Communication Complexity in the Field: New Questions from Practice

Qin Zhang Indiana University Bloomington

BIRS Workshop March 20, 2017

Not on a particular problem

Try to present a few new questions that I have encountered when trying to apply comm. complexity in various settings

I will talk about

- 1. Number-in-hand CC with input sharing
 - Distributed computation of graph problems
- 2. Primitive problems overlap; direct-sum does not apply
 Distributed joins
- 3. Higher LB in simultaneous comm. than one-way comm.?
 Sketching edit distance

Distributed graph computation

Real world systems: Pregel, Giraph, GPS, GraphLab, etc.

The coordinator model: We have *k* machines (sites) and one central server (coordinator).

- Each site has a 2-way comm. channel with the coordinator.
- Each site has a piece of data x_i .
- Task: compute $f(x_1, \ldots, x_k)$ together via comm., for some f. Coordinator outputs the answer.
- Goal: minimize total communication

- k sites each holds a portion of a graph.
- Goal: compute whether the graph is connected.

Let's think about the **graph connectivity** problem: *k* sites each holds a portion of a graph. Goal: compute whether the graph is connected.

k sites each holds a portion of a graph. Goal: compute whether the graph is connected.

k sites each holds a portion of a graph. Goal: compute whether the graph is connected.

A trivial solution: each S_i sends a local spanning forest to C. Cost $O(kn \log n)$ bits.

n: # nodes of the graph

k sites each holds a portion of a graph. Goal: compute whether the graph is connected.

A trivial solution: each S_i sends a local spanning forest to C. Cost $O(kn \log n)$ bits.

n: # nodes of the graph

Can we do better, e.g., o(kn) bits of comm. in total?

k sites each holds a portion of a graph. Goal: compute whether the graph is connected.

A trivial solution: each S_i sends a local spanning forest to C. Cost $O(kn \log n)$ bits.

n: # nodes of the graph

Can we do better, e.g., o(kn) bits of comm. in total? If graph is edge partitioned among k sites, $\Omega(kn)$

[Woodruff, Z. '13]

LB graph for edge partition

LB graph for edge partition:

For each $i \in [k]$, $(X_i, Y) \sim \mu$ which is a hard input distribution for set-disjointness. Each site S_i holding $X_i = \{X_{i,1}, \ldots, X_{i,n}\}$ creates an edge (u_i, v_j) for each $X_{i,j} = 1$. The coordinator holding $Y = \{Y_1, \ldots, Y_n\}$ creates a path containing $\{v_j \mid Y_j = 1\}$ and a path containing $\{v_j \mid Y_j = 0\}$.

$$v_j \mid Y_j = 0$$
 $v_j \mid Y_j = 1$

LB graph for edge partition

LB graph for edge partition:

7-2

For each $i \in [k]$, $(X_i, Y) \sim \mu$ which is a hard input distribution for set-disjointness. Each site S_i holding $X_i = \{X_{i,1}, \ldots, X_{i,n}\}$ creates an edge (u_i, v_j) for each $X_{i,j} = 1$. The coordinator holding $Y = \{Y_1, \ldots, Y_n\}$ creates a path containing $\{v_j \mid Y_j = 1\}$ and a path containing $\{v_j \mid Y_j = 0\}$.

= 1

$$v_j \mid Y_j = 0$$
 $v_j \mid Y_j$

In most practical systems, graph is node partitioned. Can we prove a similar LB?

In most practical systems, graph is node partitioned. Can we prove a similar LB?

Basically, only bottom nodes (and their adjacent edges) are partitioned

In most practical systems, graph is node partitioned. Can we prove a similar LB?

Basically, only bottom nodes (and their adjacent edges) are partitioned

If we also partition the top nodes (and their adjacent edges), then the $\Omega(kn)$ LB does not hold.

In most practical systems, graph is node partitioned. Can we prove a similar LB?

Basically, only bottom nodes (and their adjacent edges) are partitioned

If we also partition the top nodes (and their adjacent edges), then the $\Omega(kn)$ LB does not hold.

Not a surprise. If a graph is node partitioned, $\tilde{O}(n)$ suffices. [Ahn, Guha, McGregor '12]

Input sharing

Input sharing

To prove LB in the node partition model, one needs to deal with input sharing: each edge may be stored in two sites.

Need new techniques?

Input sharing

Input sharing

To prove LB in the node partition model, one needs to deal with input sharing: each edge may be stored in two sites.

Need new techniques?

A concrete problem: Breadth First Search Tree

Given a node u, the parties want to jointly compute a BSF tree rooted at u. The coordinator outputs the final BFS tree.

What is the comm. complexity?

Distributed joins

Set-intersection join

Set-Intersection Join (cardinality version) $SIJ(A, B) = |\{(i, j) \text{ for which } C_{i,j} > 0, \text{ where } C = A \cdot B\}|$ An important operation in databases

11-1

Set-intersection join (cont.)

The problem: estimate SIJ(A, B) up to a $(1 + \epsilon)$ factor. Useful e.g. in query planning. **The problem**: estimate SIJ(A, B) up to a $(1 + \epsilon)$ factor. Useful e.g. in query planning.

Current LB $\Omega(n/\epsilon^{2/3})$: (Van Gucht, Williams, Woodruff, Z. '15)

The problem: estimate SIJ(A, B) up to a $(1 + \epsilon)$ factor. Useful e.g. in query planning.

Current LB $\Omega(n/\epsilon^{2/3})$: (Van Gucht, Williams, Woodruff, Z. '15) For each $i \in [m]$, choose $(A_i, B_i) \sim \mu$ where μ is a hard input distribution for set-disjointness. Define $SUM(A, B) = \sum_{i \in [m]} DISJ(A_i, B_i)$. W.h.p.

SIJ(A, B) = SUM(A, B) + m(m-1).

Using basically a direct-sum (Gap-hamming + DISJ), any rand. algo. that computes SUM(A, B) w.pr. 0.99 up to an additive error $\sqrt{m/2}$ needs $\Omega(mn)$ comm.

Set $m = 1/\epsilon^{2/3}$ to get $\Omega(n/\epsilon^{2/3})$ LB

The current best UB: $\tilde{O}(m/\epsilon^2)$ using F_0 -sketch, and is one-way

Can we prove an $\Omega(n/\epsilon^2)$ LB?

Not enough to apply a direct-sum type argument on $(A_1, B_1), \ldots, (A_m, B_m)$, since each A_i is going to join each B_j . In other words, the primitive problems overlap.

Need new techniques?

Sketching threshold edit distance

Definition: Given two strings $s, t \in \Sigma^n$:

ed(s, t) = minimum number of character operations (insertion/deletion/substitution) that transform s to t.

Definition: Given two strings $s, t \in \Sigma^n$: ed(s, t) = minimum number of character operations(insertion/deletion/substitution) that transform s to t.

ed(banana , ananas) =
$$2$$

Definition: Given two strings $s, t \in \Sigma^n$: ed(s, t) = minimum number of character operations(insertion/deletion/substitution) that transform s to t.

Applications: numerous. E.g.,

bioinformatics (measuring similarity between DNA seq.

Definition: Given two strings $s, t \in \Sigma^n$: ed(s, t) = minimum number of character operations(insertion/deletion/substitution) that transform s to t.

Applications: numerous. E.g.,

bioinformatics (measuring similarity between DNA seq.

automatic spelling correction

Problems

The threshold version of ED: Given two strings $s, t \in \{0, 1\}^n$ and a threhold K, output all the edits if $ed(s, t) \leq K$, output "Error" otherwise.

Problems

The threshold version of ED: Given two strings $s, t \in \{0, 1\}^n$ and a threhold K, output all the edits if $ed(s, t) \leq K$, output "Error" otherwise.

document exchange

App: remote file sync; file transmission through a noisy channel

One-way comm.

Problems

The threshold version of ED: Given two strings $s, t \in \{0, 1\}^n$ and a threhold K, output all the edits if $ed(s, t) \leq K$, output "Error" otherwise.

One-way comm.

Simultaneous comm.

problem	comm. / size / space (bits)	running time	rand. or det.	ref.
document-	$O(K \log n)$	$n^{O(K)}$	D	[23]
exchange	$O(K \log(n/K) \log n)$	$ ilde{O}(n)$	R	[18]
	$O(K \log^2 n \log^* n)$	$ ilde{O}(n)$	R	[19]
	$O(K^2 + K \log^2 n)$	$ ilde{O}(n)$	D	[5]
	$O(K^2 \log n)$	$ ilde{O}(n)$	R	[8]
	$O(K(\log^2 K + \log n))$	$ ilde{O}(n)$	R	new
sketching	$O(K^8 \log^5 n)$	$\tilde{O}(K^2n)$ (enc.),	R	new
		$poly(K \log n)$ (dec.)		
streaming	$O(K^8 \log^5 n)$	$ ilde{O}(K^2n)$	R	new
simultaneous-	$O(K^6 \log n)$	$ ilde{O}(n)$	R	[8]
streaming	$O(K \log n)$	O(n)	D	new

New: results from [Belazzougui, Z. '16]. For simplicity, assuming $K < n^{0.1}$

The one-way CC of K-threshold ED is $\Theta(K \log n)$.

The simultaneous CC of K-threshold ED is $O(K^8 \log^5 n)$. Should be able to improve it to $K^4 \cdot \text{poly} \log(n)$ or $K^3 \cdot \text{poly} \log(n)$. But I am not sure if we can do it in $o(K^2) \cdot \text{poly} \log(n)$. **LB**? **Conjecture**: the following may be a hard distribution for K-threshold ED, i.e., any algo needs $\Omega(K^2)$ comm.

Conjecture: the following may be a hard distribution for K-threshold ED, i.e., any algo needs $\Omega(K^2)$ comm.

W.pr. 1/2, the K edits are randomly located in s and t;

W.pr. 1/2, the K edits are located in a random group of adjacent positions.

Can we prove higher LB in the simultaneous comm. model than in the one-way comm. model for natural problems?

If you know any example/result, please let me know. Thanks.

Thank you! Questions?