = fv()f)(x)_
[Buchbinder Chan Gupta N. Naor 14]

Primal problem: covering Dual problem: packing
min  f(x) max 1Ty — f*(p)
st. Ax>1, st. ATy <y,

x> 0. y > 0.
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Online Convex Covering - Previous Technique

[Buchbinder Chan Gupta N. Naor 14]

@ When constraint k arrives i.e., Zf’ 1 akixi > 1 update:

1

. a X+7
Primal: increase each x; at rate ax‘ = HTTd.
Vif(x)

Dual: increase dual y, at rate y" =1, andset u=ATy.

@ This leads to O(plog pd)P ratio where P = amax/ amin-

Primal problem: covering Dual problem: packing
min  f(x) max 17y — f*(p)
st. Ax>1, s.t. ATy < u,
x > 0. y > 0.
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Online Convex Covering - Previous Technique

[Buchbinder Chan Gupta N. Naor 14]

@ When constraint k arrives i.e., Z," 1 akiX; > 1 update:

: akixity
Primal: increase each x; at rate aX’ = k’_X 4.
Vif(x)
Dual: increase dual y, at rate 6”‘ =1, andset u=ATy.

@ This leads to O(plog pd)P ratio where P = amax/ amin-

o Better dual update (needs dual decrease) gives ©(plog d)P ratio.

Primal problem: covering Dual problem: packing
min  f(x) max 1Ty — f*(u)
st. Ax>1, s.t. ATy < u,
x > 0. y > 0.
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Online Convex Covering - Previous Technique

Analysis idea [Buchbinder Chan Gupta N. Naor 14].

@ Let X be final primal solution.
@ Prove pointwise bound ATy < o - Vf(X). Uses gradient monotonicity.
@ This allows bounding the dual objective by roughly 17y.
@ Rest of analysis similar to linear case with cost vector Vf(X).
Primal problem: covering Dual problem: packing

min  f(x) max 1Ty — f*(p)

st. Ax>1, st. ATy <y,

x > 0. y > 0.
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Online Convex Covering - Previous Technique
Analysis idea [Buchbinder Chan Gupta N. Naor 14].

@ Let X be final primal solution.
@ Prove pointwise bound ATy < o - Vf(X). Uses gradient monotonicity.
@ This allows bounding the dual objective by roughly 17y.

@ Rest of analysis similar to linear case with cost vector Vf(X).

Primal problem: covering Dual problem: packing
min  f(x) max 1Ty — f*(p)
st. Ax>1, st. ATy <y,

x > 0. y > 0.

@ Other previous results also need monotone gradient assumption.
[Azar Cohen Panigrahi 14] [Chen Huang Kang 15] and [Eghbali Fazel Mesbahi 16]
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Online Convex Covering - Previous Technique
Analysis idea [Buchbinder Chan Gupta N. Naor 14].

@ Let X be final primal solution.
@ Prove pointwise bound ATy < o - Vf(X). Uses gradient monotonicity.
@ This allows bounding the dual objective by roughly 17y.

@ Rest of analysis similar to linear case with cost vector Vf(X).

Primal problem: covering Dual problem: packing
min  f(x) max 1Ty — f*(p)
st. Ax>1, st. ATy <y,

x > 0. y > 0.

@ Other previous results also need monotone gradient assumption.
[Azar Cohen Panigrahi 14] [Chen Huang Kang 15] and [Eghbali Fazel Mesbahi 16]

Q: Good competitive ratios for other convex objectives?
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Our Results

@ Natural class with non-monotone gradients: sums of /4-norms.
Eg. f(x) = lixll2 = VI(x) = 5

lIx]l2

Theorem

There is an O(log dp)-competitive online algorithm for minimizing sum of
Lq-norm objectives subject to linear covering constraints.

d ~ row-sparsity of constraints. p = amax/amin-

@ Nearly best possible: Q(log d) lower-bound even in linear special case.
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Our Results

@ Natural class with non-monotone gradients: sums of /4-norms.
Eg. f(x) = x| = Vf(x) = %

lIx]l2

Theorem

There is an O(log dp)-competitive online algorithm for minimizing sum of
Lq-norm objectives subject to linear covering constraints.

d ~ row-sparsity of constraints. p = amax/amin-

@ Nearly best possible: Q(log d) lower-bound even in linear special case.

Applications:

@ Covering: non-uniform multicommodity buy-at-bulk network design.
Improves [Ene, Chakrabarty, Krishnaswamy, Panigrahi 15].

@ Packing: throughput maximization with /,-norm edge capacities.
Generalizes [Awerbuch, Azar, Plotkin 93] for £s.-norm.
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Sum of ¢,-Norm Objectives

Primal problem: covering
r

min Z cel|x(Se)llge

e=1
st. Ax>1,
x > 0.

v

e Each S. C [n] is any subset of variables.

V. Nagarajan and X. Shen (UM) Online Covering with Norm Objectives BIRS 2017 14 /25



Sum of ¢,-Norm Objectives

Primal problem: covering Dual problem: packing
r m
min Z Cellx(Se)ll e kb ZYk
e=1 k=1
st. Ax>1, st. Aly = W,
x > 0. “,U«E’(Se)”pe <c, Vec [r]7
r
Zﬂe = K
e=1
y > 0.

e Each S. C [n] is any subset of variables.

@ The dual can be derived using Lagrangian duality.
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Sum of ¢,-Norm Objectives

Primal problem: covering Dual problem: packing
r m
min Z Cellx(Se)ll e kb ZYk
e=1 k=1
st. Ax>1, st. Aly = W,
x > 0. “Ue(se)”pe <c, Vec [r]7
r
Zﬂe = K
e=1
y > 0.

e Each S. C [n] is any subset of variables.
@ The dual can be derived using Lagrangian duality.

o If all |Se| = 1 then reduces to packing/covering LPs.
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Simplification: disjoint S

Lemma

If there is a poly-time a-competitive algorithm for instances with disjoint
Se, then there is a poly-time O(«a))-competitive algorithm for all instances.

Disjoint Se allows for cleaner algorithm /analysis.
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Simplification: disjoint S

Lemma

If there is a poly-time a-competitive algorithm for instances with disjoint
Se, then there is a poly-time O(«a))-competitive algorithm for all instances.

Disjoint Se allows for cleaner algorithm /analysis.

Primal problem: covering Dual problem: packing
r m
min Z Cellx(Se)llqe max ZYk
e=1 k=1
st. Ax>1, s.t. ATy = U,
x > 0. le(Se)llpe < Cey Ve €r],
y>0.
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Weak Duality

r

m
min Zce”X(Se)qu max ZYk
k=1

e=1
s.t. Ax>1, st. Aly =y,
x> 0. l6(Se)llpe < ce, Ve € [r],
y>0.

For any pair of feasible primal-dual solutions x and (y, i), we have

r m
Z cel[x(Se)llq. = ZYk~
e=1 k=1
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Weak Duality

r

m
min Zceiix(se)iiqe max ZYk
k=1

e=1
s.t. Ax>1, st. Aly =y,
x> 0. l6(Se)llpe < ce, Ve € [r],
y>0.

For any pair of feasible primal-dual solutions x and (y, i), we have
Zceiix(se)iiqe 2 ZYk~
e=1 k=1

@ This follows from the following inequalities:

y1<yTAx=p"x < Z D nix < Z ll1(Se)llpe-[1X(Se)lla. < Z Ce-[[x(Se)lla

e=1i€S,
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Weak Duality

r

m
min ZCeHX(Se)qu max ZYk
k=1

e=1
s.t. Ax>1, st. Aly =y,
x > 0. |1e(Se)llpe < ce, Ve € [r],
y>0.

For any pair of feasible primal-dual solutions x and (y, 1), we have
> cellx(Sla. =D i
e=1 k=1

@ This follows from the following inequalities:

y1<yTAx=p"x < Z D nix < Z ll1(Se)llpe-[1X(Se)lla. < Z Ce-[[x(Se)lla

e=1ieS,

@ Strong duality also holds since Slater’s condition is satisfied.
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Algorithm

Algorithm for ¢,-norm packing/covering

When the k' request >°7_; axix; > 1 arrives
Let 7 be a continuous variable denoting the current time.;

while the constraint is unsatisfied, i.e., 27:1 akixi <1 do
For each i with a,; > 0, increase x; at rate

ox; _ akixi+% _ akixi‘f'% H ( )”qs—l
S 71 B o '
Oyk
Increase yj at rate Z% = 1;
Set u=ATy;
end
4
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Algorithm

Algorithm for ¢,-norm packing/covering

When the k' request >°7_; axix; > 1 arrives
Let 7 be a continuous variable denoting the current time.;

while the constraint is unsatisfied, i.e., 27:1 akixi <1 do
For each i with a,; > 0, increase x; at rate

% akiXi+% _ akiXi-l—% Ge—1.
AR 771 S 4 L CO E
Increase yj at rate 8”‘ =1;
Set u=ATy;

end

@ The algorithm is identical to the one in [Azar, Buchbinder, Chan, Chen,

Cohen, Gupta, Huang, Kang, Nagarajan, Naor, Panigrahi 16] for convex functions

with monotone gradients.

@ New ideas needed in analysis.
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Analysis Outline

r m
min ZCEHX(SG)H% max Zyk
k=1

e=1
st. Ax>1, st. Aly = 1,
[1(Se)llpe < ey Ve €r],
%_akixi‘i‘%_aklxl‘f'd”( )”qel %71 3;1,-78‘
o Vif(x)  cx® ! or " or M

@ Rate of primal increase < 2- rate of dual increase.
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Analysis Outline

r

m
min ZceHx(Se)qu max Zyk
k=1

e=1
st. Ax>1, st ATy =pu,
[1(Se)llpe < cer Ve €r],
% B akiXi+% AKX+ d I1x(S, )”qe 1 % O .
or N V,f(X) o Qe—l or - 5 or — dki

@ Rate of primal increase < 2- rate of dual increase.
o Key: dual is O(log pd) approximately feasible.

Analyze each e separately using potential ®. = [Ix(S)||§ = >",cs. X/
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Analysis Outline

r

m
min ZCeHX(Se)qu max Zyk
k=1

e=1
st. Ax>1, st. Aly = 1,
HM(SE)HPe < Ce) Ve € [r]7
%_akixi—i_%_aklxl—’—d”( ) %7 a‘uifa.
or — Vif(x)  cx® ! or 7 or
@ Rate of primal increase < 2- rate of dual increase.
o Key: dual is O(log pd) approximately feasible.
Analyze each e separately using potential ®. = [Ix(S)||§ = >",cs. X/

Partition time into phases where ®. increases by factor ¢
Bound increase in ||1(Se)]|p separately for each phase

Choose 6 (depends on g.) so that overall increase O(log pd)
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Covering Application: Non-Uniform Buy-at-Bulk
@ An undirected graph G = (V, E),

@ Monotone subadditive cost function g. on each edge e € E,

@ Source/destination (s;, t;) pairs arrive online.

Find an s; — t; path P; for each i € [m] minimizing }__ ¢ ge(loade).
load. = number of paths using e.
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Covering Application: Non-Uniform Buy-at-Bulk
@ An undirected graph G = (V, E),

@ Monotone subadditive cost function g. on each edge e € E,
@ Source/destination (s;, t;) pairs arrive online.

Find an s; — t; path P; for each i € [m] minimizing > . ge(loadk).
load. = number of paths using e.

=

52

S) {1

V. Nagarajan and X. Shen (UM) Online Covering with Norm Objectives BIRS 2017 19 / 25



Prior Work

Theorem (Ene, Chakrabarty, Krishnaswamy, Panigrahi 15 )

There is an O(afy log® n)-competitive randomized online algorithm.

a, B, are “simpler” related approximation ratios (all poly-log).

V. Nagarajan and X. Shen (UM)
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Prior Work

Theorem (Ene, Chakrabarty, Krishnaswamy, Panigrahi 15 )

There is an O(af log® n)-competitive randomized online algorithm.

a, B, are “simpler” related approximation ratios (all poly-log).

Key component was an O(log® n)-competitive algorithm for the LP:

min che-XeJ + ZZEE-Zfr,u,e

reV ecE reV ecE ueT
s.t. Zz,-, >1, Vi € [m]
reVv

{frs.e : € € E} is a flow from s; to r of z, units, Vre V,i¢c[m]
{frt,e:e€ E}isa flow from r to tj of zj units, Vre V,iec[m]
friue < Xeyrs VueT,e€E

x,f,z>0

v
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Our Result for Buy-at-Bulk

@ Using our fractional algorithm, we obtain a tight O(log n)-competitive
ratio for a convex reformulation of the same LP.

min Z Z Ce * <T€a7>_( fr,u,e) + Z de : Z fr,u,e

reV ecE reV ecE ueT

s.t. Z frs(Sr) + Z fre(Ty) > 1, Vi € [m], V(Rs, Rt) partition of V,
reRs reR:
VS, : si—rcut,Vre Rs, VT, : r —t; cut, Vr € Ry,

f>0.
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Our Result for Buy-at-Bulk

@ Using our fractional algorithm, we obtain a tight O(log n)-competitive
ratio for a convex reformulation of the same LP.

min Z Z Ce * (I’Jlea7>_( fr,u,e) + Z de : Z fr,u,e

reV ecE reV ecE ueT

s.t. Z frs(Sr) + Z fre(Ty) > 1, Vi € [m], V(Rs, Rt) partition of V,
reRs reR:

VS, : si—rcut,Vre Rs, VT, : r —t; cut, Vr € Ry,
f>0.

Theorem (This paper + [Ene, Chakrabarty, Krishnaswamy, Panigrahi 15])

O(aB log® n)-competitive ratio for non-uniform buy-at-bulk.
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Packing Application: Throughput Maximization
o A directed graph G = (V/, E) with edge capacities,
e Unit demand requests (s;, t;) arrive online.

Find paths for max number of s; — t; requests s.t. load, < ce, Ve.

Theorem ([Awerbuch, Azar, Plotkin 93] [Buchbinder, Naor 09])

There is an O(log m)-competitive online algorithm where m = # edges.
Assumes that each capacity is Q(log m).
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Throughput Maximization with /,-norm Capacities

e A directed graph G = (V, E),
e Edge subsets S; C E with group capacities ¢;
@ Unit demand requests (s;, t;) arrive online.

Maximize number of s; — t; requests s.t. ||loade : e € Sj||, < ¢j, V).
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Throughput Maximization with £,-norm Capacities

e A directed graph G = (V, E),
e Edge subsets S; C E with group capacities ¢;
@ Unit demand requests (s;, t;) arrive online.

Maximize number of s; — t; requests s.t. ||loade : e € Sj||, < ¢j, V).

Theorem (This paper)

There is an O(log m)-competitive online algorithm where m = # edges.
Assumes that each ¢; = Q(log m) - |S;|*/".
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Conclusion

General framework for online packing-covering with convex objectives.

e Gave nearly tight O(log dp) ratio for sum of £4-norms. Analysis goes
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e Find right competitive ratio for other convex functions (even norm)?
Super-logarithmic Q(qlog d) lower bound is known for norms of the
form ||BX||q [Azar, Cohen, Panigrahi 14].

@ More combinatorial optimization applications of framework?

Thank you!
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