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Problem Settings

Dynamical System
M ẏ(t) = Ay(t) + f(t ,y(t)), t ∈ (0,T ],

y(0) = y0.

Assumptions

y0 ∈ Rn is a given initial data,
M,A ∈ Rn×n given matrices,
f : [0,T ]× Rn → Rn a continuous function in both arguments and
locally Lipschitz-type with respect to the second variable.

WARNING: High dimensional problems are computationally expensive.
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Introduction

Low-rank approximation requires:
Solutions of the original high-dimensional system (snapshots),
Dimensionality-reduction produced by SVD,
Galerkin projection of the dynamics on the low-rank subspace.

WARNING:
Offline stages are exceptionally expensive, but enable the (cheap)
online stage to potentially run in real time.

GOAL: To improve the efficiency of the offline stage
Randomized techniques attempt to construct low-rank matrix
decompositions, fast and accurate approximations of QR and SVD.
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Model Order Reduction Proper Orthogonal Decomposition

Proper Orthogonal Decomposition and SVD

Proper Orthogonal Decomposition (POD), [L. Sirovich ’87]

Simulate at different time instances,
Take snapshots of the state,
Perform POD (Proper Orthogonal Decomposition) using SVD
(Singular Value Decomposition),
Use the POD basis functions as (non local) FEM ansatz functions.
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Model Order Reduction Proper Orthogonal Decomposition

Proper Orthogonal Decomposition and SVD

Given snapshots (y(t0), . . . , y(tn)) ∈ Rm

We look for an orthonormal basis {ψi}`i=1 in Rm with `� min{n,m} s.t.

J(ψ1, . . . , ψ`) =
n∑

j=1

αj

∥∥∥∥∥yj −
∑̀
i=1

〈yj , ψi〉ψi

∥∥∥∥∥
2

=
d∑

i=`+1

σ2
i

reaches a minimum where {αj}nj=1 ∈ R+.

min J(ψ1, . . . , ψ`) s.t .〈ψi , ψj〉 = δij

Singular Value Decomposition: Y = ΨΣV T .

For ` ∈ {1, . . . ,d = rank(Y )}, {ψi}`i=1 are called POD basis of rank `.

ERROR INDICATOR: E(`) =

∑̀
i=1

σi

d∑
i=1

σi

with σi singular values of the SVD.
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Model Order Reduction Proper Orthogonal Decomposition

Reduced Order System

POD-Galerkin ansatz

y(t) ≈ ΨPODy`(t), ΨPOD ∈ Rn×`.

POD dynamical system
M`ẏ`(t) = A`y`(t) + (ΨPOD)T f (t ,ΨPODy`(t)),

y`(0) = y`0.

Dimension of the entries

(M`)ij = 〈Mψi ,ψj〉 ∈ R`×`,
(A`)ij = 〈Aψi ,ψj〉 ∈ R`×` ,

y`0 = (ΨPOD)T y0 ∈ R`.
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Model Order Reduction Discrete Empirical Interpolation Method

Discrete Empirical Interpolation Method

Problem:
Reduction of the nonlinearity is NOT independent from n:

F(t ,y`(t)) := (ΨPOD)T f(t ,ΨPODy`(t)) = 〈f(t ,y(t)),ΨPOD〉.

IDEA:
Do not evaluate the nonlinearity everywhere, but select the most
important points via the greedy procedure.

References
M. Barrault, Y. Maday, N.C. Nguyen, A.T. Patera, An empirical interpolation
method: application to efficient reduced-basis discretization of partial differential
equations, 2004.

S. Chatarantabut, D. Sorensen, Nonlinear Model Reduction via Discrete
Empirical Interpolation, 2010.
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Model Order Reduction Discrete Empirical Interpolation Method

Discrete Empirical Interpolation Method

Compute y(tj) from the dynamical system,
Evaluate f(tj ,y(tj)),
U ∈ Rn×k the POD basis function of rank k of the nonlinear part.
The DEIM approximation of f(t ,y(t)) is as follows

fDEIM(t ,yDEIM(t)) := U(ST U)−1f(t ,yDEIM(t))

where S ∈ Rn×k and yDEIM(t) = STΨPODy`(t) ∈ Rk .

Interpolation Points: Matrix S tells where evaluate the nonlinearity.
LU decomposition with pivoting (Chatarantabut, Sorensen, 2010),
QR decomposition with pivoting (Drmac, Gugercin, 2015).
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Model Order Reduction Discrete Empirical Interpolation Method

Discrete Empirical Interpolation Method

Let us define ΨDEIM := U(ST U)−1 ∈ Rn×k .
The reduced nonlinearity may be expressed as:

(ΨPOD)T fDEIM(t ,yDEIM(t)) = (ΨPOD)TΨDEIMf(t ,yDEIM)

where we only select a small (sparse) number of rows of ΨPODy`(t).

Computational expenses

STΨPOD ∈ Rk×`, (ST U)−1 ∈ Rk×k and (ΨPOD)TΨDEIM ∈ R`×k

Remark
Precomputed quantities are independent of the full dimension n.
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Model Order Reduction Discrete Empirical Interpolation Method

Discrete Empirical Interpolation Method

POD dynamical system
M`ẏ`(t) = A`y`(t) + (ΨPOD)T f (t ,ΨPODy`(t)),

y`(0) = y`0

POD-DEIM dynamical system{
M`ẏ`(t) = A`y`(t) + (ΨPOD)TΨDEIMf(t ,yDEIM)
y`(0) = y`0.

low-rank approximation of the nonlinear term.

Error Estimation

‖f− fDEIM‖2 ≤ c‖(I− UUT )f‖2, c = ‖(ST U)−1‖2
with different performances depending on the matrix S.

A. Alla (Florida State University) Randomized MOR 12 / 42



Model Order Reduction Dynamic Mode Decomposition

Introduction to DMD

DMD is an equation-free, data-driven method capable of providing
accurate model for complex system, and short-time future estimates of
such a systems.

It traces its origins to pioneering work of Bernard Koopman in 1931.
Koopman theory is a dynamical systems tool that provides information
about a nonlinear dynamical system via an associated
infinite-dimensional linear system.

DMD method was proposed as a data-driven algorithm for modeling
complex flows as a special case of Koopman theory.
(Brunton, Kutz, Mezic, Noack, Rowley, Schmid, Tu, . . . )
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Model Order Reduction Dynamic Mode Decomposition

Dynamic Mode Decomposition

Dynamic Mode Decomposition
Suppose we have a dynamical system and compute snapshots
{(y(t0), . . . , y(tm)} and two sets of data

Y=

y(t0) y(t1) · · · y(tm−1)

 , Y′=

y(t1) y(t2) · · · y(tm)


with y(tj) an initial condition of the dynamical system and y(tj+1) its
corresponding output⇒ Y′ = AYY with AY ∈ Rn×n unknown.

The DMD modes are eigenvectors of

Ay = Y′Y†

where † denotes the Moore-Penrose pseudoinverse.
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Model Order Reduction Dynamic Mode Decomposition

Dynamic Mode Decomposition

Ay is a finite dimensional approximation of the Koopman operator
for a linear observable.
The definition of DMD produces a regression procedure whereby
the data snapshots in time are used to produce the best-fit linear
dynamical system for the data Y.

The DMD procedure constructs the proxy, approximate linear evolution

d ỹ
dt

= Ayỹ

with ỹ(0) = ỹ0 and whose solution is: ỹ(t) =
∑n

i=1 biψi exp(ωi t),
ψi and ωi are the eigenfunctions and eigenvalues of the matrix Ay.

SOLUTION
DMD circumvents the eigendecomposition of Ay by considering a
rank-reduced representation in terms of a POD-projected matrix Ãy.
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Model Order Reduction Dynamic Mode Decomposition

Dynamic Mode Decomposition

DMD algorithm

Require: Snapshots {y(t0), . . . ,y(tm)},
1: Set Y = [y(t0), . . . ,y(tm−1)] and Y′ = [y(t1), . . . ,y(tm)],
2: Compute the (reduced) SVD of Y, Y = UΣVT

3: Define Ãy := U∗Y′VΣ−1

4: Compute eigenvalues and eigenvectors of ÃyW = WΛ.
5: Set ΨDMD = Y′VΣ−1W
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Model Order Reduction Dynamic Mode Decomposition

Example: DMD-Galerkin approximation

yt (x , t) + yx (x , t) = 0 (x , t) ∈ [0,4]× [0,3],

y(x ,0) = y0(x) x ∈ [0,4],

y(0, t) = 0 = y(4, t) t ∈ [0,T ],

where y0(x) = sin(πx) if 0 ≤ x ≤ 1 and 0 elsewhere.

DMD Ansatz: y(t) ≈ ΨDMDyDMD(t).
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Model Order Reduction Dynamic Mode Decomposition

Figure: Reduced approximation with rank={5,10,15}. POD approximation
(top), DMD-Galerkin (middle), DMD (data-driven) (bottom)
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Model Order Reduction Dynamic Mode Decomposition

Example: DMD-Galerkin approximation
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Model Order Reduction Coupling POD and DMD methods

POD-DMD method

MAIN IDEA
The evaluation of the nonlinearity is the most expensive part in model
order reduction. We aim faster approximation of the nonlinear term.

We need snapshots!

{y(t0), . . . ,y(tm)}, to compute the POD basis functions,
{f(t0,y(t0)), . . . , f(tm,y(tm))} to compute the DMD basis functions.

POD-DMD method (NO EVALUATION OF THE NONLINEARITY)
(A., Kutz, 2016) M`ẏ`(t) = A`y`(t) + (ΨPOD)TΨDMDdiag(eω

DMDt )b,

y`(0) = y0
`.
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Model Order Reduction Coupling POD and DMD methods

Example: Semi-Linear Parabolic Equation

yt − θ∆y + µ(y − y3) = 0 (x , t) ∈ Ω× [0,T ],

y(x ,0) = y0(x) x ∈ Ω,

y(·, t) = 0 x ∈ ∂Ω, t ∈ [0,T ],

Parameters:
Ω = [0,1]× [0,1],T = 3,
y0(x) = 0.1 if 0.1 ≤ x1x2 ≤ 0.6 and 0 elsewhere.
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Model Order Reduction Coupling POD and DMD methods

Example: Semi-Linear Parabolic Equation
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Model Order Reduction Coupling POD and DMD methods

Example: Semi-Linear Parabolic Equation
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Model Order Reduction Coupling POD and DMD methods

Example: Semi-Linear Parabolic Equation

0 5 10 15 20 25 30 35 40
10

−3

10
−2

10
−1

10
0

 

 

POD−DMD

POD−DEIM

0 5 10 15 20 25 30 35 40
10

−4

10
−3

10
−2

10
−1

10
0

 

 

POD−DMD

POD−DEIM

0 5 10 15 20 25 30 35 40
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

POD−DMD

POD−DEIM

Figure: Relative Error for 5 POD basis functions (left), 10 POD basis (middle),
15 POD basis (right)

A. Alla (Florida State University) Randomized MOR 24 / 42



Model Order Reduction Coupling POD and DMD methods

Example: Semi-Linear Parabolic Equation

A fair comparison
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Randomized Linear Algebra in Model Order Reduction
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Randomized Linear Algebra in Model Order Reduction

Randomized SVD (Haiko, Martinsson, Tropp, 2011)

Computational Costs for Y ∈ Rm×n:

SVD: O(mn2)

Randomized SVD: O(mn`),

First Steps:

Choose desired target rank `� {m,n},
Create a random (gaussian) sampling matrix Ω ∈ Rn×`,
Sampled matrix X ∈ Rn×` is computed as: X = YΩ.

Remarks:
If the matrix Y has exact rank `, then the sampled matrix X spans,
with high probability, a basis for the column space.
In practice, it is favorable to slightly oversample ` = `+ p, were p
denotes the number of additional samples.
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Randomized Linear Algebra in Model Order Reduction

Randomized SVD

Second Steps: Obtain low-rank SVD from a compressed matrix

Compute X = QR, Q ∈ Rn×` orthonormal,
Y is projected into this low-dimensional space B ∈ R`×m:

B = QᵀY,

Compute the (cheap) SVD B = ÛΣVT ,

Set U = QÛ

Remark: if ` is large enough:

Y ≈QQᵀY
≈QB

≈QŨΣVT

≈UΣVT
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Randomized Linear Algebra in Model Order Reduction

Randomized SVD
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Randomized Linear Algebra in Model Order Reduction Compressed Model Order Reduction Techniques

How to use RSVD in model reduction?

Model order reduction techniques:
are based on snapshots of the dynamical system.
SVD decomposition of the snapshots matrix provides a
low-dimension projector operator that allows one to obtain
surrogate models.
WARNING: SVD may be computationally expensive to reduced
the offline cost of the method.

IDEA:
Compute basis functions from a few spatially incoherent
measurements (not from the full set of measurements)
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Randomized Linear Algebra in Model Order Reduction Compressed POD

Compressed POD

we collect the snapshot set,
we solve the POD optimization problem,
optimality conditions provide eigenvalue problems,
RSVD computes compressed POD basis functions in a
significantly faster way.

Algorithm

Require: Snapshot Matrix Y ∈ Rn×m, ` number of basis functions., p
number of measurements.

1: Compute the Randomized SVD [U,Σ,V] = rsvd(Y,p)
2: Set Ψi = Ui for i = 1, . . . , `.
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Randomized Linear Algebra in Model Order Reduction Compressed POD

Compressed POD

Error (d rank of Y, p number of samples)

E

 m∑
j=1

αj

∥∥∥∥∥y(tj)−
∑̀
i=1

〈y(tj),ψi〉ψi

∥∥∥∥∥
2
 =

(
1 +

√
`

p − 1

)
σ2
`+1 +

√
`+ p
p

d∑
j=`+1

σ2
j .

Remarks:
we consider the expectation value of the error
error depends on the computation of the set of snapshots and p,
if the singular values of Y decay rapidly a few samples drives the
error close to the theoretically minimum value.
if the singular values do not decay rapidly we can lose accuracy.
we suppose Y ∈ Rm×n, such that m ≈ n
(eigenvalue problem is also expensive)
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Randomized Linear Algebra in Model Order Reduction Compressive Sampling DMD

Compressive DMD (Brunton, Proctor, Kutz, 2015)

GOAL:
Compute DMD and apply as Galerkin projection method.

Algorithm

Require: Snapshots {y(t0), . . . ,y(tm)}, C ∈ Rp×m

1: Set Y = [y(t0), . . . ,y(tm−1)] and Y ′ = [y(t1), . . . ,y(tm)],
2: X = CY, X′ = CY′

3: Compute the SVD of X, X = UΣVT

4: Define Ãx := U∗Y′VΣ−1

5: Compute eigenvalues and eigenvectors of ÃxW = WΛ.
6: Set ΨDMD = X′VΣ−1W
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Numerical Tests
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Numerical Tests

Test 1: Semi-Linear Parabolic Equation

yt − θ∆y + µ(y − y3) = 0 (x , t) ∈ Ω× [0,T ],

y(x ,0) = y0(x) x ∈ Ω,

y(·, t) = 0 x ∈ ∂Ω, t ∈ [0,T ],

Parameters:
Ω = [0,1]× [0,1],T = 3,
y0(x) = 0.1 if 0.1 ≤ x1x2 ≤ 0.6 and 0 elsewhere.
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Numerical Tests

Test 1: Semi-Linear Parabolic Equation
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Numerical Tests

Test 1: Semi-Linear Parabolic Equation
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Numerical Tests

Test 2: Parametric Elliptic Equation

−∆u(x , y) + s(u(x , y);µ) = f (x , y) (x , y) ∈ Ω

u(x , y) = 0 (x , y) ∈ ∂Ω

Parameters:

Ω = [0,1]× [0,1], µ = (µ1, µ2) ∈ D = [0.01,10]2

s(u, µ) =
µ1

µ2
(eµ2u − 1), f (x , y) = 100 sin(2πx) sin(2πy).
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Numerical Tests

Test 2: Parametric Elliptic Equations
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Numerical Tests

Test 2: Parametric Elliptic Equations
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Numerical Tests

Conclusions

Model order reduction is a successful technique that projects
nonlinear high dimensional dynamical systems and PDEs into low
dimensional surrogate models
Compressed (randomized) techniques are a promising approach
to circumventing expensive offline stages in model order
reduction.
DMD works successfully in a Galerkin projection framework
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