Online Covering with Sum of ℓ_q -Norm Objectives

Viswanath Nagarajan

Industrial and Operations Engineering University of Michigan

Joint work with Xiangkun Shen

Outline

Introduction

- Online Algorithms
- Prior work

Online ℓ_q -Norms

- Algorithm
- Buy-at-bulk application
- Throughput application

3 Conclusion

Motivation

- Traditional design and analysis of algorithms assumes complete knowledge of the entire input.
- This assumption may not be realistic in practice.

Motivation

- Traditional design and analysis of algorithms assumes complete knowledge of the entire input.
- This assumption may not be realistic in practice.
- Online optimization: deals with input uncertainty. Makes decisions without *any* information about the future.

Online Algorithms Setting

- Inputs are revealed incrementally over time.
- ② Each input needs to be satisfied as soon as revealed.
- S Any decision made earlier cannot be revised.

Many computational problem are intrinsically online as immediate decisions are required. Examples: scheduling, paging, routing...

Competitive ratio is worst-case ratio between

- online objective, and
- optimal offline objective.

A powerful algorithmic technique applied for a wide variety of problems. [Alon, Awerbuch, Azar, Buchbinder, Naor 03]...

- Formulate a linear programming (LP) relaxation.
- Solving the LP online
- Obtain an online rounding algorithm for the fractional solution.

A powerful algorithmic technique applied for a wide variety of problems. [Alon, Awerbuch, Azar, Buchbinder, Naor 03]...

- Formulate a linear programming (LP) relaxation.
- Solving the LP online highly nontrivial (unlike offline setting).
- Obtain an online rounding algorithm for the fractional solution.

Online Packing-Covering LPs

- Special class of LPs with wide applications.
- All entries a_{ji}, c_i are non-negative.

Online Packing-Covering LPs

- Special class of LPs with wide applications.
- All entries a_{ji}, c_i are non-negative.

Covering LPs: Θ(log d)-competitive [Buchbinder, Naor 09] [Gupta, N. 14].

• Packing LPs: $\Theta(\log d\rho)$ -competitive [Buchbinder, Naor 09].

$$d=$$
 row sparsity, $ho=a_{max}/a_{min}$.

Online Mixed Packing-Covering LPs

• Mixed LPs: $O(\log t \log d\rho\kappa)$ and $\Omega(\log t \log d)$ [Azar, Bhaskar, Fleischer, Panigrahi 13].

Beyond Online LPs

- Many online applications with convex/concave objectives: energy-efficient scheduling [Bansal, Pruhs, Stein 09], matching [Devanur, Jain 12] paging [Menache, Singh 15], network routing [Gupta, Krishnaswamy, Pruhs 12], combinatorial auctions [Blum, Gupta, Mansour, Sharma 11]...
- Can we extend the online primal-dual approach by designing online algorithms for *general classes* of convex programs?

Beyond Online LPs

- Many online applications with convex/concave objectives: energy-efficient scheduling [Bansal, Pruhs, Stein 09], matching [Devanur, Jain 12] paging [Menache, Singh 15], network routing [Gupta, Krishnaswamy, Pruhs 12], combinatorial auctions [Blum, Gupta, Mansour, Sharma 11]...
- Can we extend the online primal-dual approach by designing online algorithms for *general classes* of convex programs?
- Recent results by [Azar Cohen Panigrahi 14] [Buchbinder Chan Gupta N. Naor 14] [Chen Huang Kang 15] and [Eghbali Fazel Mesbahi 16]

Online Convex Covering

- Minimize convex objective s.t. linear covering constraints (online).
- Many applications: mixed packing-covering, capacitated facility location, welfare maximization with production costs.

Primal probler	m: covering
min	f(x)
s.t.	$Ax \ge 1$,
	$x \ge 0.$

Dual problem: packingmax $\mathbf{1}^T y - f^*(\mu)$ s.t. $A^T y \leq \mu,$ $y \geq \mathbf{0}.$

Online Convex Covering

- Minimize convex objective s.t. linear covering constraints (online).
- Many applications: mixed packing-covering, capacitated facility location, welfare maximization with production costs.
- Prior results limited to convex objectives f : ℝⁿ₊ → ℝ₊ with a monotone gradient property: z ≥ y ⇒ ∇f(z) ≥ ∇f(y) pointwise.

Online Convex Covering

- Minimize convex objective s.t. linear covering constraints (online).
- Many applications: mixed packing-covering, capacitated facility location, welfare maximization with production costs.
- Prior results limited to convex objectives f : ℝⁿ₊ → ℝ₊ with a monotone gradient property: z ≥ y ⇒ ∇f(z) ≥ ∇f(y) pointwise.

Competitive ratio $O(p \log d)^p$ where $p = \sup_{x \ge 0} \frac{x^T \nabla f(x)}{f(x)}$. [Buchbinder Chan Gupta N. Naor 14]

Primal problem: covering	Dual problem: packing
min $f(x)$	max $1^{\mathcal{T}} y - f^*(\mu)$
s.t. $Ax \ge 1$,	s.t. $A^T y \leq \mu$,
$x \ge 0.$	$y \ge 0.$

[Buchbinder Chan Gupta N. Naor 14]

- When constraint k arrives i.e., $\sum_{i=1}^{n} a_{ki}x_i \ge 1$ update: **Primal:** increase each x_i at rate $\frac{\partial x_i}{\partial \tau} = \frac{a_{ki}x_i + \frac{1}{d}}{\nabla_i f(x)}$. **Dual:** increase dual y_k at rate $\frac{\partial y_k}{\partial \tau} = 1$, and set $\mu = A^T y$.
- This leads to $O(p \log \rho d)^p$ ratio where $\rho = a_{max}/a_{min}$.

Primal problem: covering	Dual problem: packing
min $f(x)$	max $1^{T} y - f^*(\mu)$
s.t. $Ax \ge 1$,	s.t. $A^T y \leq \mu$,
$x \ge 0.$	$y \ge 0.$

[Buchbinder Chan Gupta N. Naor 14]

- When constraint k arrives i.e., $\sum_{i=1}^{n} a_{ki} x_i \ge 1$ update: **Primal:** increase each x_i at rate $\frac{\partial x_i}{\partial \tau} = \frac{a_{ki} x_i + \frac{1}{d}}{\nabla_i f(x)}$. **Dual:** increase dual y_k at rate $\frac{\partial y_k}{\partial \tau} = 1$, and set $\mu = A^T y$.
- This leads to $O(p \log \rho d)^p$ ratio where $\rho = a_{max}/a_{min}$.
- Better dual update (needs dual decrease) gives $\Theta(p \log d)^p$ ratio.

Analysis idea [Buchbinder Chan Gupta N. Naor 14].

- Let \bar{x} be final primal solution.
- Prove pointwise bound $A^T y \leq \alpha \cdot \nabla f(\bar{x})$. Uses gradient monotonicity.
- This allows bounding the dual objective by roughly $\mathbf{1}^T y$.
- Rest of analysis similar to *linear* case with cost vector $\nabla f(\bar{x})$.

Primal problem: covering	Dual problem: packing
min $f(x)$	max $1^{\mathcal{T}} \mathbf{y} - f^*(\mu)$
s.t. $Ax \ge 1$,	s.t. $A^T y \leq \mu$,
$x \ge 0.$	$y \ge 0.$

Analysis idea [Buchbinder Chan Gupta N. Naor 14].

- Let \bar{x} be final primal solution.
- Prove pointwise bound $A^T y \leq \alpha \cdot \nabla f(\bar{x})$. Uses gradient monotonicity.
- This allows bounding the dual objective by roughly $\mathbf{1}^T y$.
- Rest of analysis similar to *linear* case with cost vector $\nabla f(\bar{x})$.

Primal problem: covering	Dual problem: packing
min $f(x)$	$max 1^{\mathcal{T}} y - f^*(\mu)$
s.t. $Ax \ge 1$,	s.t. $A^T y \leq \mu$,
$x \ge 0.$	$y \ge 0.$

• Other previous results also need monotone gradient assumption. [Azar Cohen Panigrahi 14] [Chen Huang Kang 15] and [Eghbali Fazel Mesbahi 16]

Analysis idea [Buchbinder Chan Gupta N. Naor 14].

- Let \bar{x} be final primal solution.
- Prove pointwise bound $A^T y \leq \alpha \cdot \nabla f(\bar{x})$. Uses gradient monotonicity.
- This allows bounding the dual objective by roughly $\mathbf{1}^T y$.
- Rest of analysis similar to *linear* case with cost vector $\nabla f(\bar{x})$.

Primal problem: covering	Dual problem: packing
min $f(x)$	$max 1^{\mathcal{T}} y - f^*(\mu)$
s.t. $Ax \ge 1$,	s.t. $A^T y \leq \mu$,
$x \ge 0.$	$y \ge 0.$

 Other previous results also need monotone gradient assumption. [Azar Cohen Panigrahi 14] [Chen Huang Kang 15] and [Eghbali Fazel Mesbahi 16]
 Q: Good competitive ratios for other convex objectives?

Outline

Introductio

- Online Algorithms
- Prior work

2 Online ℓ_q -Norms

- Algorithm
- Buy-at-bulk application
- Throughput application

3 Conclusion

Our Results

• Natural class with non-monotone gradients: sums of ℓ_q -norms. Eg. $f(x) = ||x||_2 \Rightarrow \nabla f(x) = \frac{x}{||x||_2}$

Theorem

There is an $O(\log d\rho)$ -competitive online algorithm for minimizing sum of ℓ_q -norm objectives subject to linear covering constraints.

 $d \approx$ row-sparsity of constraints. $\rho = a_{max}/a_{min}$.

• Nearly best possible: $\Omega(\log d)$ lower-bound even in linear special case.

Our Results

• Natural class with non-monotone gradients: sums of ℓ_q -norms. Eg. $f(x) = ||x||_2 \Rightarrow \nabla f(x) = \frac{x}{||x||_2}$

Theorem

There is an $O(\log d\rho)$ -competitive online algorithm for minimizing sum of ℓ_q -norm objectives subject to linear covering constraints.

 $d \approx$ row-sparsity of constraints. $\rho = a_{max}/a_{min}$.

• Nearly best possible: $\Omega(\log d)$ lower-bound even in linear special case.

Applications:

- Covering: non-uniform multicommodity buy-at-bulk network design. Improves [Ene, Chakrabarty, Krishnaswamy, Panigrahi 15].
- Packing: throughput maximization with ℓ_p -norm edge capacities. Generalizes [Awerbuch, Azar, Plotkin 93] for ℓ_∞ -norm.

Sum of ℓ_q -Norm Objectives

• Each $S_e \subseteq [n]$ is any subset of variables.

Sum of ℓ_q -Norm Objectives

- Each $S_e \subseteq [n]$ is any subset of variables.
- The dual can be derived using Lagrangian duality.

Sum of ℓ_q -Norm Objectives

- Each $S_e \subseteq [n]$ is any subset of variables.
- The dual can be derived using Lagrangian duality.
- If all $|S_e| = 1$ then reduces to packing/covering LPs.

Simplification: disjoint S_e

Lemma

If there is a poly-time α -competitive algorithm for instances with disjoint S_e , then there is a poly-time $O(\alpha)$ -competitive algorithm for all instances.

Disjoint S_e allows for cleaner algorithm/analysis.

Simplification: disjoint S_e

Lemma

If there is a poly-time α -competitive algorithm for instances with disjoint S_e , then there is a poly-time $O(\alpha)$ -competitive algorithm for all instances.

Disjoint S_e allows for cleaner algorithm/analysis.

Primal problem: covering	Dual problem: packing
$egin{array}{lll} { m min} & \sum_{e=1}^r c_e \ x(S_e)\ _{q_e} \ { m s.t.} & { m A}x \geq {f 1}, \end{array}$	$\begin{array}{ll} \max & \sum_{k=1}^{m} y_k \\ \text{s.t.} & A^T y = u_k \end{array}$
$x \ge 0.$	$\ \mu(S_e)\ _{p_e} \leq c_e, \forall e \in [r], \ y \geq 0.$

Weak Duality

For any pair of feasible primal-dual solutions x and (y, μ) , we have $\sum_{e=1}^{r} c_e \|x(S_e)\|_{q_e} \ge \sum_{k=1}^{m} y_k.$

Weak Duality

$$\begin{array}{ll} \min & \sum_{e=1}^{r} c_{e} \| x(S_{e}) \|_{q_{e}} & \max & \sum_{k=1}^{m} y_{k} \\ \text{s.t.} & Ax \geq \mathbf{1}, & \text{s.t.} & A^{T}y = \mu, \\ & x \geq \mathbf{0}. & \| \mu(S_{e}) \|_{p_{e}} \leq c_{e}, \ \forall e \in [r], \\ & y \geq \mathbf{0}. \end{array}$$

For any pair of feasible primal-dual solutions x and (y, μ) , we have $\sum_{e=1}^{r} c_e \|x(S_e)\|_{q_e} \ge \sum_{k=1}^{m} y_k.$

• This follows from the following inequalities:

$$y^{T}\mathbf{1} \le y^{T}Ax = \mu^{T}x \le \sum_{e=1}^{r} \sum_{i \in S_{e}} \mu_{i} \cdot x_{i} \le \sum_{e=1}^{r} \|\mu(S_{e})\|_{p_{e}} \cdot \|x(S_{e})\|_{q_{e}} \le \sum_{e=1}^{r} c_{e} \cdot \|x(S_{e})\|_{q_{e}}$$

Weak Duality

$$\begin{array}{ll} \min & \sum_{e=1}^{r} c_{e} \| x(S_{e}) \|_{q_{e}} & \max & \sum_{k=1}^{m} y_{k} \\ \text{s.t.} & Ax \geq \mathbf{1}, & \text{s.t.} & A^{T}y = \mu, \\ & x \geq \mathbf{0}. & \| \mu(S_{e}) \|_{p_{e}} \leq c_{e}, \ \forall e \in [r], \\ & y \geq \mathbf{0}. \end{array}$$

For any pair of feasible primal-dual solutions x and (y, μ) , we have $\sum_{e=1}^{r} c_e \|x(S_e)\|_{q_e} \ge \sum_{k=1}^{m} y_k.$

• This follows from the following inequalities:

$$y^{T}\mathbf{1} \le y^{T}Ax = \mu^{T}x \le \sum_{e=1}^{r} \sum_{i \in S_{e}} \mu_{i} \cdot x_{i} \le \sum_{e=1}^{r} \|\mu(S_{e})\|_{p_{e}} \cdot \|x(S_{e})\|_{q_{e}} \le \sum_{e=1}^{r} c_{e} \cdot \|x(S_{e})\|_{q_{e}}$$

• Strong duality also holds since Slater's condition is satisfied.

Algorithm

Algorithm for ℓ_q -norm packing/covering

When the k^{th} request $\sum_{i=1}^{n} a_{ki} x_i \ge 1$ arrives Let τ be a continuous variable denoting the current time.; while the constraint is unsatisfied, i.e., $\sum_{i=1}^{n} a_{ki} x_i < 1$ do For each i with $a_{ki} > 0$, increase x_i at rate $\frac{\partial x_i}{\partial \tau} = \frac{a_{ki} x_i + \frac{1}{d}}{\nabla_i f(x)} = \frac{a_{ki} x_i + \frac{1}{d}}{c_e x_i^{qe-1}} ||x(S_e)||_{q_e}^{qe-1}$; Increase y_k at rate $\frac{\partial y_k}{\partial \tau} = 1$; Set $\mu = A^T y$; end

Algorithm

Algorithm for ℓ_q -norm packing/covering

When the k^{th} request $\sum_{i=1}^{n} a_{ki}x_i \ge 1$ arrives Let τ be a continuous variable denoting the current time.; while the constraint is unsatisfied, i.e., $\sum_{i=1}^{n} a_{ki}x_i < 1$ do For each i with $a_{ki} > 0$, increase x_i at rate $\frac{\partial x_i}{\partial \tau} = \frac{a_{ki}x_i + \frac{1}{d}}{\nabla_i f(x)} = \frac{a_{ki}x_i + \frac{1}{d}}{c_e x_i^{q_e - 1}} ||x(S_e)||_{q_e}^{q_e - 1}$; Increase y_k at rate $\frac{\partial y_k}{\partial \tau} = 1$; Set $\mu = A^T y$; end

- The algorithm is identical to the one in [Azar, Buchbinder, Chan, Chen, Cohen, Gupta, Huang, Kang, Nagarajan, Naor, Panigrahi 16] for convex functions with monotone gradients.
- New ideas needed in analysis.

Analysis Outline

• Rate of primal increase $\leq 2 \cdot$ rate of dual increase.

Analysis Outline

- Rate of primal increase $\leq 2 \cdot$ rate of dual increase.
- Key: dual is $O(\log \rho d)$ approximately feasible. Analyze each *e* separately using potential $\Phi_e = ||x(S_e)||_a^q = \sum_{i \in S_e} x_i^q$

Analysis Outline

• Rate of primal increase $\leq 2 \cdot$ rate of dual increase.

 Key: dual is O(log ρd) approximately feasible. Analyze each e separately using potential Φ_e = ||x(S_e)||^q_q = ∑_{i∈S_e} x^q_i Partition time into phases where Φ_e increases by factor θ Bound increase in ||μ(S_e)||_p separately for each phase Choose θ (depends on q_e) so that overall increase O(log ρd)

- An undirected graph G = (V, E),
- Monotone subadditive cost function g_e on each edge $e \in E$,
- Source/destination (s_i, t_i) pairs arrive online.

- An undirected graph G = (V, E),
- Monotone subadditive cost function g_e on each edge $e \in E$,
- Source/destination (s_i, t_i) pairs arrive online.

- An undirected graph G = (V, E),
- Monotone subadditive cost function g_e on each edge $e \in E$,
- Source/destination (s_i, t_i) pairs arrive online.

- An undirected graph G = (V, E),
- Monotone subadditive cost function g_e on each edge $e \in E$,
- Source/destination (s_i, t_i) pairs arrive online.

Prior Work

Theorem (Ene, Chakrabarty, Krishnaswamy, Panigrahi 15)

There is an $O(\alpha\beta\gamma \log^5 n)$ -competitive randomized online algorithm.

 α, β, γ are "simpler" related approximation ratios (all poly-log).

Prior Work

Theorem (Ene, Chakrabarty, Krishnaswamy, Panigrahi 15)

There is an $O(\alpha\beta\gamma \log^5 n)$ -competitive randomized online algorithm.

 α, β, γ are "simpler" related approximation ratios (all poly-log). Key component was an $O(\log^3 n)$ -competitive algorithm for the LP:

$$\begin{array}{ll} \min & \sum_{r \in V} \sum_{e \in E} c_e \cdot x_{e,r} + \sum_{r \in V} \sum_{e \in E} \ell_e \cdot \sum_{u \in \mathcal{T}} f_{r,u,e} \\ \text{s.t.} & \sum_{r \in V} z_{ir} \geq 1, \quad \forall i \in [m] \\ & \{f_{r,s_i,e} : e \in E\} \text{ is a flow from } s_i \text{ to } r \text{ of } z_{ir} \text{ units, } \quad \forall r \in V, i \in [m] \\ & \{f_{r,t_i,e} : e \in E\} \text{ is a flow from } r \text{ to } t_i \text{ of } z_{ir} \text{ units, } \quad \forall r \in V, i \in [m] \\ & f_{r,u,e} \leq x_{e,r}, \quad \forall u \in \mathcal{T}, e \in E \\ & x, f, z \geq 0 \end{array}$$

Our Result for Buy-at-Bulk

• Using our fractional algorithm, we obtain a tight $O(\log n)$ -competitive ratio for a convex *reformulation* of the same LP.

$$\begin{array}{ll} \min & \sum_{r \in V} \sum_{e \in E} c_e \cdot \left(\max_{u \in \mathcal{T}} f_{r,u,e} \right) \ + \ \sum_{r \in V} \sum_{e \in E} \ell_e \cdot \sum_{u \in \mathcal{T}} f_{r,u,e} \\ \text{s.t.} & \sum_{r \in R_s} f_{r,s_i}(S_r) \ + \ \sum_{r \in R_t} f_{r,t_i}(T_r) \ge 1, \ \forall i \in [m], \ \forall (R_s, R_t) \text{ partition of } V, \\ & \forall S_r : \ s_i - r \text{ cut}, \ \forall r \in R_s, \ \forall T_r : \ r - t_i \text{ cut}, \ \forall r \in R_t, \\ & f \ge 0. \end{array}$$

Our Result for Buy-at-Bulk

• Using our fractional algorithm, we obtain a tight $O(\log n)$ -competitive ratio for a convex *reformulation* of the same LP.

$$\begin{array}{ll} \min & \sum_{r \in V} \sum_{e \in E} c_e \cdot \left(\max_{u \in \mathcal{T}} f_{r,u,e} \right) \ + \ \sum_{r \in V} \sum_{e \in E} \ell_e \cdot \sum_{u \in \mathcal{T}} f_{r,u,e} \\ \text{s.t.} & \sum_{r \in R_s} f_{r,s_i}(S_r) \ + \ \sum_{r \in R_t} f_{r,t_i}(T_r) \ge 1, \ \forall i \in [m], \ \forall (R_s, R_t) \text{ partition of } V, \\ & \forall S_r : \ s_i - r \text{ cut}, \ \forall r \in R_s, \ \forall T_r : \ r - t_i \text{ cut}, \ \forall r \in R_t, \\ & f \ge 0. \end{array}$$

Theorem (This paper + [Ene, Chakrabarty, Krishnaswamy, Panigrahi 15]) $O(\alpha\beta\gamma\log^3 n)$ -competitive ratio for non-uniform buy-at-bulk.

- A directed graph G = (V, E) with edge capacities,
- Unit demand requests (s_i, t_i) arrive online.

Find paths for max number of $s_i - t_i$ requests s.t. $load_e \le c_e$, $\forall e$.

Theorem ([Awerbuch, Azar, Plotkin 93] [Buchbinder, Naor 09])

There is an $O(\log m)$ -competitive online algorithm where m = # edges. Assumes that each capacity is $\Omega(\log m)$.

V. Nagarajan and X. Shen (UM)

- A directed graph G = (V, E) with edge capacities,
- Unit demand requests (s_i, t_i) arrive online.

Find paths for max number of $s_i - t_i$ requests s.t. $load_e \leq c_e, \forall e$.

Theorem ([Awerbuch, Azar, Plotkin 93] [Buchbinder, Naor 09])

There is an $O(\log m)$ -competitive online algorithm where m = # edges. Assumes that each capacity is $\Omega(\log m)$.

V. Nagarajan and X. Shen (UM)

- A directed graph G = (V, E) with edge capacities,
- Unit demand requests (s_i, t_i) arrive online.

Find paths for max number of $s_i - t_i$ requests s.t. $load_e \leq c_e, \forall e$.

Theorem ([Awerbuch, Azar, Plotkin 93] [Buchbinder, Naor 09])

There is an $O(\log m)$ -competitive online algorithm where m = # edges. Assumes that each capacity is $\Omega(\log m)$.

V. Nagarajan and X. Shen (UM)

- A directed graph G = (V, E) with edge capacities,
- Unit demand requests (s_i, t_i) arrive online.

Find paths for max number of $s_i - t_i$ requests s.t. $load_e \leq c_e, \forall e$.

Theorem ([Awerbuch, Azar, Plotkin 93] [Buchbinder, Naor 09])

There is an $O(\log m)$ -competitive online algorithm where m = # edges. Assumes that each capacity is $\Omega(\log m)$.

V. Nagarajan and X. Shen (UM)

- A directed graph G = (V, E) with edge capacities,
- Unit demand requests (s_i, t_i) arrive online.

Find paths for max number of $s_i - t_i$ requests s.t. $load_e \leq c_e, \forall e$.

Theorem ([Awerbuch, Azar, Plotkin 93] [Buchbinder, Naor 09])

There is an $O(\log m)$ -competitive online algorithm where m = # edges. Assumes that each capacity is $\Omega(\log m)$.

V. Nagarajan and X. Shen (UM)

Throughput Maximization with ℓ_p -norm Capacities

- A directed graph G = (V, E),
- Edge subsets $S_j \subseteq E$ with group capacities c_j
- Unit demand requests (s_i, t_i) arrive online.

Maximize number of $s_i - t_i$ requests s.t. $\|load_e : e \in S_j\|_p \le c_i, \forall j$.

Throughput Maximization with ℓ_p -norm Capacities

- A directed graph G = (V, E),
- Edge subsets $S_j \subseteq E$ with group capacities c_j
- Unit demand requests (s_i, t_i) arrive online.

Maximize number of $s_i - t_i$ requests s.t. $\|load_e : e \in S_j\|_p \le c_j, \forall j$.

Theorem (This paper)

There is an $O(\log m)$ -competitive online algorithm where m = # edges. Assumes that each $c_j = \Omega(\log m) \cdot |S_j|^{1/p}$.

Outline

Introduction

- Online Algorithms
- Prior work

Online ℓ_q -Norms

- Algorithm
- Buy-at-bulk application
- Throughput application

3 Conclusion

General framework for online packing-covering with convex objectives.

 Gave nearly tight O(log dρ) ratio for sum of ℓ_q-norms. Analysis goes beyond "monotone gradient" assumption in prior works. Remove the ρ dependence for the covering problem?

General framework for online packing-covering with convex objectives.

- Gave nearly tight O(log dρ) ratio for sum of ℓ_q-norms. Analysis goes beyond "monotone gradient" assumption in prior works. Remove the ρ dependence for the covering problem?
- Find right competitive ratio for other convex functions (even norm)? Super-logarithmic $\Omega(q \log d)$ lower bound is known for norms of the form $||Bx||_q$ [Azar, Cohen, Panigrahi 14].

General framework for online packing-covering with convex objectives.

- Gave nearly tight O(log dρ) ratio for sum of ℓ_q-norms. Analysis goes beyond "monotone gradient" assumption in prior works. Remove the ρ dependence for the covering problem?
- Find right competitive ratio for other convex functions (even norm)? Super-logarithmic $\Omega(q \log d)$ lower bound is known for norms of the form $||Bx||_q$ [Azar, Cohen, Panigrahi 14].
- More combinatorial optimization applications of framework?

General framework for online packing-covering with convex objectives.

- Gave nearly tight O(log dρ) ratio for sum of ℓ_q-norms. Analysis goes beyond "monotone gradient" assumption in prior works. Remove the ρ dependence for the covering problem?
- Find right competitive ratio for other convex functions (even norm)? Super-logarithmic $\Omega(q \log d)$ lower bound is known for norms of the form $||Bx||_q$ [Azar, Cohen, Panigrahi 14].
- More combinatorial optimization applications of framework?

Thank you!