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Not on a particular problem

Try to present a few new questions that
I have encountered when trying to apply
comm. complexity in various settings

This talk
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I will talk about

1. Number-in-hand CC with input sharing

– Distributed computation of graph problems

2. Primitive problems overlap; direct-sum does not apply

– Distributed joins

3. Higher LB in simultaneous comm. than one-way comm.?

– Sketching edit distance

Agenda
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Distributed graph computation
Real world systems: Pregel, Giraph, GPS, GraphLab, etc.



5-1

The coordinator model

The coordinator model: We have k machines (sites) and one
central server (coordinator).

– Each site has a 2-way comm. channel with the coordinator.
– Each site has a piece of data xi .
– Task: compute f (x1, . . . , xk) together via comm., for some f .

Coordinator outputs the answer.
– Goal: minimize total communication

· · ·S1 S2 S3 Sk

C
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Distributed graph computation

Let’s think about the graph connectivity problem:

k sites each holds a portion of a graph.
Goal: compute whether the graph is connected.
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Distributed graph computation

Let’s think about the graph connectivity problem:

k sites each holds a portion of a graph.
Goal: compute whether the graph is connected.
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Distributed graph computation

Let’s think about the graph connectivity problem:

k sites each holds a portion of a graph.
Goal: compute whether the graph is connected.

A trivial solution:

each Si sends a local

spanning forest to C . Cost

O(kn log n) bits.· · ·S1 S2 S3 Sk

C

n: # nodes of the graph
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Distributed graph computation

Let’s think about the graph connectivity problem:

k sites each holds a portion of a graph.
Goal: compute whether the graph is connected.

A trivial solution:

each Si sends a local

spanning forest to C . Cost

O(kn log n) bits.

Can we do better, e.g., o(kn) bits of comm. in total?

· · ·S1 S2 S3 Sk

C

n: # nodes of the graph



6-6

Distributed graph computation

Let’s think about the graph connectivity problem:

k sites each holds a portion of a graph.
Goal: compute whether the graph is connected.

A trivial solution:

each Si sends a local

spanning forest to C . Cost

O(kn log n) bits.

If graph is edge partitioned among k sites, Ω(kn)

Can we do better, e.g., o(kn) bits of comm. in total?

· · ·S1 S2 S3 Sk

C

n: # nodes of the graph

[Woodruff, Z. ’13]
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LB graph for edge partition

For each i ∈ [k], (Xi ,Y ) ∼ µ which is a hard input distribution

for set-disjointness. Each site Si holding Xi = {Xi,1, . . . ,Xi,n}
creates an edge (ui , vj) for each Xi,j = 1. The coordinator

holding Y = {Y1, . . . ,Yn} creates a path containing

{vj | Yj = 1} and a path containing {vj | Yj = 0}.

u1 u2 u3 uk

vj|Y |+1
vj|Y |+2

vj|Y |+3
vjn vj1 vj2 vj|Y |

vj | Yj = 0 vj | Yj = 1

(X1) (X2) (X3) (Xk)

LB graph for edge partition:
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LB graph for edge partition

For each i ∈ [k], (Xi ,Y ) ∼ µ which is a hard input distribution

for set-disjointness. Each site Si holding Xi = {Xi,1, . . . ,Xi,n}
creates an edge (ui , vj) for each Xi,j = 1. The coordinator

holding Y = {Y1, . . . ,Yn} creates a path containing

{vj | Yj = 1} and a path containing {vj | Yj = 0}.

u1 u2 u3 uk

vj|Y |+1
vj|Y |+2

vj|Y |+3
vjn vj1 vj2 vj|Y |

vj | Yj = 0 vj | Yj = 1

(X1) (X2) (X3) (Xk)

LB graph for edge partition:

Graph connected ⇔
DISJ(X1,Y ) ∨ . . . ∨ DISJ(Xk ,Y ) = 1
(LB: Ω(kn))
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What if the graph is node partitioned?

In most practical systems, graph is node partitioned.

Can we prove a similar LB?
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u1 u2 u3 uk

vj|Y |+1
vj|Y |+2

vj|Y |+3
vjn vj1 vj2 vj|Y |

Basically, only bottom nodes (and their adjacent edges)
are partitioned

Graph connected ⇔
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What if the graph is node partitioned?

In most practical systems, graph is node partitioned.

Can we prove a similar LB?

If we also partition the top nodes (and their adjacent edges),
then the Ω(kn) LB does not hold.

u1 u2 u3 uk
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What if the graph is node partitioned?

In most practical systems, graph is node partitioned.

Can we prove a similar LB?

If we also partition the top nodes (and their adjacent edges),
then the Ω(kn) LB does not hold.

Not a surprise. If a graph is node partitioned, Õ(n) suffices.
[Ahn, Guha, McGregor ’12]

u1 u2 u3 uk

vj|Y |+1
vj|Y |+2

vj|Y |+3
vjn vj1 vj2 vj|Y |

Basically, only bottom nodes (and their adjacent edges)
are partitioned

Graph connected ⇔
DISJ(X1,Y ) ∨ . . . ∨ DISJ(Xk ,Y ) = 1
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Input sharing

To prove LB in the node partition model, one needs
to deal with input sharing: each edge may be stored
in two sites.

Need new techniques?

Input sharing
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Input sharing

To prove LB in the node partition model, one needs
to deal with input sharing: each edge may be stored
in two sites.

Need new techniques?

Input sharing

Given a node u, the parties want to jointly
compute a BSF tree rooted at u. The coordinator
outputs the final BFS tree.

What is the comm. complexity?

A concrete problem: Breadth First Search Tree
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Distributed joins



11-1

Set-intersection join

A =

A1

Am

B=B1 Bm

Set-Intersection Join (cardinality version)

SIJ(A,B) = |{(i , j) for which Ci,j > 0, where C = A · B}|
An important operation in databases

e.g., skills of
applicants

e.g., skills
required by a
job positions

A1, . . . ,Am ⊆ [n] = {1, 2, . . . , n}, and B1, . . . ,Bm ⊆ [n]
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Set-intersection join (cont.)

The problem: estimate SIJ(A,B) up to a (1 + ε) factor.
Useful e.g. in query planning.
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Set-intersection join (cont.)

The problem: estimate SIJ(A,B) up to a (1 + ε) factor.
Useful e.g. in query planning.

Current LB Ω(n/ε2/3): (Van Gucht, Williams, Woodruff, Z. ’15)
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Set-intersection join (cont.)

The problem: estimate SIJ(A,B) up to a (1 + ε) factor.
Useful e.g. in query planning.

Current LB Ω(n/ε2/3):

For each i ∈ [m], choose (Ai ,Bi ) ∼ µ where µ is a
hard input distribution for set-disjointness.
Define SUM(A,B) =

∑
i∈[m] DISJ(Ai ,Bi ). W.h.p.

SIJ(A,B) = SUM(A,B) + m(m − 1).

Using basically a direct-sum (Gap-hamming + DISJ),
any rand. algo. that computes SUM(A,B) w.pr. 0.99
up to an additive error

√
m/2 needs Ω(mn) comm.

Set m = 1/ε2/3 to get Ω(n/ε2/3) LB

(Van Gucht, Williams, Woodruff, Z. ’15)
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Set-intersection join (cont.)

The current best UB: Õ(m/ε2)
using F0-sketch, and is one-way

Can we prove an Ω(n/ε2) LB?

Not enough to apply a direct-sum type argument
on (A1,B1), . . . , (Am,Bm), since each Ai is going
to join each Bj . In other words,

the primitive problems overlap.

Need new techniques?
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Sketching threshold edit distance
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Edit Distance

Definition: Given two strings s, t ∈ Σn:

ed(s, t) = minimum number of character operations
(insertion/deletion/substitution) that transform s to t.
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ananas ) = 2
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Edit Distance

Definition: Given two strings s, t ∈ Σn:

ed(s, t) = minimum number of character operations
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ed( banana ,
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Applications: numerous. E.g.,

bioinformatics (measuring
similarity between DNA seq.
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Edit Distance

Definition: Given two strings s, t ∈ Σn:

ed(s, t) = minimum number of character operations
(insertion/deletion/substitution) that transform s to t.

ed( banana ,
ananas ) = 2

Applications: numerous. E.g.,

bioinformatics (measuring
similarity between DNA seq.

automatic spelling correction
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Problems

The threshold version of ED: Given two strings
s, t ∈ {0, 1}n and a threhold K , output all the edits if
ed(s, t) ≤ K , output “Error” otherwise.
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Problems

The threshold version of ED: Given two strings
s, t ∈ {0, 1}n and a threhold K , output all the edits if
ed(s, t) ≤ K , output “Error” otherwise.

sk(s)

s t

document exchange
App: remote file sync;

file transmission through

a noisy channel

One-way comm.
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Problems

The threshold version of ED: Given two strings
s, t ∈ {0, 1}n and a threhold K , output all the edits if
ed(s, t) ≤ K , output “Error” otherwise.

sk(s)

s t

document exchange
App: remote file sync;

file transmission through

a noisy channel

s

sk(s)

sketching
App: distributed similarity join

t

sk(t)

Simultaneous comm.One-way comm.
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What we have known

New: results from [Belazzougui, Z. ’16]. For simplicity, assuming K < n0.1

The one-way CC of K -threshold ED is Θ(K log n).

The simultaneous CC of K -threshold ED is O(K 8 log5 n).
Should be able to improve it to K 4 · poly log(n) or K 3 · poly log(n).
But I am not sure if we can do it in o(K 2) · poly log(n). LB?
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A possible hard distribution

Conjecture: the following may be a hard distribution for
K -threshold ED, i.e., any algo needs Ω(K 2) comm.
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A possible hard distribution

Conjecture: the following may be a hard distribution for
K -threshold ED, i.e., any algo needs Ω(K 2) comm.

W.pr. 1/2, the K edits are randomly located in s and t;

W.pr. 1/2, the K edits are located in a random group of
adjacent positions.
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The general question

Can we prove higher LB in the simultaneous
comm. model than in the one-way comm.
model for natural problems?

If you know any example/result, please let me know.
Thanks.



20-1

Thank you!
Questions?


